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Abstract—The recent advent of low-cost 3D sensing tech-
nologies has greatly increased the use of 3D point cloud-based
representations in robotics. Such representations have a variety
of applications, including object recognition, pose estimation and
grasp point selection. A major limitation of 3D point clouds,
however, is that they fail to capture an object’s functional
features – for example, a 3D model of a stapler does not in
itself encode where the stapler should be pressed. To bridge
the gap between an object’s shape and an object’s function,
this paper proposes an approach for robotic annotation of 3D
point clouds that captures the object’s functional features. In our
experiments, the robot explored objects by performing a variety
of behaviors on them at different locations and observed the
auditory and tactile sensations as a result of its actions. Using 3D
registration algorithms, the resulting auditory and tactile point
clouds were matched against the 3D object point cloud, resulting
in a multi-modal point cloud representation encoding the spatial
locations on the 3D model that afford the robot to actualize the
object’s function. The results show that the approach successfully
discovers the functional locations in a 3D point cloud for three
different types of objects: a stapler, a drill and a flashlight.

I. I NTRODUCTION

Autonomous robot manipulation of tools is a long standing
goal of the robotics community [1]. For many tools (e.g., a
hand-held drill, a flashlight, a stapler, etc.) successful ma-
nipulation requires that the robot is capable of detecting the
specific location on the object that needs to be actuated (e.g.,
a trigger or a button) in order to turn on the tool. Yet, to
date, virtually all methods for robotic tool use require that the
human programmer specify what part of the object needs to
be actuated and therefore, such methods cannot generalize to
novel objects that have not been previously seen by the human
programmer. Furthermore, most object representations used
by robots consists entirely of vision-based 2D and 3D object
models, which, by themselves, do not encode the location on
the object that needs to be actuated.

Towards addressing these challenges, this paper proposes a
method that enables a robot to detect the functional parts of
hand-held tools using tactile and auditory sensory feedback
coupled with exploratory behaviors that the robot applies on
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Fig. 1. The ARM-S robotic platform, shown here performing two of the
manipulation challenges: drilling (left) and stapling (right).

the objects. The proposed approach consists of extracting au-
ditory and tactile events detected while the robot manipulates
an object and mapping those events onto the object’s 3D point
cloud model. The result of this process is a novel visual-
audio-tactile point cloud object representation which notonly
captures the object’s visual appearance, but also encodes the
functional components of the object (e.g., buttons) that afford
tool actuation.

The proposed method was tested on an upper-torso hu-
manoid robot, shown in Figure 1, and three different tools:
a hand-held drill, a flashlight, and a stapler. By exploring the
objects using two different behaviors, squeeze and press, the
robot was able to detect the functionally important locations of
the objects that afford actuation. The results make a strongcase
that for robots to operate tools autonomously, they need to be
able to explore the tools and, in addition, use multi-modal 3D
object representations instead of ones based on vision alone.

II. RELATED WORK

Experiments in psychology have demonstrated that both
tactile and auditory feedback are important sources of informa-
tion for establishing multi-modal object representationsduring
object exploration [2], [3]. One way in which humans leverage
information from different sensory modalities is through the
use of what psychologists callexploratory behaviors(see [4])
or exploratory procedures(see [5]). In “Play and Exploration
in Children and Animals”, Power writes:



“[ . . . ] exploratory behavior in infancy and child-
hood appears to serve an information-gathering
function. Using a variety of methods, researchers
have demonstrated that during exploration infants
and young children extract at least short-term infor-
mation about the characteristic of objects, including
information about texture, hardness, weight, shape,
size, and sound potential.” [4]

Infants’ use of exploratory behaviors when learning about
objects is tightly connected to their ability to detect sensory
events that occur over the course of object manipulation.
Gibson [6] concludes that our basic knowledge about how ob-
jects behave in the natural world is gathered through constant
observation of how objects are affected by our own actions. In
other words, when exploring an object, both infants and adults
observe perceptual outcomes (e.g., sounds, tactile sensations,
and movement patterns) that are subsequently used to form
expectations about how an object behaves when a specific
action is applied on in (see [6]).

