
BWIBots: A platform for bridging the
gap between AI and Human-Robot
Interaction research

Journal Title

XX(X):1–26

©The Author(s) 2015

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

Piyush Khandelwal1, Shiqi Zhang1,2, Jivko Sinapov1, Matteo Leonetti1,3, Jesse

Thomason1, Fangkai Yang4, Ilaria Gori5, Maxwell Svetlik1, Priyanka Khante1, Vladimir

Lifschitz1, J.K. Aggarwal5, Raymond Mooney1 and Peter Stone1

Abstract

Recent progress in both Artificial Intelligence (AI) and Robotics have enabled the development of general purpose

robot platforms that are capable of executing a wide variety of complex, temporally extended service tasks in open

environments. This article introduces a novel, custom-designed multi-robot platform for research on AI, robotics, and

especially Human-Robot Interaction (HRI) for service robots. Called BWIBots, the robots were designed as a part of

the Building-Wide Intelligence (BWI) project at the University of Texas at Austin. The article begins with a description

of, and justification for, the hardware and software design decisions underlying the BWIBots, with the aim of informing

the design of such platforms in the future. It then proceeds to present an overview of various research contributions

that have enabled the BWIBots to better (i) execute action sequences to complete user requests, (ii) efficiently ask

questions to resolve user requests, (iii) understand human commands given in natural language, and (iv) understand

human intention from afar. The article concludes with a look forward towards future research opportunities and

applications enabled by the BWIBot platform.

1 Introduction

Research in Artificial Intelligence (AI) has long assumed

that one day there would be general purpose robotic

platforms that could execute symbolic actions, and

especially long and complex sequences of such actions.

However, until recently, most robots have been limited

to performing small sets of actions in very limited

configuration spaces for relatively short periods of time.

Recent progress in both the hardware robustness and

software sophistication of mobile robots has finally enabled

the integration of modern AI planning, reasoning, sensing,

and acting all onboard physical robots that are capable

of long-term autonomy in open, dynamic, and human-

inhabited environments. On the other hand, this progress

has exposed the integration challenges of combining low-

level action with high-level planning, especially in the face

of the inherent uncertainty that comes from Human-Robot

Interaction (HRI). In this article, we demonstrate how an

intelligent service robot, capable of high-level planning and

reasoning, can be used for robust HRI.

The aim of this article is two-fold. First, we introduce

a novel, custom-designed multi-robot platform for research

on such integration of AI, robotics, and especially HRI on

indoor service robots. Called BWIBots, the robots were

designed as a part of the Building-Wide Intelligence (BWI)

project at the University of Texas at Austin. The long-term

goal of the BWI project is to deploy a pervasive autonomous

system inside a building, with end effectors such as robots,

to better serve both inhabitants and visitors.

Second, we illustrate the overall purpose of our robotic

system, which is to enable novel research in the context of

the human-interactive service robot domain. In particular,

we briefly summarize five research contributions enabled by

the BWIBots, that are geared towards improving the ability

of indoor service robots to understand human intention

during interaction, and execute actions as necessary to

carry out human commands. The collective breadth of these

loosely-related research projects illustrate the research

1Department of Computer Science, UT Austin, Austin, TX, USA
2Department of EECS, Cleveland State University, Cleveland, OH, USA
3School of Computing, University of Leeds, Leeds, UK
4Schlumberger Software Technology, Katy, TX, USA
5Electrical and Computer Engineering, UT Austin, Austin, TX, USA

Corresponding author:

Piyush Khandelwal, Department of Computer Science, University of

Texas at Austin, 2317 Speedway, Stop D9500, Austin TX 78712, USA.

Email: piyushk@cs.utexas.edu

Prepared using sagej.cls [Version: 2015/06/09 v1.01]



2 Journal Title XX(X)

versatility of the platform, having enabled contributions to a

variety of AI sub-areas beyond HRI, including AI planning,

knowledge representation and reasoning, natural language

processing, and machine learning.

