Emergency Stop Final Project

Jeremy Cook and Jessie Chen

May 2017

1 Abstract

Autonomous robots are not fully autonomous yet, and it should be expected
that they could fail at any moment. Given the validity of this statement,
there must be a fail safe measure to stop a robot in an easy and fast manner.
To solve this issue, we created a wireless emergency stop button for the
version 2 and version 3 segbots.

2 Introduction

We propose to introduce a new method to halt the robot with an emergency
escape in the form of a big red button. When my partner and I were first
learning about the seghots, we weren’t fully aware as to how they functioned,
and if they could cause damage to themselves or something else or even
someone else if their code went awry. In many autonomous systems, there
is an easy and understandable escape from the autonomous control back to
manual control. This is the feature my partner and I wish to introduce to
the segbots. Our prime objectives are to increase the safety of the robot
and to simplify the user interface. As of now, if a user wishes to stop the
robot, she/he has to position themselves behind the laptop and command a
new 2D Vector pose to the Rviz window, or to kill the program responsible
for actuating the motors of the seghot. Either of these two tasks can be
very difficult while the robot is spinning and moving away from the user.
My partner and I propose to create a wireless large red button, which is
commonly known for halting a robotic operation thanks to television culture,
which will be able to stop the robot at any instant.

3 Related Works

What happens when a robot’s sensors stop functioning? It becomes uncertain
of many quantities, and either gives up on its assigned task, or continues to
function as if nothing wrong went at all, because it broke in the exact location
that tells it when something goes wrong. In the paper by Stolt Andreas et al.
[1], the project aims at identifying the loss of sensorimotor data and suggests
a method of automatic detection that will prevent the robot from harming
itself or other people/objects. The robot used in the paper is an arm that
hits an emergency stop button when it extends past its local boundaries. The
arm does not stop immediately however, but slowly ramps its speed down
to give it a minimal jerk. This paper has also brought up the idea where in
accordance with the remote button, we could have an automatic detection
algorithm that will stop the robot when a dangerous situation is detected.
It’s clear from Dhillon, Balbir S., and A. R. M. Fashandi. [2] that the
most dangerous robots in today’s world are industrial robots. In 1982, the
world robot population was estimated to be at 30,000, and increased rapidly
to 520,000 in 1992. However, as we progress to a more automated society,
it’s not hard to imagine more robots interacting with us in our daily lives,
and in ever increasing risk. For example, it’s safe to say that most humans
trust an auto piloted airplane will carry us to our desired destination with a
low risk of failure. We are however not at the point where we can remove the
pilots from the cabin and fully trust an autopilot. Another interesting area of
automation comes with driverless cars, or self driving cars. Many people are
more wary of the failure rates of these systems, and will continue to be wary
until death do them part. Besides the health hazard that artificial intelligence
and automated systems bring into our lives, there is also an economic factor
to be considered. When one test robot costs half a million dollars, it would be
unwise to program it willy nilly without considering any potential damage to
the individual parts of the robot. According to published literature in 1997
2], the mean failure time was only 500 - 2500 hours. This means that if you
had an industrial robot (in 1997) running 23 hours out of 24 hours in the
day, it had a very high chance of failing within the first 4 months. At the
end of the day, we have still not reached a point where we can rely on robots
with human free interaction 100% of the time. However, I never think we
will reach this point either. Robots will always start to fail at some point,
and humans will need to intervene to fix them. “Generally speaking, a robot
is blind, deaf, mute, dumb, and unconscious. The sum of these elements

render robots dangerous and unforgiving.* [2]. The root cause lies in the
lack of intelligence of the robot. Once (or if) we succeed in creating truly
intelligent robots, we can program them to be aware of the humans in their
surroundings and take caution in ways that we might not have imagined.
I predict this date is long into the future, and until then we need a safety
escape for every robot. This is our purpose of our project at its base, but
can also be used as a blueprint for other button triggered events.

Work on creating a wireless emergency stop button may also lead to
further research into implementing a more complex wireless remote. This
remote may have more options in terms of controlling different functions of
the segbots. For example, implementing a joystick may make tele-operations
safer and easier to control. Since the remote is wireless, human operators
can maintain a safe distance away from the robot, preventing human-robot
crashes and injuries. A wireless remote may also be used to move the robot
while the robot is not in reach in the case of dangerous situations and events.
This also extends into a concept very similar to Amazon’s dash buttons. The
user could create a button whose only purpose is to fetch the user coffee, or
maybe remind other coworkers of an upcoming meeting. Our project lays
the groundwork for these implementations on the segbots, that have been
developed elsewhere in the world already.

4 Mechanical Design

There are two sides to this project, the mechanical side and the software side-
we will first dive into the mechanical aspect of this project. We ordered a
simple Single Pole Single Throw (SPST) switch from Amazon in the shape of
a typical emergency stop button. We then wired a 2S 7.4V Lipo, NodeMCU
v1.0, and on/off switch to the button in order to make a button press be
received wirelessly. Below is an image of the simple wiring schematic.

11§

— AD0 Do
— PR3V Dt f—
— Rsv D2 f—
— 503 0s —
— sD2 04— SL,_
— =01 i ————————
— cMD GND
— =00 + D5 f—
— CLK 08— R1
— GND D7 p—
— 3v3 D8 p— 10k
— EN X —
— AT TH f—

GND GND —

VIN WE —

ESP12ZE_DEVKIT

BT2

3

|

Figure 1: Wiring schematic of emergency stop button.

The button is wired to pin DO with a pull down resistor attached to
ground. Whenever the button is pressed the DO pin is pulled high, and when
the button is released the DO pin is pulled low.

