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I. Abstract 
Currently, the Segbots in the BWI lab lack the capability of object recognition even with 

additional input from the user. The purpose of our project, therefore, is to implement 3D object 

recognition by working with point cloud data and correspondence grouping by giving the Segbot 

PCD files containing models of the objects we want recognized as input and having it return 

whether there was a match as a result of the point-to-point correspondences. In order to 

achieve this task, we developed an algorithm that utilized PCL functions to create keypoints 

found in the scene seen by the Segbot and compared them to keypoints on models that were 

also in the scene. In this paper, we outline the details of the 3D correspondence grouping 

algorithm, the associated tests and results, and our hopes for future development and research 

regarding it. 

 

II. Introduction and Problem Formulation 
The Segbots have a camera (a Kinect for some) that can be used for many purposes. These 

include self-localization on a map, detecting certain colors, and other functions. However, one of 

the biggest flaws of the current robot was the lack of ability for the robot to recognize objects. It 

saw them only as numbers that needed to be translated into an image. Thus, we attempted to 
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solve this problem with pre-rendered images of 3D objects and give the robot the ability to see 

and “recognize” the object.​ ​There are many applications to this project. It could also be used to 

teach people the names of certain objects. Someone who wants to learn English could use one 

of these robots to learn the names of certain objects from the robot. However, the most possible 

application of this program is that it provides a good starting ground for possible future robot 

developments. If the robot can recognize a basketball, it could show on screen the word 

“basketball” or just have the robot “know” it is a basketball and determine another action such as 

“throw it”.​ ​The task is to give the robot the ability to “see” a 3D object, have it search for it in its 

memory and actually return what the object is onscreen. For example, if we added a basketball 

3D object in the robot’s memory, the robot should have the ability to see, recognize the 

basketball, and show on-screen the “basketball” being displayed. 

 

III. Related Work 
We reviewed the literature on 3D object recognition to help us with our project.  Some of them 

were helpful enough that we incorporated their concepts and some we used to get a better idea 

of the different ways this feat could be achieved. Many articles that we found interesting but did 

not incorporate into our final project included edge detection, which involved involved looking for 

“a significant local change in the image intensity” [1]. Edge detection had many issues such as 

false positives, where objects seemingly blended into the background, and inaccuracies at 

times, so this idea was scrapped. Some other ideas we got from scientific articles but never 

incorporated into the final version included the attempt to find objects via color. [2] Such an 

approach involves taking into account the RGB value, saturation, hue and lighting on the object 

for possible identification from a database of images. This approach contained errors with 

reading RGB values from the PCD files as shown by the colorless pictures below of the 

PointCloud2 data, so ultimately this approach was not implemented. Another concern with the 

color approach was a practicality. This approach could most likely identify basketballs quite well, 

as it only came in one form. It would not work well on objects such as hats that could come in 

multiple colors. It was obvious that if we took a color approach, we could not base objects based 

on color alone and also had to implement shape recognition. There was even more complex 

ideas such as local-scale invariant features. [3] An example might be a simple picture of an 

airplane in a background of a blue sky. By being able to pick out a very small portion of the 
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airplane such as the wings, the computer might be able to deduce the object. Due to a potential 

for a high margin of error with this approach, this idea was also scrapped.  

 

Thus, due to the flaws of the above, we decided to use PointCloud2 data and keypoint 

recognition as the basis of the project instead. Although it is not possible to have a 0% margin of 

error, this approached seemed to be the most likely path to reduce the margin of error. One 

article that we followed a bit more closely was the concept of pose clustering. [4] Pose 

clustering is selecting points based on what the camera reads and seeing if clustering them 

together could make a recognizable object. Although our method was not 100% pose clustering, 

it helped form the framework for our project for retrieving keypoints for object recognition. Our 

approach was different because we used PointCloud2 data and converted them to PCD files. 

Ultimately, we did use some of the ideas about pose clustering but with more of a 

correspondence grouping approach and used altogether a different method for 3D object 

recognition given by the PCL library, which also involved 3D models captured by either utilizing 

PCD files from online databases, such as the PCL website, or extracting our own Euclidean 

clusters. We felt this method had much more practical use outside of a controlled setting.  

 

IV. Technical Approach 
The first step to approaching this problem was to read and understand the documentation of the 

algorithm provided by the Point Cloud Library tutorials.  In the beginning, we misread how to 

program the PCL functions and did not understand what a PCD file was, believing it to be like a 

3D model render made in an program like Blender.  It is nothing like that at all.  A PCD is a point 

cloud data file that is made up of many keypoints. To utilize PCD files, we would need to 

develop an algorithm that would take in as input PCD files that consisted of the test models 

were looking for in the scene. Then, the algorithm had to be able to compare the robot’s current 

vision to the keypoints in the PCD file stored on the robot. We needed to subscribe to one of the 

topics on the Kinect in order to retrieve the right form of data for our algorithm to take in. 