Specifically, we cover the following contributions using

the BWIBots in this article:

Planning using action language BC: We describe how

domain knowledge and planning descriptions for

robots can be written using action language

BC, allowing robots to achieve complex goals

using defeasible reasoning∗ and indirect/recursively

defined fluents (Khandelwal et al. 2014).

Integrating probabilistic and symbolic reasoning: We

describe how robots can incorporate probability

distributions with symbolic reasoning to implement a

spoken dialog system, allowing them to intelligently

ask questions in order to quickly understand human

instructions (Zhang and Stone 2015).

Understanding natural language requests: Since one of

the most convenient means for humans to convey

instructions is natural language, we describe how

natural language requests can be understood by

robots by grounding requests using a robot’s

existing domain knowledge, and how robots can

incrementally learn larger vocabularies through

conversation (Thomason et al. 2015).

Grounded multimodal language learning: We describe

how a robot can learn to ground certain human

instructions, such as “Bring me a full, red bottle.”,

in its perception and actions (Thomason et al. 2016).

Robot-centric human activity Recognition: We describe

how a robot can categorize human activity using

standard machine learning techniques, in order to

better understand the behavior of humans in its

vicinity (Gori et al. 2015).

The remainder of the article is organized as follows.

In the next section, we discuss other indoor service robot

systems that aim to solve similar problems as the BWIBots.

In Sections 3 and 4, we present the hardware and software

design decisions behind the BWIBots, along with their

justifications relative to considered alternatives. A main aim

of this component of the article is to share our development

insights and experience with future developers of similar

platforms for service robotics and HRI, and these two

sections serve as the main novel contributions of this

paper. In Sections 5–9, we summarize the five research

contributions outlined above. The article then concludes

with a look forward towards future research opportunities,

especially in multi-robot coordination, that we believe will

be enabled by the BWI platform.

2 Related Work

In this section, we limit discussion to multi-robot systems

related to the BWIBots that share the same research goals

as the BWI project. Sections 5–9 independently cover work

related to the research areas presented within those sections.

In recent years, multiple autonomous service robot

systems have been developed that are designed to

interact with humans and operate within human-inhabited

environments. Mobile robot platforms range from service

robots such as the Care-O-bot 3 (Reiser et al. 2009) and

research robots such as the uBot-5 (Kuindersma et al. 2009)

to personal robots such as the PR2 (Cousins 2010) and

Herb 2.0 (Srinivasa et al. 2012). In this section, we discuss

representative single-robot and multi-robot systems that are

used for research similar to that presented in this paper.

The Collaborative Robot (CoBot) platform (Veloso et al.

2015) is a multi-robot system that exists symbiotically

with humans. CoBots establish a symbiotic relationship

with humans, as they fulfill human commands while

requesting human help for achieving difficult tasks such as

using an elevator (Rosenthal et al. 2010). This technique is

also employed on the BWIBots. Furthermore, CoBots use

mixed integer programming for scheduling tasks, and use

a web-based interface to accept user requests (Coltin et al.

2011). In contrast, BWIBots are used to research the

complimentary problem of robust planning, where it is

necessary to select the best sequence of actions to complete

a single user request efficiently.

The SPENCER project aims to enable a robot to

treat humans in the environment as more than simple

obstacles (SPENCER Project 2016). Specifically, this

project focuses on allowing robots to perform socially-

aware task, motion, and interaction planning, while

interacting with groups of people. Research contributions

are targeted at tracking multiple people as social

groups (Luber and Arras 2013), and performing robust

navigation in the midst of crowds (Vasquez et al. 2014).

While some of the research performed using the BWIBots

focuses on recognizing human activity in the robot’s

vicinity, research contributions described in this paper aim

to improve direct interaction with a single human via

natural language dialog systems.

The STRANDS project is concerned with allow-

ing robots to gather knowledge about the environment

over an extended period of time, as well as learn

spatio-temporal dynamics in human-inhabited environ-

ments (STRANDS 2016). By learning the dynamics of

obstacles such as humans and non-stationary furniture, the

goal of the STRANDS project is to allow a robot to run

∗Defeasible reasoning allows a planner to draw tentative conclusions

which can be retracted based on further evidence.