We initially intended for the NodeMCU, which is a WiFi based chip,
to communicate directly with the segbots. However because the robots are
connected to the network ”utexas” which is a WPA2 Enterprise network,
our design didn’t work because the NodeMCU chip is not able to connect
to WPA2 networks. After some thought, we decided to pivot our project to
wireless communication between two NodeMCU chips. One would be inside
the casing of the emergency stop button, and the other would be connected
via USB with the segbot. The NodeMCU which is connected directly to the
robot, which we will now refer to as the base station, would communicate with
the robot via serial commands. In order for the two chips to communicate
with each other, we programmed the base station to broadcast an access
point with the name "emergency_stop” and a password. The NodeMCU
in the emergency button, which we will now refer to as the client station,
connects to this access point on a specific port and sends commands via UDP.
A packet "stop” is sent out when the emergency button is pressed.

Average current consumption of the NodeMCU has been recorded to be
83 mA, so given our battery capacity of 800 mAh, we can get a crude estimate
of how long our emergency stop button will last on a full charge with:

800 mAh
83 mA
As was described above, the button cannot function without the server

to handle the button signals. Below is an image of both the server and the
button.

= 9.64 hours (1)

Figure 2: NodeMCU server on the left, and the stop button on the right.

5 Software Design

The robot has two main methods of operation: autonomous and manual.
Here is the list of different modes of operation that we need to stop:

e Single navigational goal
e Teleoperation
e KR execution Task

e Custom node

e Nodes publishing to /cmd_vel

Let’s begin with a single navigation goal. These type of actions arise
when a 2D navigational goal is requested in rViz after having localized the
robot. Cancelling the goal is fairly straight forward as shown in the sample
image below.

Cancel Request Policy

stamp
empty filled
3 cancel all cancel all
[=% | goals before
goals
£ stamp
[4)]
1D
cancel goal
Goal ID
E cancel goal +
= Goal ID cancel all
goals before
stamp

Figure 3: Cancel request policy courtesy of wiki.ros.org

To be safe, we want to cancel all goals, which corresponds to publishing
an empty set in a string ("{}”) to the topic ” /move_base/cancel” of the form
actionlib_msgs/GoallD.

Next we want to look into cancelling teleoperation commands, which re-
quires a little more functionality. We simply can’t publish a cancel goal
message because teleoperation doesn’t operate using goals but instead it op-
erates by directly sending velocities to the wheels. In order to stop the mode
of operation we have to kill the node responsible for publishing velocity com-
mands and send a new velocity command of 0. To kill the proper node,
we can use system command calls in C++ to directly execute commands
in the terminal. First we run "rosnode list”, to check which nodes are ac-
tive. This returns a string of all running nodes, and if we find the string
” /teleop_twist_keyboard”, then we can kill it with another system call of the
form "rosnode kill teleop_twist_keyboard”. Once the node is killed however

the robot will continue to move in the direction of its last velocity command,
so we publish a new velocity command of 0.

Next on the list of programs to stop are bwi_kr_execution tasks. These
tasks include visiting a door list or message delivery or looking for a person.
It is likely that on one of these tasks a student could open the door for the
robot to the landing which contains the stairs in the GDC, in which case
the robot would need to be stopped immediately. Similar to stopping the
robot during the teleoperation mode, we search the list of running nodes for
” Jaction_executor” and ” /bwi_kr”. These nodes are responsible for issuing
the robot new goals and velocities, and must be killed without mercy. Once
they are killed, we send the robot a new goal of its current position to halt
any motion leftover from the task.

Second to last on our list of operational modes of the robot is a custom
node. Without having to edit the code, a user can pass the name of their
node they want to kill as a parameter into our main stop_base node. Once
the stop button is pressed, the program looks to see if the custom node
is running, and if it is, it kills it. As a safety measure the program then
publishes a new velocity of 0 and sends a goal of the current position of the
robot. We must do both because the program does not know a priori whether
the custom node publishes velocity commands like the teleoperation mode,
or if the custom node sends goals to the robot, like a 2D navigational goal,
or if it does both. In any case, the robot will stop on the spot.

Finally, in order to kill any nodes which are publishing to the topic
/cmd_vel, we run a system call in the terminal to see which nodes are pub-
lishing to the topic. Then we parse the string result to kill any nodes which
are listed as publishers.

6 Evaluation

Initially there was concern as to whether setting the velocity of the robot to
zero would cause the robot to tip over, but after extensive testing on both
the version 2 and version 3 robots, we found that there was no cause for
concern of the stability of the robots.

We evaluated the emergency stop button in all the test cases described,
and found the button to work correctly. The scenarios where the button
would not work is when the button is out of range of the robot, there is
a connectivity issue, or the robot’s control computer is frozen and is not

subscribing to new ROS messages. We did not choose to stop the robot
when the button became out of range or was not connected because of the
inconvenience it would bring to day to day operations. Rather, we wanted
the stop button to be an optional addition to the robot, which could be used
on demos or when testing new code.

7 Conclusion

After many weeks of work, we have created a successful emergency stop but-
ton for the version 2 and version 3 segbots at the University of Texas at
Austin. Although this project was not cutting edge technology, it is impor-
tant to not trade in safety for the shiny and expensive new features. A robot
must be built on a solid and robust foundation to operate smoothly and to
be easily built on in the future.

References

[1] Stolt, Andreas, et al. ”Force controlled assembly of emergency stop but-
ton.” Robotics and Automation (ICRA), 2011 IEEE International Con-
ference on. IEEE, 2011.

[2] Dhillon, Balbir S., and A. R. M. Fashandi. ”Safety and reliability assess-
ment techniques in robotics.” Robotica 15.06 (1997): 701-708.