In contrast, the vast majority of representations used in
robotics today are solely vision based (see [7], [8], [9], [10],
[11] for a representative sample of systems that use such
approaches). While such 2D and 3D representations capture
how an object looks like, they do not encode multi-modal
information (e.g., how an object feels like or sounds like) that
may be necessary for successful manipulation. In other words,
a 3D model of a hand-held drill cannot on its own provide
a robot with the functionally relevant location of the drill’s
trigger. Because of this limitation, when robots are taskedwith
manipulating objects (e.g., pressing a button), they’re typically
pre-programmed by the human user to apply the behavior at
a hard-coded location.

To address these limitations, several lines of research have
pursued methods and approaches that enable robots to utilize
non-visual as well as multi-modal cues when learning about
objects. For example, several experiments have demonstrated
that robots can use auditory [12] [13], proprioceptive [14],
as well as multi-modal sensory feedback [15] for object
recognition. The drawbacks of those methods is that they fail
to take the object’s geometry into account and can only handle
simple objects that have no degrees of freedom (e.g., a cup, a
box, etc., but not a stapler, a drill with a button, etc.).

In addition to object recognition, experiments have also
demonstrated that non-visual cues can be used to improve
robot manipulation of everyday objects. For example, Jainet
al. [16] describe an experiment in which a robot was able
to characterize doors and drawers using proprioceptive feed-
back detected over the course of opening them. In addition,
experiments by Sukhoyet al. [17] [18] show that auditory and
proprioceptive feedback can be used by a robot to estimate the
location of a button, which if pressed, produced a sound. The
main limitations of that work, however, are that the robot’s
perception of the object was only in 2D and that the method
was applied only on one type of object, a button, and using
only one type of behavior, pressing.

Fig. 2. The three objects used in our experiments: a flashlight, a hand-held
drill, and a stapler.

III. E XPERIMENTAL METHODOLOGY

A. Robot

The experiments reported in this paper were performed with
the upper-torso humanoid robot shown in Fig. 1. The robot was
equipped with one 7-DOF Barrett Whole Arm Manipulator
with the three fingered Barrett Hand as its end effector. The
hand has four4×6 tactile arrays, one for each finger and one
for the palm. The robot was also equipped with two Audio-
Technica U853AW cardioid microphone mounted in the head,
which were used to capture auditory feedback at the standard
16-bit/44.1 kHz resolution and rate over a single channel.

B. Objects

Three different objects, shown in Figure 2, were used in
our experiments: a drill, a flashlight, and a stapler. The objects
were part of the DARPA ARM-S manipulation challenge, in
which the robot was tasked with autonomous drilling, turning
on the flashlight, and stapling a piece of paper. In addition to
the physical objects, the DARPA ARM-S program provided
high resolution 3D models which we used in our experiments.

C. Behaviors

The robot explored objects using two different behaviors,
squeezeand press. Both behaviors were designed such that
they produce both tactile as well as auditory feedback when
applied on objects. Each behavior had two stages. In thetactile
localization stage, the robot performed an action designed to
capture tactile feedback that can be used to build a tactile
point cloud of the object. In the second,tool actuationstage,
a subsequent action was performed during which auditory
feedback was used to detect whether the tool was actuated
or not. The behaviors are described in more details below.



1) Squeeze:The squeeze behavior was applied on the
flashlight and the drill objects and consisted of the following
steps. First, the end-effector was positioned near the object
so that closing the fingers of the hand would result in the
object being grasped or touched. Next, the three fingers were
closed using direct torque control. During the execution ofthe
closing action, the tactile feedback from the fingers and the
palm was monitored and once a tactile sensor was triggered
(see Section III.D), the corresponding finger stopped closing.
This constituted thetactile localizationstage of the behavior.
Finally, during thetool actuationstage, the robot attempted
a squeezing action with the third finger (F3), during which
audio feedback was monitored (see Section III.D) in order to
detect whether the squeezing action actuated the tool. Figure
3.a) shows three example executions of the behavior on the
drill at different locations on the object.

2) Press: The press behavior, shown in Figure 3.b), was
applied on the stapler and consisted of the following steps:
first, the hand was positioned above the stapler such that the
hand’s palm is horizontal relative to the table plane. Next,
during thetactile localizationstage of the behavior, the hand
was lowered using the robot’s Cartesian controller such that
the orientation of the palm remained constant. Once tactile
feedback was detected on the palm, the robot executed a
pressing action using a Cartesian torque controller for a period
of 10 seconds, which constituted thetool actuationstage of the
pressbehavior. During this execution, the auditory feedback
was monitored so that successful actuation of the tool can be
detected. The next subsection describes the method used to
detect auditory and tactile events from the robot’s audio and
tactile sensory streams.