Prepared using sagej.cls



Khandelwal et al. 3

(a) BWIBotV1 (b) BWIBotV2 (c) BWIBotV3

Figure 1. The evolution of the BWIBot platform. BWIBotV2

features a smaller profile and improved DC converters when

compared to the BWIBotV1. BWIBotV3 makes further

improvements by using the new RMP 110 base, onboard

auxiliary battery, desktop computer and touchscreen, and the

Velodyne VLP-16 for navigation.

autonomously for significantly long periods such as 120

days. Similar to the CoBots, research contributions within

the STRANDS project have focused more on schedul-

ing (Mudrova and Hawes 2015) than general purpose plan-

ning.

The RoboCup@Home competition (Wisspeintner et al.

2009) aims to enhance service robots by providing

benchmark tests that evaluate a robot’s ability to per-

form in realistic home environments. These bench-

mark tasks require manipulation, object recognition, and

robust navigation among other features necessary for

domestic service robots. The Kejia robot, winner of

Robocup@Home in 2014 (Chen et al. 2014), has been

used to identify what knowledge is necessary to com-

pletely ground human requests, and search for missing

information using open knowledge, i.e. free-form knowl-

edge available online (Chen, Xie, Ji and Sui 2012). While

the RoboCup@Home competition is designed to test the

versatility of service robots, and benchmarks test a breadth

of capabilities, research contributions performed using the

BWIBots are more focused and improve the state-of-the-art

on somewhat more specialized, but deeper, problems than

those defined by RoboCup@Home.

3 Hardware

In this section, we briefly describe the hardware design

of the BWIBots. The design goals behind these robots

include robust navigation inside a building, continuous

operation for 4–6 hours, ease of interaction with humans,

and a configurable array of sensors and actuators depending

on the research application. The robots have continually

evolved while following these design goals, based on

research applications that have emerged since their

inception (see Figure 1).

The main aim of this section is to share our development

insights and experience with future developers of similar

platforms for service robotics and human-robot interaction

inside a building, especially for the purpose of academic

research. It also serves as an introduction to the substrate

platform that is used for research presented in the remainder

of this article.

3.1 Mobile Base and Customized Chassis

The latest iteration of the BWIBot platform (BWIBotV3)

is built on top of the differential drive Segway RMP 110

mobile base available from Stanley Innovation. Prior to the

RMP 110, the RMP 50 was used to build the BWIBotV1

and BWIBotV2 versions†. The RMP platform was selected

to construct the BWIBots because it balances cost with

many different features such as maximum payload capacity

(100lbs), size (radius = 30cm), and maximum speed (2m/s

for the RMP 50, 5m/s for the RMP 110). Additionally, it

provides sufficiently accurate odometry estimates for robust

navigation. Compared to most other RMP platforms, the

RMP 110 does not have an external user interface box and

is extremely space efficient, allowing more space for the

customized chassis, and also provides power for auxiliary

devices, as explained in Section 3.2.

A customized chassis that holds the computer, sensors,

and touchscreen is mounted on top of the RMP 110 mobile

base. The chassis is constructed using aluminum (6061-T6

alloy) sheet metal and aluminum framing from 80/20 Inc‡.

All sheet metal parts were designed using the open-source

CAD software FreeCAD. Prior to fabrication, all parts

were prototyped in acrylic using a Full Spectrum P-Series

20”x12” CO2 laser cutter§, allowing design revision with a

fast turnaround. The final parts were fabricated in aluminum

using commercial waterjet cutting service BigBlueSaw.

The computer controlling the robot is not directly

screwed into the chassis; rather it is mounted on a plate

which is then latched to the chassis. This feature allows

easy removal of the computer (and plate) for diagnosis,

repair, and replacement. Additionally, the surface of the

chassis above the computer and exposed electronics has

been waterproofed using IP54 cable glands and washers,

even though the entire chassis is not water-proof, providing

some resistance against accidental spills on the robot.

