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Motivation

“taking a picture”
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Related Work

(Ryoo and Matthies 2013)(Xia et al. 2011)

(Ryoo et al. 2015)
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Limitations of Existing Work

● The activities were specified by the researchers 
ahead of the experiment

● The activities were performed by a small 
number (5 to 8) of 'actors'

● The robot is either stationary or teleoperated 
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Dataset Collection
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Video
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Dataset Collection

● Robot: Segbot
● Environment: 3rd Floor of GDC, spanning a public 

undergraduate lab and a graduate lab
● The robot autonomously traversed the environment 

for 1-2 hours a day over the course of 6 days 
covering ~14 km total

● Whenever the robot's Kinect 2.0 detected a person, 
the robot recorded a range of visual and non-visual 
data which was later used for classification
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Example Human Detection
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Example Human Detection

. . . . . . 
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Recorded Data
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Recorded Data

Dataset size: ~ 140 GB
Available upon request
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Activity Labels
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System Overview
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Visual Features

● Histogram of 3D Joints (HOJ3D)
● Covariance of Joint Positions over Time (COV)
● Histogram of Direction Vectors (HODV)
● Histogram of Oriented 4D Normals (HON4D)
● Pairwise Relational Matrix (PRM)
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Additional Features

● Human-Robot Velocity Features: The direction in 
which the human moves with respect to the robot

● Distance Features: The distance between the human 
and robot over time

● Localization Features:  The robot's pose (position 
and orientation) in the map
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Example Feature Sequence

x
vis

(t) x
vis

(t+1) . . .x
vis

(t+2) x
vis

(t+k)

x
vel

(t) x
vel

(t+1) . . .x
vel

(t+2) x
vel

(t+k)

x
dis

(t) x
dis

(t+1) . . .x
dis

(t+2) x
dis

(t+k)

x
loc

(t) x
loc

(t+1) . . .x
loc

(t+2) x
loc

(t+k)

Visual:

Velocity:

Distance:

Location:



20

Feature Quantization
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Feature Quantizations

● The computed features for each descriptor 
were quantized using k-means

● Bag-of-Words representation was obtained by 
counting the occurrence of each “word” over 
the course of each video

● The BoW representations of all descriptors 
were concatenated to obtain a final feature 
vector
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Evaluation

● Evaluation was performed using 5-fold cross validation

● Because the dataset was unbalanced, the kappa 
statistic was used to measure performance

Probability of correct 
classification by classifier

Probability of correct 
classification by chance
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Classification Results

Vision Only Vision + Distance + 
Velocity

COV [6] 0.329 0.440

HOJ3D [16] 0.515 0.633

HODV [3] 0.624 0.649

PRM 0.547 0.660

HON4D [11] 0.756 0.762
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Can the robot exploit the spatial 
structure of activities?
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“false detection”

“wave”

“sit”

“walk away”

Can the robot exploit the spatial 
structure of activities?
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Classification Results

Vision Only Vision + 
Distance + 

Velocity

Vision + Distance + 
Velocity + Localization

COV [6] 0.329 0.440 0.462

HOJ3D [16] 0.515 0.633 0.651

HODV [3] 0.624 0.649 0.660

PRM 0.547 0.660  0.671

HON4D [11] 0.756 0.762 0.764
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Summary and Conclusion

● Conducted largest experiment in robot-centric 
activity recognition to-date

● Dataset is available upon request
● Evaluated 5 different visual features 
● Demonstrated that non-visual features can 

improve classification results
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Thank you!

Ilaria Gori Jivko Sinapov Priyanka Khante Peter Stone J.K. Aggarwal

http://www.cs.utexas.edu/~larg/bwi_web/
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