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Abstract—The recent advent of low-cost 3D sensing tech-
nologies has greatly increased the use of 3D point cloud-based
representations in robotics. Such representations have a varigt
of applications, including object recognition, pose estimation and
grasp point selection. A major limitation of 3D point clouds,
however, is that they fail to capture an object’'s functional
features — for example, a 3D model of a stapler does not in
itself encode where the stapler should be pressed. To bridge
the gap between an object’'s shape and an object’'s function,
this paper proposes an approach for robotic annotation of 3D
point clouds that captures the object’s functional features. h our
experiments, the robot explored objects by performing a variety
of behaviors on them at different locations and observed the
auditory and tactile sensations as a result of its actions. Using 3D

registration algorithms, the resulting auditory and tactile point £, 1 The ARM-S robotic platform, shown here performing twiotloe
clouds were matched against the 3D object point cloud, resulting manipulation challenges: drilling (left) and stapling frily

in a multi-modal point cloud representation encoding the spatial

locations on the 3D model that afford the robot to actualize the

object’s function. The results show that the approach succegsly ) ) )
discovers the functional locations in a 3D point cloud for three the objects. The proposed approach consists of extracting a

different types of objects: a stapler, a drill and a flashlight. ditory and tactile events detected while the robot manigsla
an object and mapping those events onto the object’'s 3D point
cloud model. The result of this process is a novel visual-
Autonomous robot manipulation of tools is a long standingudio-tactile point cloud object representation which ol
goal of the robotics community [1]. For many tools (e.g., saptures the object’s visual appearance, but also encbdes t
hand-held drill, a flashlight, a stapler, etc.) successfa- mfunctional components of the object (e.g., buttons) thiardf
nipulation requires that the robot is capable of detecthwy ttool actuation.
specific location on the object that needs to be actuated (.9 The proposed method was tested on an upper-torso hu-
a trigger or a button) in order to turn on the tool. Yet, tenanoid robot, shown in Figure 1, and three different tools:
date, virtually all methods for robotic tool use requiretttiee g hand-held drill, a flashlight, and a stapler. By explorihg t
human programmer specify what part of the object needs djects using two different behaviors, squeeze and prhes, t
be actuated and therefore, such methods cannot genemlizeobot was able to detect the functionally important loazgiof
novel objects that have not been previously seen by the humaa objects that afford actuation. The results make a sitang
programmer. Furthermore, most object representationd usgat for robots to operate tools autonomously, they needeto b
by robots consists entirely of vision-based 2D and 3D objegple to explore the tools and, in addition, use multi-modal 3

models, which, by themselves, do not encode the location gpject representations instead of ones based on visior.alon
the object that needs to be actuated.

Towards addressing these challenges, this paper proposes a
method that enables a robot to detect the functional parts of

hand-held_tools using tactile ar_ld auditory sensory fe(_eldbac Experiments in psychology have demonstrated that both

coupled with exploratory behaviors that the robot applies Qacfile and auditory feedback are important sources ofinés
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I. INTRODUCTION
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“[ ...] exploratory behavior in infancy and child-
hood appears to serve an information-gathering
function. Using a variety of methods, researchers
have demonstrated that during exploration infants
and young children extract at least short-term infor-
mation about the characteristic of objects, including
information about texture, hardness, weight, shape,
size, and sound potential.” [4]

Infants’ use of exploratory behaviors when learning about
objects is tightly connected to their ability to detect sags
events that occur over the course of object manipulation.
Gibson [6] concludes that our basic knowledge about how ob-
jects behave in the natural world is gathered through cahsta
observation of how objects are affected by our own actiams. |
other words, when exploring an object, both infants andtadul
observe perceptual outcomes (e.g., sounds, tactile semsat
and movement patterns) that are subsequently used to form
expectations about how an object behaves when a spec['gligc

. . . . . 2. The three objects used in our experiments: a flashlaghand-held
action is applied on in (see [6]). drill, and a stapler.