†The RMP 50 is no longer available for sale.
‡80/20 framing has already been used on other research robots such as the

Cobot (Veloso et al. 2015)
§Parts larger than 20”x12” were split to fit on the cutting bed, and then

joined together using joining plates from 80/20 Inc.

Prepared using sagej.cls



4 Journal Title XX(X)

Furthermore, the chassis on the BWIBotV2 and

BWIBotV3 has been designed to fit within the smallest

circumscribed circle possible given the size of the RMP50

and RMP110, respectively. Most navigation algorithms

consider robots to be circular, and a small circular footprint

simplifies navigation around obstacles. In BWIBotV1, the

circumscribed radius induced by the chassis was larger than

the one induced by the mobile base, but the navigation

algorithm was provided with a smaller radius in order to

navigate through narrow corridors and doors. Consequently,

on rare occasions, the back of the BWIBotV1 would hit

obstacles when turning in place.

3.2 Auxiliary Power and Power Distribution

The RMP 110, used to construct the BWIBotV3, contains

two 384Wh Lithium Iron Phosphate (LiFePo) batteries.

One is used for peripherals such as the computer and

various sensors, and the other for driving the mobile base.

In contrast, in previous versions of the BWIBot, the RMP

50 did not provide a power source for peripherals. A

single 12V 1280WH LiFePo battery was used on those

platforms to power both the drive system and peripherals.

Batteries with a LiFePo chemistry have been used as they

are extremely safe, and have a longer lifespan than other

chemistries when repeatedly deep-discharged.

The RMP 110 provides a regulated 12V 150W power

source using the auxiliary battery, which is sufficient to

power all peripherals. On the RMP 50, the same regulated

power source has been constructed using a Vicor DC-DC

converter with the LiFePo battery as the source. Since

some peripherals require an input voltage of 5V or 19V

at low currents, the 12V source is re-regulated using

5V 45W and 19V 35W DC-DC converters from Pololu

Robotics. These additional DC-DC converters, along with

Anderson Powerpole and Molex power connectors, are

soldered on a power distribution PCB designed using the

open-source software Fritzing, and manufactured using the

PCB fabrication service OSH Park.

3.3 Computation and Interface

The BWIBotV3 contains a desktop computer powered

by an Intel i7-4790T/i7-6700T processor, placed in HD-

Plex H1.S fanless case, with 6 Gigabit Ethernet Network

Interfaces, along with 4 USB3 and 2 USB2 interfaces. A

20” touchscreen is mounted at a human-operable height to

serve as the primary user interface with the robot. Earlier

versions of the BWIBot contained a laptop powered by an

Intel i7-3612QM processor mounted at a human-operable

height, serving both computational and user interface

requirements on the robot. This laptop contained 1 Gigabit

Ethernet and 3 USB3 connectors, which was insufficient for

the number of peripherals on the robot, and required the

placement of an additional USB Hub and Gigabit Ethernet

Switch on the robot.

3.4 Perception

Perception is used for both navigation (robot localization

and obstacle avoidance) and object-of-interest detection,

and the BWIBots can make use of a configurable set

of sensors. In this section, we briefly outline various

combinations of sensors used for both purposes.

Certain key requirements need to be met by the sensor

suite responsible for localization and obstacle avoidance.

The sensors should have a sufficiently large horizontal field

of view for robust robot localization, and some vertical field

of view is also necessary to prevent the robot from crashing

into concavely shaped objects. For instance, only the central

column of an office chair may be visible to a robot with a

2D planar LIDAR. A 3D sensor, or a 2D sensor on a servo,

is necessary to sense other parts of these objects in order to

avoid them.

Furthermore, the sensor suite may need to detect

landmarks at long distances for robust robot localization,

especially in large open areas. Finally, direct or reflected

sunlight may affect LIDAR or RGBD sensors, and it

is useful to have a sensor resistant to being affected

by sunlight for robust operation near glass windows. In

Table 1, we outline the performance of some combination

of sensors that have been used on the BWIBot platform, in

increasing order of cost.

