
Robot Behavioral Exploration and Multimodal Perception using POMDPs

Shiqi Zhang1,2, Jivko Sinapov2, Suhua Wei1, and Peter Stone2
1 Department of Electrical Engineering and Computer Science, Cleveland State University

2 Department of Computer Science, The University of Texas at Austin

1 Introduction
Service robots are increasingly present in everyday environ-
ments, such as homes, offices, airports and hospitals. A com-
mon task for such robots involves retrieving an object for a
user. Consider the request, “Robot, please fetch me the red
empty bottle”. A key problem for the robot consists of decid-
ing whether a particular candidate object matches the prop-
erties in the query. For certain words (e.g., heavy, soft, etc.)
visual classification of the object is insufficient as the robot
would need to perform an action (e.g., lift the object) to de-
termine whether it is empty or not. Furthermore, the robot
would need to decide which actions (possibly out of many)
to perform on an object, i.e., it would need to generate a be-
havioral policy for a given request.

Recent research in robotics has shown that robots can
learn to classify objects using computer vision methods
as well as non-visual perception coupled with actions per-
formed on the objects (Högman, Björkman, and Kragic
2013; Sinapov et al. 2014; Thomason et al. 2016). For ex-
ample, a robot can learn to determine whether a container
is full based on the sounds produced when shaking the con-
tainer (Sinapov and Stoytchev 2009); or learn whether an
object is soft or hard based on the haptic sensations pro-
duced when pressing it (Chu et al. 2015). Nevertheless,
there has been relatively little emphasis on enabling a robot
to efficiently select actions at test time when it is tasked
with classifying a new object. The few approaches for tack-
ling action selection, e.g., (Rebguns, Ford, and Fasel 2011;
Fishel and Loeb 2012), assume that only one target property
needs to be identified (e.g., the object’s identity in the case
of object recognition) and would not scale to requests such
as the one presented earlier.

To address this limitation, we propose to generate behav-
ioral exploration policies for a given request using the par-
tially observable Markov decision process (POMDP) for-
malism. POMDP (Kaelbling, Littman, and Cassandra 1998)
is a general framework that does not have the assumption
of full observability over current state, so an agent needs to
use its local, unreliable observations to estimate the under-
lying state and maintains a distribution over possible states.
As a result, POMDPs have been used in object exploration
in robotics. For instance, hierarchical POMDPs were used
for suggesting visual operators for exploring multiple ob-
jects on a tabletop scenario (Sridharan, Wyatt, and Dearden
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Figure 1: A simplified version of the transition diagram of our
POMDP model for object exploration. The transitions led by ex-
ploration actions are probabilistic.

2010), and more recent work further used a robotic arm to
move objects enabling better visual analysis (Pajarinen and
Kyrki 2015). However, the sensing in these research is lim-
ited to robot vision and other modalities such as audio and
haptics are not used.

Although multimodal perception and POMDP-based ob-
ject exploration have been studied previously, to the best of
our knowledge, there is no research that integrates both in
robotics. In this work, given queries about object proper-
ties, we dynamically construct POMDPs using a data set col-
lected from a real robot. Experiments on exploring new ob-
jects show that our POMDP-based object exploration strat-
egy significantly reduces the overall cost of exploration ac-
tions without hurting accuracy, compared to a baseline strat-
egy that uses a predefined sequence of actions.

2 POMDP-based Object Exploration
We construct a POMDP for guiding the robot’s exploration
behavior based on the robot’s sensing and actuating capa-
bilities. A simplified version of the observable aspect of our
POMDP’s transition diagram is shown in Figure 1, where
object properties, as a part of the world state, are not shown.
A standard POMDP model is a 7-tuple (S,A,T,R,Ω,O,γ),
where γ is the discount factor that represents how much im-
mediate rewards are favored over more distant rewards. In
our case, γ = 0.99, which means the robot has a relatively
long horizon in planning.

• S : So× Sh ∪ term is the state set. It includes a Cartesian
product of sets So and Sh, and a terminal state term. so ∈ So

corresponds to one of the non-terminal states (so
0, · · · ,so

5)
in Figure 1. sh ∈ Sh is specified by all attributes of a given



object: vp
0 , vp

1 , · · · , vp
N−1, where the value of vp

i is either
true or false. For instance, given a object description “a
red, heavy bottle of beans” that includes three properties,
Sh will include 8 states. so is fully observable and sh is
unreliably observable, so sh needs to be estimated through
observations. State term identifies the end of an episode.

• A : Ae ∪ Ar is the action set. Ae includes the object ex-
ploration actions pulled from the literature of robot ex-
ploration, as shown in Figure 1, and |Ae| = 13. Ar in-
cludes a set of actions that report the object’s properties
and can deterministically lead the state transition to term.
For a ∈ Ar, we use s� a to represent that the report of a
matches the underlying values of object properties (i.e., a
correct report) and use s�a otherwise.