In contrast, the vast majority of representations used in
robotics today are solely vision based (see [7], [8], [9D][1
[11] for a representative sample of systems that use such I1l. EXPERIMENTAL METHODOLOGY
approaches). While such 2D and 3D representations capture
how an object looks like, they do not encode multi-moddl Robot
information (e.g., how an object feels like or sounds likegtt  The experiments reported in this paper were performed with
may be necessary for successful manipulation. In other syoréhe upper-torso humanoid robot shown in Fig. 1. The robot was
a 3D model of a hand-held drill cannot on its own providequipped with one 7-DOF Barrett Whole Arm Manipulator
a robot with the functionally relevant location of the dsill with the three fingered Barrett Hand as its end effector. The
trigger. Because of this limitation, when robots are taskiél  hand has foud x 6 tactile arrays, one for each finger and one
manipulating objects (e.g., pressing a button), they’piclly  for the palm. The robot was also equipped with two Audio-
pre-programmed by the human user to apply the behaviorTaichnica U853AW cardioid microphone mounted in the head,
a hard-coded location. which were used to capture auditory feedback at the standard

To address these limitations, several lines of research ha-bit/44.1 kHz resolution and rate over a single channel.
pursued methods and approaches that enable robots te utiliz
non-visual as well as multi-modal cues when learning aboBt Objects
objects. For example, several experiments have demaebtrat

. ; : Three different objects, shown in Figure 2, were used in
that robots can use auditory [12] [13], proprioceptive u‘%urexperiments a drill, a flashlight, and a stapler. Thecis]
as well as multi-modal sensory feedback [15] for object ' . '

. . vere part of the DARPA ARM-S manipulation challen e, in
recognition. The drawbacks of those methods is that they f; hichpthe robot was tasked with autongmous drilling, t?]gwin

to take the object's geometry into account and can only fen n the flashlight, and stapling a piece of paper. In additmn t

simple objects that have no degrees of freedom (e.g., a cupy, @ physical objects, the DARPA ARM-S program provided

box, etc.,_ ?Ut not a _stapler, a dr_|I.I with a bu_tton, etc.). high resolution 3D models which we used in our experiments.
In addition to object recognition, experiments have also

demonstrated that non-visual cues can be used to impr%ye
robot manipulation of everyday objects. For example, &tin ~
al. [16] describe an experiment in which a robot was able The robot explored objects using two different behaviors,
to characterize doors and drawers using proprioceptive- fesqueezeand press Both behaviors were designed such that
back detected over the course of opening them. In additidghey produce both tactile as well as auditory feedback when
experiments by Sukhogt al.[17] [18] show that auditory and applied on objects. Each behavior had two stages. Iteittde
proprioceptive feedback can be used by a robot to estimate thcalization stage, the robot performed an action designed to
location of a button, which if pressed, produced a sound. Thepture tactile feedback that can be used to build a tactile
main limitations of that work, however, are that the robot’point cloud of the object. In the secontdol actuationstage,
perception of the object was only in 2D and that the methad subsequent action was performed during which auditory
was applied only on one type of object, a button, and usifigedback was used to detect whether the tool was actuated
only one type of behavior, pressing. or not. The behaviors are described in more details below.

Behaviors



1) Squeeze:The squeeze behavior was applied on t
flashlight and the drill objects and consisted of the follogyi
steps. First, the end-effector was positioned near thecbbj
so that closing the fingers of the hand would result in t
object being grasped or touched. Next, the three fingers wi
closed using direct torque control. During the executiothef &
closing action, the tactile feedback from the fingers and tl
palm was monitored and once a tactile sensor was triggered
(see Section 111.D), the corresponding finger stopped otpsi
This constituted theactile localizationstage of the behavior.
Finally, during thetool actuationstage, the robot attempted
a squeezing action with the third finger (F3), during which

a) Squeezdehavior applied on the drill

detect whether the squeezing action actuated the toolrd-igu :
3.a) shows three example executions of the behavior on the = #
drill at different locations on the object. =

2) Press: The press behavior, shown in Figure 3.b), was ) ) )
applied on the stapler and consisted of the following steps: b) Pressbehavior applied on the stapler
first, the hand was positioned above the stapler such that ttige 3. Examples of the exploratory behaviors performed orotijects. a)
hand’s palm is horizontal relative to the table plane Nex%queezeThe squeeze behavior, shown here performed on the handiikld

. . . . ’ q;:E)n5|sted of closing the robot’s fingers and subsequenthgesting finger 3
during thetactlle_ localizationstage of the behavior, the handy, order to actuate the drill. In this case, successful dicmavas achieved
was lowered using the robot’s Cartesian controller such thathe third example. bpPress The press behavior, performed on the stapler,
the orientation of the palm remained constant. Once tactﬂ%ns'StEd of pressing down on the stapler at various lawsitidhe stapler

dvas successfully actuated in the second example.