Table 1. Various sensors and combinations used for

navigation and localization on the BWIBot in increasing order

of cost. The URG-04 and UST-20 are 2D LIDARs available

from Hokuyo, and the VLP-16 is a 3D LIDAR from Velodyne.

Sensors
Sufficient

HFOV

Sufficient

VFOV

Sufficient

Range

Sunlight

Resistant

Kinect No (60°) Yes (40°) No (4m) No

URG-04 Yes (240°) No No (4m) No

Kinect +

URG-04
Yes (240°) Yes (40°) No (4m) No

UST-20 Yes (270°) No Yes (20m) No

Kinect +

UST-20
Yes (270°) Yes (40°) Yes (20m) No

VLP-16 Yes (360°) Yes (30°) Yes (60m) Yes

While the VLP-16 satisfies all the requirements outlined

in Table 1, its minimum range (45cm) creates a blind spot

around the robot body (radius = 30cm). This blind spot can

be eliminated with an additional URG-04 sensor, which

is undesirable. It is our opinion that the ideal sensor (or

combination) for an indoor robot needs to have all the

properties satisfied by the VLP-16 in Table 1, as well as

Prepared using sagej.cls



Khandelwal et al. 5

have a minimum range of 20cm or less, while not being

prohibitively expensive.

For person and object detection, three different sets of

sensors have been used:

1. PointGrey BlackFly GigE camera - This camera

is mounted on a pan-tilt unit constructed using

Dynamixel MX-12W servos, and is useful for

collecting video data in high-resolution. It has

primarily been used for detecting objects using SIFT

visual features (Lowe 2004).

2. KinectV1 - The KinectV1 sensor was used

for detecting people in 3D point clouds. For

person detection, we used the method of

Munaro and Menegatti (2014), as implemented

in the Point Cloud Library (Rusu and Cousins 2011).

While the implementation provides reasonable

accuracy, the detection frame rate is low (about 4Hz

when concurrently run with other BWIBot software).

3. KinectV2 - The Microsoft SDK with the KinectV2

allows for extremely fast and robust person detection.

The raw data from the Kinect is processed via the

SDK running on a Microsoft Surface Pro separate

from the primary robot computer.

3.5 Mobile Manipulation

One BWIBot incorporates a Kinova MicoV1 6-DOF arm

for manipulation. The Mico arm was chosen primarily

because it is safe to operate around humans. Specifically,

the arm includes force sensors in each joint which enable

it to be software-complaint when interacting with humans.

In addition, the force sensors allows the arm to perform

various manipulation tasks, such as drawing on a board with

a marker and handing off objects to humans.

4 Software

In the previous section, we described the hardware design

choices that went into constructing the BWIBots. Next, we

describe the software architecture used on the BWIBots,

which has been built on top of the Robot Operating System

(ROS) middleware framework (Quigley et al. 2009). ROS

provides abstractions for data formats commonly used in

robotics, along with message passing mechanisms allowing

different software modules on a robot, as well as multiple

robots, to communicate with one another.

An overview of the software architecture is illustrated

in Figure 2. The robot can be controlled at many different

levels of control, where each level balances the granularity

of control with the robot’s autonomy. This architecture

has been designed in a hierarchical manner, as different

research applications may require a particular granularity

of control. Formally, the software architecture provides five

hierarchical levels of control:

Velocity Level Control: The robot has no autonomy, and

is controlled directly via linear and angular velocities.

Navigation Level Control: The robot is given a physical

location and orientation as a destination in Cartesian

space (x, y, θ), and the robot autonomously navigates

to this destination while avoiding obstacles.

High-Level Action Control: At this level of control, the

robot can execute navigation actions to symbolic

locations. For instance, the robot can autonomously

navigate to a specific door without requiring the

door’s location in Cartesian space. Furthermore, at

this level the robot also provides some tools for

interacting with humans, such as a GUI, speech

synthesis, and speech recognition.