D. Event Extraction

The general approach for detecting sensory events used in
this paper consisted of two steps: 1) for each sensory channel,
learn a background model that encodes the expected sensor
readings when no action is performed (i.e., no contact for
the tactile sensor and no tool actuation for the audio sensor),
and 2) during behavior execution, use the background model
to detect events whose sensor signatures deviate from what
is expected if no contact or no tool actuation is present.
Following, the application of this approach is described in
detail for both the tactile and auditory sensory channels.

1) Auditory Event Detection:Auditory events correspond-
ing to tool actuation were extracted using the Discrete Fourier
Transform (DFT) computed over the waveform captured by
the robot’s left microphone. The DFT was computed using256
frequency bins with a window of26.6 milliseconds computed
every13.3 milliseconds, and thus, each auditory sample can be
represented byxt ∈ R

256. The background model was learned
by recording a set of DFT samplesXbg = {x1, x2, . . .} over a
period of0.5 seconds right before thetool actuationstage of
each behavior was performed. From the set of samplesXbg,
for each of the256 frequency bins, a tuple of the form(µi, σi)
was computed so that it encodes the mean and the standard
deviation for theith bin computed over the0.5 seconds used

b) Pressbehavior applied on the stapler

a) Squeezebehavior applied on the drill

Fig. 3. Examples of the exploratory behaviors performed on theobjects. a)
Squeeze: The squeeze behavior, shown here performed on the hand-helddrill,
consisted of closing the robot’s fingers and subsequently squeezing finger 3
in order to actuate the drill. In this case, successful actuation was achieved
in the third example. b)Press: The press behavior, performed on the stapler,
consisted of pressing down on the stapler at various locations. The stapler
was successfully actuated in the second example.

a) Background noise b) Drill actuation
Fig. 4. a) Discrete Fourier Transforms (DFT) of the background noise in
the lab; b) DFT of the sound produced when the drill is actuated.

to learn the background model. Therefore, the background
model corresponds to the set{(µi, σi)}

i=256
i=1 and encodes the

expected values and their expected variance for each of the
256 frequency bins.

During the execution of thetool actuation behavior, the
background model was used to detect auditory events cor-
responding to successful actuation of the tool. Given a DFT
samplext ∈ R

256, the sample was classified as deviating from
the background ifk of the DFT bins have values deviating
from the expected means by at least2.5 standard deviations.
If 5 consecutive samples were classified as deviating form the
background, an auditory event was detected. The parameterk
was set⌈256/3⌉ = 86. Figure 4 shows sample waveforms
captured by the robot’s microphones and the detected tool
actuation while manipulating the hand-held drill.

2) Tactile Event Detection:During the tactile localization
stage of each behavior execution, the tactile activation values
were used to extract events denoting instances in which
the robot’s fingers or the palm touched the object. Since
each tactile array contains4 × 6 = 24 cells, the learned
background model was represented by the set{(µi, σi}

i=24
i=1 ,



where each tuple(µi, σi) represented the expected mean and
standard deviation for celli when no contact was present. To
compensate for sensor drift, the estimates were re-computed
each time before thetactile localizationstage of the behavior
was performed using samples collected for1.0 second.

As before, a novel sample was classified as deviating from
the background if⌈24/3⌉ = 8 of the tactile channels deviated
from their expected background values by at least2.5 standard
deviations. If5 samples in a row were classified as deviating
after executing thelocalizationbehavior, a tactile touch event
was detected. In the case of the drill and the flashlight, this
procedure was used used for all 3 finger tactile arrays and the
palm array. In the case of the stapler, only the palm array was
used since the behavior used to explore the stapler did not
result in the fingers touching the object. The next subsection
describes how the behaviors described so far, coupled with the
event detection routine, were used to explore three different
objects: a drill, a flashlight, and a stapler.

E. Object Exploration and Data Collection

For each object, data was collected as described in the
following steps:

1) Position the arm in a random configuration around the
object so that the appropriate behavior can be executed.

2) Perform thetactile localizationstage of the behavior.
For each activated tactile sensor, record the 3D position
of the sensor by performing forward kinematics given
the current arm and finger joint values.

3) Perform thetool actuationstage of the behavior. Record
the 3D position of the tactile sensor in contact with the
tool (finger 3 for the drill and flashlight and the palm for
the stapler) along with a corresponding label denoting
whether the tool was actualized or not.