• T : S×A× S→ [0,1] is the state transition function that
includes a set of conditional transition probabilities from
current state s ∈ S to next state s′ ∈ S given a ∈ A being
the current action. For instance, p(so

4, drop, so
5) = 0.95 in

our case, indicating there is small probability the object is
stuck in robot hand.

• R : S×A→ R is the reward function. Each action for ob-
ject exploration, ae ∈ Ae, has a cost that is determined by
the time required to complete the action. The costs of re-
porting actions depend on if the report is correct.

R(s,ar) =

{
r−, if s ∈ S, a ∈ Ar, s�a
r+, if s ∈ S, a ∈ Ar, s�a

where r− is a negative value (penalty) given an incorrect
report and r+ is a big reward given a correct report. Unless
otherwise specified, r− = −200 and r+ = 100 in this pa-
per. Costs of other exploration actions are within the range
of [2,10] (corresponding reward is negative), except that
actions ask and init have costs of 40 and 20 respectively.

• Ω : Ωh ∪ none is a set of observations. Elements in Ωh

include all possible combinations of object properties and
have one-one correspondence to elements in Ar and Sh.
Actions that produce no information gain (such as init and
the ones in Ar) will result in a none observation.

• O : S×A×Ω→ [0,1] is the observation function that in-
cludes a set of conditional observation probabilities. The
observation probabilities of actions in Ae are learned from
previous experience of object exploration.

We use an approximate, point-based POMDP solver for
policy generation (Kurniawati, Hsu, and Lee 2009).

3 Experimental Results
Experiments have been conducted to evaluate our POMDP-
based planning strategy for multimodal perception in both
accuracy and efficiency. Baseline methods include a random
planner that suggests an action randomly selected from ac-
tion set A and a predefined planner that suggests actions
following a predefined action sequence. Specifically, the
predefined action sequence includes all exploration actions
(one instance for each action) and the actions are ordered
in a way that maximizes information gain. The observation
and reward functions of our POMDP are learned from an

Table 1: Results of multimodal object exploration using POMDP-
based and two baseline planners in cost and accuracy.

Properties Overall cost Accuracy
Random Two 17.56 (30) 0.245

Three 10.12 (21.77) 0.130
Predefined Two 37.10 (0.00) 0.583

Three 37.10 (0.00) 0.373
POMDP Two 29.85 (12.87) 0.860

Three 33.87 (8.78) 0.903

open-source data set collected in existing research (Sinapov,
Schenck, and Stoytchev 2014).

For each trial in our experiments, we place an object that
has three properties (color, weight and content) on a table
and then generate an object description that includes the val-
ues of two or three properties. This description matches the
object in only half of the trials. The robot needs to take
exploration actions (selected by POMDP-based or one of
the two baseline planners) to report whether the description
is correct or not, while minimizing overall action cost and
maximizing report accuracy at the same time.

Preliminary results are reported in Table 1, where each
data point corresponds to an average of 100 trials. Not sur-
prisingly, randomly selecting actions produces very low ac-
curacy. The overall cost is smaller in more challenging trials
(all three properties are questioned), because in these trials
there are relatively less exploration actions, making it more
likely to take a reporting action. In the set of experiments
using a “predefined” sequence of actions, after executing
all exploration actions, the robot selects the reporting action
that corresponds to the state with the highest belief. Intu-
itively, the robot is “forced” to report based on the informa-
tion collected so far. Finally, our POMDP-based multimodal
perception strategy reduces the overall action cost while sig-
nificantly improving the reporting accuracy.

4 Conclusions and Future Work
In this paper, we investigate using partially observable
Markov decision processes (POMDPs) to help robots se-
lect actions for multimodal perception in object exploration
tasks. Our approach can dynamically construct a POMDP
model given an object description from a human user (e.g.,
“a blue heavy bottle”), compute a high-quality policy for this
model, and use the policy to guide robot behaviors (such as
“look” and “shake”) toward maximizing information gain.
Experimental results show that our POMDP-based explo-
ration approach enables the robot to identify object prop-
erties more accurately without introducing extra cost from
exploration actions, compared to a baseline that suggests ac-
tions following a predefined action sequence.

In the future, we plan to evaluate our approach using
a larger, more recent data set we collected using a real
robot (Thomason et al. 2016). Another direction is to better
implement the question-asking action as a POMDP-based
dialog system (Zhang and Stone 2015), and potentially use
a single POMDP for both multimodal and language-based
perception. Finally, we plan to implement and evaluate this
approach on a real mobile robot platform.
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