Planning Level Control: The robot can achieve high-level

goals, such as those that require it to navigate to a

different part of the building via doors and elevators

using a sequence high-level actions.

Multi-Robot Control: This level of control allows multi-

ple robots to be controlled at any one of the four pre-

viously mentioned levels using a centralized server.

In the following subsections, we describe the modules

that comprise the software architecture and how these

modules can be used to achieve the aforementioned

hierarchical levels of control.

4.1 Map Server

For the robot to navigate autonomously, it requires a

map of the world. Standard ROS Navigation is designed

to allow a robot to navigate using a single 2D grid

map (Marder-Eppstein et al. 2010), and these maps can

be built using Simultaneous Localization and Mapping

(SLAM) approaches such as GMapping (Grisetti et al.

2007). While a single grid map is sufficient to allow an

intelligent service robot to perform navigation on a single

floor inside a building, it has the following limitations:

1. Without semantic information encoded within a grid

map, autonomous navigation cannot be performed

using symbolic locations. For instance, a user cannot

request the robot to navigate to a particular room by

name only.

2. Navigation based on a single 2D map does not work

if the robot is required to use an elevator to navigate

to a different floor.

The software architecture overcomes these limitations

without modifying the existing ROS Navigation stack.

We implement a MultiMap Server that contains all 2D

maps necessary to perform navigation across all floors

of the building. The correct map is selected using a

Prepared using sagej.cls



6 Journal Title XX(X)

Figure 2. The software architecture for the BWIBots. The figure depicts all the various software modules and how they are

connected, implementing the various levels of control used by different research applications.

multiplexer node (MapMux), which is then passed to the

ROS Navigation Stack. Should the robot change floors,

navigation is reinitialized with the correct map using this

multiplexer node.

The MultiMap Server also adds secondary semantic

maps to each floor alongside the physical maps. These

maps contain information such as the symbolic names of

all doors, a mapping from physical to symbolic locations,

and the physical locations of objects of interest in the

environment (such as printers). There has been previous

research on how this semantic information should be

attached to a physical map (Bastianelli et al. 2013) while

the physical map is being built. In contrast, we use a simple

tool that allows manual yet quick labeling of semantic

information after the physical map has been constructed.

4.2 Perception

The choice of physical sensors on the BWIBots has already

been discussed in Section 3.4. The perception module

is responsible for providing sensory information in the

common data abstractions used by ROS, as well as filtering

raw sensor data. For example, any points returned by the

depth sensors described in Section 3.4 that belong to the

chassis of the robot are filtered out. An additional filters

also updates raw sensor data to remove any potential stale

obstacles readings constructed from previous sensor data.

4.3 Simulation

We have developed 3D simulation models for the BWIBots

using Gazebo (Koenig and Howard 2004), allowing us to

run simulations with one or many robots, as shown in

Figure 3. The focus of this module is not to accurately

simulate the dynamics of the robot, but rather to provide

a platform for testing various single-robot and multi-

robot applications. Consequently, in order to speed up

the simulation, especially when multiple robots are being

reproduced, we use an extremely low fidelity model of the

robot that ignores the dynamics of the wheels and simulates

the entire collision model of the robot as a cylinder. It

then applies simple lateral forces to the robot to emulate

real motion in the environment, allowing the simulation

to run many times faster than real time. In contrast, the

visualization of the robot continues to use an accurate high-

fidelity model, allowing demonstrations to look realistic.

4.4 Robot Navigation

While the BWIBots can be controlled directly via velocity

level control, most applications require the BWIBot

platform to at least be able to autonomously navigate to

Prepared using sagej.cls



Khandelwal et al. 7

(a) Human avatar interacting with simulated robot (b) Multi-robot simulation

Figure 3. Figure 3a demonstrates a robot guiding a human-controlled avatar to the red ball (Khandelwal and Stone 2014).

Figure 3b depicts multiple robots being simulated within a single environment.

a given physical location within a 2D map. This second

control layer, called the navigation level control, can be

provided using a more sophisticated autonomous navigation

system built on top of the velocity level control.