feedback was detected on the palm, the robot execute
pressing action using a Cartesian torque controller forrege
of 10 seconds, which constituted ttoml actuationstage of the
pressbehavior. During this execution, the auditory feedbacl-
was monitored so that successful actuation of the tool can I’
detected. The next subsection describes the method used
detect auditory and tactile events from the robot's audid an T T S
tactile sensory streams. a) Background noise b) Drill actuation

Fig. 4. a) Discrete Fourier Transforms (DFT) of the backgbuoise in
D. Event Extraction the lab; b) DFT of the sound produced when the drill is actiiate

The general approach for detecting sensory events used in
this paper consisted of two steps: 1) for each sensory channe
learn a background model that encodes the expected ser8olearn the background model. Therefore, the background
readings when no action is performed (i.e., no contact fgtodel corresponds to the sffiu;, 0;)};=1°° and encodes the
the tactile sensor and no tool actuation for the audio sgnsdxpected values and their expected variance for each of the
and 2) during behavior execution, use the background modép frequency bins.
to detect events whose sensor signatures deviate from whdPuring the execution of theéool actuationbehavior, the
is expected if no contact or no tool actuation is preserftackground model was used to detect auditory events cor-
Following, the application of this approach is described ifesponding to successful actuation of the tool. Given a DFT
detail for both the tactile and auditory sensory channels. samplez; € R?*%, the sample was classified as deviating from
1) Auditory Event DetectionAuditory events correspond- the background ifk of the DFT bins have values deviating
ing to tool actuation were extracted using the Discrete ieour from the expected means by at leasi standard deviations.
Transform (DFT) computed over the waveform captured Hf 5 consecutive samples were classified as deviating form the
the robot’s left microphone_ The DFT was Computed ugﬁ@ background, an auditory event was detected. The paranheter
frequency bins with a window df6.6 milliseconds computed Was set[256/3] = 86. Figure 4 shows sample waveforms
every13.3 milliseconds, and thus, each auditory sample can 6aptured by the robot's microphones and the detected tool
represented by, € R256, The background model was learnedctuation while manipulating the hand-held drill.
by recording a set of DFT samplé$, = {z, z2,...} over a 2) Tactile Event DetectionDuring thetactile localization
period of 0.5 seconds right before th®ol actuationstage of stage of each behavior execution, the tactile activatidneg
each behavior was performed. From the set of samfilgs were used to extract events denoting instances in which
for each of the256 frequency bins, a tuple of the forfm;,0;) the robot's fingers or the palm touched the object. Since
was computed so that it encodes the mean and the standzadh tactile array contain$ x 6 = 24 cells, the learned
deviation for thei'” bin computed over the.5 seconds used background model was represented by the{ggt, o;}:=%*,



where each tupléu;, o;) represented the expected mean ar| Object Exploration
standard deviation for cell when no contact was present. Tq ¥y
compensate for sensor drift, the estimates were re-compy N
each time before th&actile localizationstage of the behavior
was performed using samples collected far second.

As before, a novel sample was classified as deviating frd
the background if24/3] = 8 of the tactile channels deviated
from their expected background values by at |@aStstandard
deviations. If5 samples in a row were classified as deviating | tactile
after executing théocalizationbehavior, a tactile touch event Point
was detected. In the case of the drill and the flashlight, this| cloud
procedure was used used for all 3 finger tactile arrays and the
palm array. In the case of the stapler, only the palm array was
used since the behavior used to explore the stapler did not
result in the fingers touching the object. The next subsecti 5 Cene
describes how the behaviors described so far, coupled fdgth Data > ensity —>
event detection routine, were used to explore three differd Reg'stration Estimation
objects: a drill, a flashlight, and a stapler.

3D ( Model
Model Database

E. Object Exploration and Data Collection

For each object, data was collected as described in ffige 5 An overview of the method used for audio-tactile poafud
registration and annotation. The method consists of thragest 1) object

fOHOW'ng steps: exploration, during which the robot explores the object sswbrds tactile and
1) Position the arm in a random configuration around tHditory point clouds encoding the locations at which thgabwas touched

. . - nd actuated; 2) data registration, during which the reswalidio and tactile
ObJeCt so that the appropriate behavior can be exeCUtégﬁn clouds are transformed into the reference frame of tiectd 3D model

2) Perform thetactile localizationstage of the behavior. point cloud; and 3) density estimation, during which the sfarmed audio
For each activated tactile sensor, record the 3D positi@ﬁim, cloud is used to fit a density function over the 3D modet #ncodes
of the sensor by performing forward kinematics givef'® kelihood of successful tool actuation.
the current arm and finger joint values.