4) Release the tool, and go back to Step 1.

The location and orientation of each tool were kept constant
during the data collection process. Forward kinematics was
used to compute the 3D positions of tactile events. The
procedure resulted in the collection of several point clouds:

• A point cloud corresponding to all tactile events detected
by the robot’s tactile sensors,T ∈ R

3×nt .
• A point cloud corresponding to all auditory events that

indicate successful actuation,A+ ∈ R
3×na+ .

• A point cloud corresponding to all instances in which
an auditory event was not observed when performing the
second stage of each behavior, i.e.,A− ∈ R

3×na
− .

IV. M ULTI -MODAL POINT CLOUD REGISTRATION

A. Problem Formulation

The overall task of the robot is to detect the functional
features of each object and map them onto the object’s 3D
model. More specifically, given an objectO, let the point
cloud P = {p1, p2, . . . , pn} denote the object’s 3D model,
where each pointpi ∈ R

3. Given the 3D model point cloud
P, the tactile point cloudT , and the auditory point clouds,
A+ and A−, the task of the robot is to estimate a density
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Fig. 5. An overview of the method used for audio-tactile pointcloud
registration and annotation. The method consists of three stages: 1) object
exploration, during which the robot explores the object andrecords tactile and
auditory point clouds encoding the locations at which the object was touched
and actuated; 2) data registration, during which the recorded audio and tactile
point clouds are transformed into the reference frame of the object’s 3D model
point cloud; and 3) density estimation, during which the transformed audio
point cloud is used to fit a density function over the 3D model that encodes
the likelihood of successful tool actuation.

functionF over the points in the setP, such that for each point
pi ∈ P, F(pi) ∈ [0, 1) encodes the probability of successful
manipulation when thetool actuationbehavior is applied at
point pi.

Figure 5 shows the overall approach used to solve the
problem, which uses three main stages:

• Object exploration: During the first stage, the robot
explores each tool using atactile localizationand tool
actuation behaviors performed at different locations on
the object (see Section III.E).

• Data registration: Once the robot has extracted tactile
and auditory point clouds, 3D data registration methods
are applied to transform those point clouds into the 3D
object model’s reference frame.

• Density Estimation:Finally, the auditory point clouds are
used to fit a density function over the 3D model that
encodes the likelihood of successful tool actuation for
different locations of the object.

Following, the next two sub-sections describe in details the
algorithms used during thedata registrationand thedensity
estimationstages of the proposed method.

B. Audio-Tactile Point Cloud Registration

Let T ∈ R
3×nt be the set of points corresponding to the

tactile point cloud of the object,A+ ∈ R
3×na+ be the point

cloud corresponding to all auditory events that indicate suc-
cessful actuation, andA− ∈ R

3×na
− be the locations in which



the actuating behavior did not produce successful actuation.
Finally, let P ∈ R

3×n be a point cloud corresponding to the
object’s 3D model.

The goal of this stage is to estimate a transformation matrix,
T ∈ R

4×4, that encodes the rotation and translation requires
to transform the point cloudsT , A+, andA− into the same
reference frame as that of the 3D model point cloud,P. To do
that, two different registration algorithms, SAmple Consensus
Initial Alignment (SAC-IA) [19] and the Iterative Closest Point
(ICP) algorithm [20] were applied using the following steps:

1) Let C = T ∪ A+ ∪ A−, i.e., C ∈ R
3×(nt+na+

+na
−

)

is the union of the tactile and the two auditory point
clouds.

2) LetTsac-ia= SAC-IA(C,P) whereTsac-ia∈ R
4×4 is the

transformation matrix obtained after aligning cloudC to
cloudP using the SAC-IA algorithm.

3) Let C′ = transform(C,Tsac-ia), i.e., C′ is the result of
transformingC according to the matrixTsac-ia.

4) Let Ticp = ICP(C′,P), i.e., Ticp ∈ R
4×4 is the

transformation matrix obtained after aligningC′ to P
using the ICP registration algorithm.

5) Let T = TicpTsac-ia, i.e., T is the transformation
matrix obtained by first applying transformationTsac-ia,
followed byTicp.

6) Finally, let the cloudsA′′

+ = transform(A+,T) and
A′′

−
= transform(A−,T).