Autonomous navigation on the BWIBots is built using

the ROS Navigation stack (Marder-Eppstein et al. 2010).

The ROS navigation stack keeps track of the obstacles in the

environment using an occupancy grid representation. Given

the current locations of obstacles, it makes use of a global

planner to find a path to a desired destination. It then uses a

local planner to compute linear and angular velocities that

need to be executed by the robot to approximately follow

the global path while avoiding obstacles.

In our instantiation of the navigation stack, Dijkstra’s

algorithm is used to find a path to a destination, and

low-level control is implemented via the Elastic Bands

approach (Quinlan and Khatib 1993). This approach makes

use of active contours (Kass et al. 1988) to execute local

control that balances the straightness of the executed path

with the distance of obstacles to this path.

The navigation stack also needs to estimate the position

of the robot for navigation, and uses Adaptive Monte

Carlo Localization (AMCL) (Fox et al. 1999) for robot

localization. In this approach, the distribution of possible

locations the robot may be in is represented via samples

called particles, and the mean of this distribution gives the

current estimate of the location of the robot.

4.5 High-Level Robot Actions

In many research applications, it may be necessary to have

the robot interact with the environment without specifying

low-level details. For instance, an algorithm may wish to

execute a sequence of actions using symbolic instructions,

such as approach door d1 and go through it, rather than

specifying physical locations for the robot to navigate

to. The third level of control in the software architecture

provides this functionality, which is termed the high-

level action control. At this level, symbolic navigation

instructions to the robot can be specified to the robot, and

this level is built on top of navigation level control.

At this layer, the robot can also perform a number of

actions that require human interaction. A GUI built using

Qt¶ allows displaying text and images to the user, as

well as asking text or multiple choice questions. Speech

recognition using Sphinx (Walker et al. 2004) and speech

generation using Festival (Taylor et al. 1998) are also

available at this layer, allowing interaction via spoken

natural language.

4.6 Robot Task Planning

Given the ability to perform various high-level actions,

sequences of such actions can be constructed to achieve

high-level goals. For instance, the robot may need to deliver

an object to person p1, but may not know p1’s location.

However, it may know that it can acquire p1’s location

by asking person p2. Achieving this goal requires multiple

symbolic navigation actions, as well as use of the GUI

and speech recognition/generation actions to interact with

people. Furthermore, to achieve these high-level goals, the

robot needs to track knowledge about the environment, such

as the location of person p2. Such information is stored

within a knowledge base on the robot, and is used both for

planning and for reasoning about the environment. In this

¶http://www.qt.io/

Prepared using sagej.cls

http://www.qt.io/


8 Journal Title XX(X)

section, we describe the module responsible for knowledge

representation, reasoning, and planning, which provides the

fourth control layer on the robot, called planning level

control.

The module for symbolic reasoning and decision

making is composed of two processes (ROS nodes), one

responsible for managing knowledge on the robot, and

the other for overseeing action execution. The Knowledge

Representation and Reasoning (KRR) node handles the

knowledge base and provides access to it from outside

of the module. Other nodes can request updates to the

knowledge base or retrieve information about the current

state. The planner node manages the execution, generates

planning queries, and monitors the outcome of actions at

run time. The planner can receive planning tasks to be

carried out from other nodes, and uses the robot’s action-

level control to execute the sequence of actions necessary

to complete the task. Since this module provides a layer

of high-level intelligence and is relatively non-standard, we

elaborate on it in more detail than the other modules.

The symbolic knowledge representation is based on

Answer Set Programming (Lifschitz 2008), and the system

delegates the actual automated reasoning to the answer

set solver CLINGO (Gebser et al. 2011). The module and

the reasoner exchange information through ASP files

containing the knowledge base, the queries, and the output

of the reasoning process. In section 5, we discuss how

knowledge can be described using action language BC, and

we compare against other related approaches for planning

and knowledge representation therein.