3) Perform thetool actuationstage of the behavior. Recordsnction 7 over the points in the s, such that for each point
the 3D position of the tactile sensor in contact with thgi € P, F(p:) € [0,1) encodes the probability of successful
tool (finger 3 for the drill and flashlight and the palm forapipylation when theool actuationbehavior is applied at
the stapler) along with a corresponding label denotingint ), .

4 vthIether tt:e thIIWanaCtugl'zidt ors?ot. 1 Figure 5 shows the overall approach used to solve the
) Release the tool, and go back to Step 1. problem, which uses three main stages:

The location and orientation of each tool were kept constant Object exploration: During the first stage, the robot
during the data collection Process. Forward_kinematics was explores each tool using tactile Iocalizatio,n and tool
used to compute t.he 3D posmons of tactile (_avents. The actuation behaviors performed at different locations on
procedure resulted in the collection of several point ctoud the object (see Section III.E)

« A point cloud corresponding to all tactile events detected , pata registration: Once the robot has extracted tactile

by the robot's tactile sensorg, € R**"+. and auditory point clouds, 3D data registration methods
« A point cloud corresponding to all auditory events that  are applied to transform those point clouds into the 3D
indicate successful aCtUatiom,+ S :R,SXTL(Ur . Object model’s reference frame.

« A point cloud corresponding to all instances in which , pensity EstimationFinally, the auditory point clouds are
an auditory event was not observed when performing the ysed to fit a density function over the 3D model that
second stage of each behavior, i.d., € R**"-. encodes the likelihood of successful tool actuation for

different locations of the object.

Following, the next two sub-sections describe in detaiés th
algorithms used during thdata registrationand thedensity
The overall task of the robot is to detect the functionastimationstages of the proposed method.
features of each object and map them onto the object's 3D . . ) ) ]
model. More specifically, given an objec, let the point B- Audio-Tactile Point Cloud Registration
cloud P = {p1,p2,...,pn} denote the object's 3D model, Let 7 € R3**"* be the set of points corresponding to the
where each poinp; € R?. Given the 3D model point cloud tactile point cloud of the objectd, € R**"*+ be the point
‘P, the tactile point cloud/, and the auditory point clouds, cloud corresponding to all auditory events that indicate- su
A, and A_, the task of the robot is to estimate a densitgessful actuation, and_ € R**"*~ be the locations in which

IV. MULTI-MODAL POINT CLOUD REGISTRATION
A. Problem Formulation



the actuating behavior did not produce successful actuatio Tactile Point Cloud Auditory Point Clouds
Finally, let ? € R3*" be a point cloud corresponding to the v
object’s 3D model.

The goal of this stage is to estimate a transformation matrix
T ¢ R**4, that encodes the rotation and translation requirgs,
to transform the point cloud¥’, A, and.A_ into the same
reference frame as that of the 3D model point clogdTo do
that, two different registration algorithms, SAmple Camses
Initial Alignment (SAC-IA) [19] and the Iterative Closesbint
(ICP) algorithm [20] were applied using the following steps

1) LetC = TUAL UA_, ie., C € R Mmtna +na)
is the union of the tactile and the two auditory pointE
clouds. :

2) Let Tsacia= SAC-IA(C, P) whereTsacia€ R**% is the
transformation matrix obtained after aligning cloGido
cloud P using the SAC-IA algorithm.

3) Let C' = transforn{C, Tsac.ig), i-€., C' is the result of
transformingC according to the matrifsac.ia 040z 040z

4) Let Tiep = ICP(C',P), ie,, Tip € R is the
transformation matrix obtained after alignidj to P
using the ICP registration algorithm.

5) Let T = TipTsacia i.€., T is the transformation
matrix obtained by first applying transformati@fy,c.ia
followed by Ticp.

6) Finally, let the cloudsA’ = transforn{.4,,T) and
A" = transforn{A_, T).