In summary, the extracted tactile and auditory clouds are
used to compute a transformation from the robot’s frame
of reference to that of the object model. This was done by
sequentially applying the SAC-IA and the ICP registration
algorithms, as implemented in the Point Cloud Library [21].
The end result consists of the two point clouds,A′′

+ andA′′

−

corresponding to the locations of successful and unsuccessful
applications of the tool actuation behavior in the same refer-
ence frame as that of the 3D object model point cloud,P.
The next subsection describes how the transformed auditory
point clouds were used to fit a density onto the object model
that estimates the likelihood of successful actuation at different
object locations.

C. Density Estimation

The last stage of the proposed method consists of fitting
a density function over the 3D model,P, that encodes the
likelihood of successful tool actuation for different locations
of the object. Letpi ∈ R

3 be theith point in the cloudP. For
each pointpi, the likelihood of successful manipulationF(pi)
is estimated using the following procedure:

1) Compute the point setN+
pi

such that it contains all points
from A′′

+ that are withind centimeters of the pointpi.
2) Compute the point setN−

pi
such that it contains all points

from A′′

−
that are withind centimeters of the pointpi.

3) ComputeF(pi) as:

F(pi) =
|N+

pi
|

|N+
pi
|+ |N−

pi
|

In summary, each point on the 3D model point cloud is
annotated with the estimated probability that performing the
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Fig. 6. Left: The tactile cloud,T ∈ R
3×nt , collected over the course of

repeatedly applying thesqueezebehavior at different locations on the object;
Right: The auditory clouds,A+ (in green) andA− (shown in red) recorded as
a result of applying thetool actuationstage of the behavior used to manipulate
the drill.

tool actuation behavior in the neighborhood of the point will
result in successful tool actuation. In our experiments, the
value for the parameterd was set to6.0 cm. The next section
describes the results of applying the data registration and
density estimation procedure on data gathered by exploring
a hand-held drill, a flashlight and a stapler.

V. RESULTS

Figure 6 shows the collected tactile cloud,T , and the
auditory clouds,A+ andA−, for the three objects explored
by the robot. As expected, the collected data contains a lot
of noise which further complicates the task of mapping the
functional components of the objects onto their corresponding
3D models. Some of that noise is due to errors in the forward
kinematics estimate of the fingertips’ positions. In addition, as
can be seen in the tactile cloud for the flashlight object, some
of the registered tactile events were not caused by contact with
the object, but are instead a result of noisy sensor readings.

Figure 7 shows the resulting annotated point clouds after
applying the data registration and density estimation method
described in Section IV. The results clearly show that the
proposed method can detect the functionally important feature
on each of the three objects, despite the presence of noise in



Fig. 7. The resulting annotated object model point clouds. The color of each
point encodes the likelihood of successful actuation at different locations on
the object, with red/purple indicating high probability ofactuation, while light
blue indicates low probability of actuation.

the data. As expected, for the drill, the density peaks at the
location of the button. For the flashlight object, on the other
hand, the density is high all around the top of the handle. This
is because even the finger tip is not directly in contact with
the button, the object was still often actuated by the inner link
of the robot’s finger. Finally, for the stapler, the magnitude of
the estimated density increases gradually along the long axis
of the top of the stapler.

VI. CONCLUSION AND FUTURE WORK

Detecting the functionally important features of objects is
a pre-requisite skill for autonomous tool use in unstructured
environments. Towards solving this problem, this paper pro-
posed a behavior-grounded method for audio-tactile registra-
tion and annotation of 3D point clouds. The experimental
results showed that by applying exploratory behaviors on tools
and observing auditory and tactile outcomes, the robot was
able to annotate the object’s 3D model with the probability that
applying a behavior at a given location results in successful
tool actuation. Unlike 3D representations that are based onvi-
sual sensors alone, the resulting object representation encoded
aspects of the object’s function as well as its shape.

A direct line for future work that may further advance the
state of the art in autonomous tool use involves scaling up
the proposed object representation to a much larger number
of objects. Such a dataset would enable the use of data
mining methods that can learn classifiers for annotating new
3D model point clouds that have not been explored by the
robot. Scaling up to a large number of objects will also require
that the robot explores the object in an intelligent, rather
than random, manner, which can be achieved by using active
learning methods for behavior selection. Overall, the results in
this paper highlight the importance of integrating non-visual

sensory percepts with 3D object representations, an approach
that has the potential to greatly bridge the gap between human
and robotic perception of objects.
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