 

In order to integrate ROS with the PCL functions necessary for the algorithm to work, we 

realized that we would need a way to retrieve PointCloud data from the Kinect.  By subscribing 

to ​/nav_kinect/depth_registered/points​, we were able to retrieve the PointCloud2 data directly 
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from the Kinect, then store it as a PCD file for later.  After we were able to retrieve the data, we 

had to make sure that the program was reading the keypoints properly. Using ​pcl_viewer​, a 

visualization of the scene being recorded was shown and allowed us to verify that the scene 

was correct. [Figure 2] From there, we could add in PCD files containing the models we wanted 

to search for in the PCD file containing the scene. For the PCD models, we utilized some from 

online databases while also extracting our own Euclidean clusters to form our own PCD models, 

though each individual model tended to be separated into numerous PCD files that contained 

parts of the model’s keypoints, but not all together. [Figure 3] As a result, we utilized PCD files 

more from online databases. In addition, the orientations of the test models was always the front 

of the objects due to the limitation of our PCD files, which were extracted from a single-point 

perspective (the Kinect), and therefore only had one view to see the models: the front. 

 

The 3D correspondence grouping algorithm had a number of functions that allowed it to process 

the PCD files it was given. First, the PCD models were placed in the ​catkin_pkg ​directory, and 

the command to ​rosrun ​the algorithm would be run from that directory to allow access to the 

models. With the PCD input models, normals of both that and the scene were computed using 

the PCL function ​NormalEstimationOMP​, which estimated local surface properties at each 3D 

point. The PointCloud2 data retrieved from the PCDs of the model and scene was then 

downsampled through the PCL function ​UniformSampling​ (which forms a 3D grid over the 

PointCloud2 data) to find keypoints that would be given a 3D descriptor to allow for 

point-to-point correspondences through the PCL function ​SHOTEstimationOMP​. To determine 

point-to-point correspondence, the PCL function ​KdTreeFLANN​ was used to compare 

keypoints in the scene to keypoints in the model in order to find the most similar keypoint based 

on Euclidian distance, and placed into a vector of correspondences. Clustering of 

correspondences was done with the PCL function ​Hough3DGrouping​ (which forced the 

algorithm to create its own local reference frames for each keypoint), though the PCL function 

GeometricConsistencyGrouping​ was used as an alternative from time to time. In addition, we 

created two thresholds to determine the status of a model in a scene; These two thresholds 

defined which models had correlation and which models had full model recognition. For 

correlation, the minimum correspondences necessary was set to 500 correspondences: this 

was due to the fact that the test objects we worked with had, on average, 1000 key points to 

work with. If half of those keypoints managed to be grouped, then there was proof that a version 

of the model did exist in the scene. On the other hand, full model recognition required nearly 
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one hundred percent exact keypoint to keypoint correspondence: this was to assure that the 

model recognized was without a shadow of a doubt the input model.  

V. Evaluation and Example Demonstration 
In order to evaluate the correctness of our algorithm, we focused on having the Segbot 

recognize three simple objects: a milk carton, a bike helmet, and a red plastic cup. The main 

test scene was the BWI lab room where we placed the test objects for easy access to the v2 

Segbot without having to maneuver it to a different area. Among the first many tests we ran was 

the capturing of the scene, and then immediately using that captured PCD scene as a model to 

determine if the correspondence grouping algorithm was at least recording the scene 

successfully. That test was immediately successful: the scene itself was recognized as a full 

model recognition, which meant that the algorithm was certain that the input file was the model 

in the scene. Afterwards, the test objects were individually placed onto a table and their 

combined Euclidean clusters were sent in as a single PCD input file. Unfortunately, the results 

did not lead to full model recognitions. The combined models were only seen as “correlated”, 

meaning that the algorithm believed that there were enough correspondences to assume the 

model was there, but not enough to be considered as a full model recognition. The same results 

happened even after the models’ Euclidean clusters were separated into individual PCD models 

and sent in one after the other. Throughout all of this, the scene was constant: there were no 

changes to the orientations or positions of the test objects. The lighting did not seem to affect 

the algorithm: this was due to a bug that resulted in the algorithm being unable to take in RGB 

values. [Figure 1] To bypass this, the algorithm used geometric consistency for correspondence 

grouping. Ultimately, we came to a conclusion from our test results that although our 3D 

correspondence grouping algorithm was able to understand that input PCD models also in the 

scene were present, it failed to realize that the two models were one in the same nearly all of 

the time. 
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VI. Conclusion and Future Work 
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In conclusion, we were able to have the robot successfully identify the desired objects with high 

accuracy and consistency.  The robot was able to identify a bike helmet, a red plastic cup, and a 

milk carton in a cluttered scene.  However, there is much to be done in terms of future work. 

We seem to have a bug in which the program is not able to read-in RGB values.  This does not 

affect the program at all, but is simply a portion of the program that could use some polishing. In 

addition, we will need to improve on the correspondence grouping as keypoints of one model 

may be mistaken for another model’s, possibly resulting in misassociation. [Figure 4]  

 

 
 

There is also room for future improvement in terms of communicating that the object has been 

successfully identified.  For now, there is only an output to the terminal that states that the 

object has been identified.  It could be easier to communicate that the object has been 

discovered with flashing LEDs.  Another possible improvement would be to make sure this 

program works with the V3’s.  Currently our program subscribes to the Kinect, and we are not 

sure if the V3’s camera uses the same subscriber as the kinect does.  If it does not, then we will 

have to improve our program by including the correct subscriber.  Another improvement, and 

possibly the most important, would be to have our ROS node return the x, y, and z coordinates 

of the identified object.  This would allow robots to know the exact location of the identified 

object.  This way, if someone wanted a robot with an arm to pick up a specific object.  Then the 

robot could pick up the object that it was specifically requested, and have the robot identify the 

object itself.  Then it would pick it up with the returned coordinates after the identification. 
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