In summary, the extracted tactile and auditory clouds are

used to compute a transformation from the robot's framgy. 6. Left The tactile cloud;T € R3*™t, collected over the course of
of reference to that of the object model. This was done hsgpeatedly applying thequeezdehavior at different locations on the object;
sequentially applying the SAC-IA and the ICP registratioffidnt The auditory cloudsA+ (in green) and4_. (shown in red) recorded as

. . . - . result of applying théool actuationstage of the behavior used to manipulate
algorithms, as implemented in the Point Cloud Library [Zlﬁ1e drill.
The end result consists of the two point cloudg, and.A”
corresponding to the locations of successful and unsuitdess
applications of the tool actuation behavior in the sameryefdool actuation behavior in the neighborhood of the point wil
ence frame as that of the 3D object model point clofd, result in successful tool actuation. In our experiments, th
The next subsection describes how the transformed auditygjue for the parametef was set tc6.0 cm. The next section
point clouds were used to fit a density onto the object modéé¢scribes the results of applying the data registration and
that estimates the likelihood of successful actuationfégrdint density estimation procedure on data gathered by exploring
object locations. a hand-held drill, a flashlight and a stapler.

g

Flashl

Stapler

0 0
0 -005 0 -0.05

C. Density Estimation V. RESULTS

The last stage of the proposed method consists of fittingFigure 6 shows the collected tactile cloud, and the
a density function over the 3D modeR, that encodes the auditory clouds,A, and A_, for the three objects explored
likelihood of successful tool actuation for different lticas by the robot. As expected, the collected data contains a lot
of the object. Let; € R? be thei!" point in the cloudP. For of noise which further complicates the task of mapping the
each poinip;, the likelihood of successful manipulatidf(p;) functional components of the objects onto their correspand
is estimated using the following procedure: 3D models. Some of that noise is due to errors in the forward
1) Compute the point st such that it contains all points kinematics estimate of the fingertips’ positions. In adufifias
from A’/ that are withind centimeters of the point;.  can be seen in the tactile cloud for the flashlight object,esom
2) Compute the point st such that it contains all points of the registered tactile events were not caused by conétt w
from A” that are withind centimeters of the poing;.  the object, but are instead a result of noisy sensor readings

3) ComputeF(p;) as: Figure 7 shows the resulting annotated point clouds after
Flp) = |N;f applying the data registration and density estimation ogkth
bi) = INGE| + [Np | described in Section IV. The results clearly show that the

In summary, each point on the 3D model point cloud iproposed method can detect the functionally importanufeat
annotated with the estimated probability that performihg t on each of the three objects, despite the presence of noise in



sensory percepts with 3D object representations, an agiproa

(1]

(2]

(3]

(4]
(5]

(6]

(7]
(8]

Fig. 7. The resulting annotated object model point cloude ddlor of each
point encodes the likelihood of successful actuation dexht locations on
the object, with red/purple indicating high probabilityaftuation, while light
blue indicates low probability of actuation.

El
the data. As expected, for the drill, the density peaks at the
location of the button. For the flashlight object, on the othey
hand, the density is high all around the top of the handles Thi
is because even the finger tip is not directly in contact wit[liu 1
the button, the object was still often actuated by the inimds |
of the robot’s finger. Finally, for the stapler, the magnéuaf
the estimated density increases gradually along the loigy ait?!
of the top of the stapler.

VI. CONCLUSION AND FUTURE WORK [13]

Detecting the functionally important features of objeds i
a pre-requisite skill for autonomous tool use in unstrusdur [14]
environments. Towards solving this problem, this paper pro
posed a behavior-grounded method for audio-tactile n@gist[15
tion and annotation of 3D point clouds. The experimental
results showed that by applying exploratory behaviors oisto
and observing auditory and tactile outcomes, the robot Wag;
able to annotate the object’s 3D model with the probabitit t
applying a behavior at a given location results in succéssfu
tool actuation. Unlike 3D representations that are based-on
sual sensors alone, the resulting object representaticodend
aspects of the object’s function as well as its shape.

A direct line for future work that may further advance th(?18
state of the art in autonomous tool use involves scaling up
the proposed object representation to a much larger number
of objects. Such a dataset would enable the use of d
mining methods that can learn classifiers for annotating new
3D model point clouds that have not been explored by the
robot. Scaling up to a large number of objects will also regjui
that the robot explores the object in an intelligent, rather
than random, manner, which can be achieved by using acti¢é
learning methods for behavior selection. Overall, the ltesn
this paper highlight the importance of integrating nonseis

(17]

that has the potential to greatly bridge the gap between huma
and robotic perception of objects.
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