At the heart of the module, shared by both nodes, is the

ACTASP library‖. ACTASP abstracts the syntax of answer

set programming and the parameters of the reasoner (in

our case CLINGO, but interfaces to other reasoners can

be seamlessly implemented). It implements and makes

available reasoning and planning to the rest of the system

in the following ways:

Current State Inquiry: Other modules may require veri-

fication of whether the knowledge base entails a spe-

cific piece of information at the current time: in other

words, whether the robot currently knows something

in particular. Such queries are the simplest ones, and

are just forwarded to the underlying reasoner.

KB Update: Updates to the knowledge base are performed

in two steps, and they make use of the model of

the system described by the planning description to

ensure that the knowledge base is not left in an

inconsistent state after the update. In the first step,

the reasoner is invoked to simulate the special action

NOOP, which does not actively modify the current

state, but allows the default dynamics of the system to

update the fluents as predicted by the model under no

action. Most fluents are just carried over by inertia,

meaning that they do not change between subsequent

time steps, but others may change simply due to the

passage of time. For instance, if the model predicted

that a door would close by itself if not held open,

then the door would be assumed closed after the

execution of NOOP. ACTASP then generates a query

containing the new observations as part of the next

state. If the query is satisfiable, the second step is to

incorporate the new observations into the new current

state. If the query is unsatisfiable, on the other hand,

the observations conflict with the prediction of the

system model and must be discarded. An example of

an unacceptable observation is one in which the robot

is at two locations at the same time, which can arise

if the robot localization jumps from one location to

another. The model does not allow such a possibility,

and the query to generate the next state would be

unsatisfiable.

Planning: Planning is a classic type of reasoning in which

a query is satisfied if there exists a sequence of

actions that starts in the current state and ends

in a state that satisfies a goal condition. ACTASP

implements, alongside the classic notion of a planner,

the notion of a multi-planner, that is a planner that

returns not just one plan but all the plans which reach

the goal in a given number of actions. These plans

can be used by an appropriate action executor to have

several options in case one should fail, or to learn

which one of the available paths is optimal according

to a user-specified criterion.

Monitoring: Execution monitoring is traditionally asso-

ciated with verifying that the current sequence of

actions being followed still achieves the original

task. In ACTASP, monitoring is implemented through

a query which appends the remaining sequence of

actions in the plan to the original planning query.

The reasoner will be able to satisfy the query if and

only if the remaining plan can lead the agent to a

goal state. This is a looser condition than having

the prediction on the outcome of the last action

verified, since the action may actually have given an

unpredicted outcome, while the rest of the plan could

still be valid. For example, during action execution

the robot may have noticed unexpected changes in the

environment and have updated the knowledge base

in response. Even if the resulting next state is not

the sole effect of the application of the last action,

if the new changes do not disrupt the rest of the plan,

the monitoring query will still report the plan to be

‖https://github.com/mleonetti/actasp

Prepared using sagej.cls

https://github.com/mleonetti/actasp


Khandelwal et al. 9

valid. This robustness is of great practical importance

since, without it, if the environment is inhabited

by humans, the inevitable continual changes would

also continually trigger computationally expensive

replanning.

The ACTASP library also provides two types of action

executors: a Replanning Action Executor and a Learning

Action Executor. The replanning action executor has a

simple, intuitive behavior. It uses an underlying planner to

generate a plan, then requests the execution of the actions

to the rest of the system, while monitoring the validity of

the plan between one action and the next. As previously

mentioned, the only planner currently implemented uses

the answer set solver itself, but any other planner can be

interfaced with the library. If the remaining plan appears

to be invalid, the executor uses the planner to generate a

new plan from the current state. A solution also provided

by the library is a planner called Any Plan, which uses

an underlying multi-planner to generate all plans of a

maximum length and returns a random one. This behavior

allows the robot to randomly explore several possible paths

in the case of being stuck on a plan that keeps failing.

As with the planner, the only multi-planner currently

implemented is based on the answer set solver CLINGO, but

other implementations are possible.

The Learning Action Executor is more sophisticated.

It makes use of an underlying multi-planner to generate

a number of options, and then it learns from experience,

through reinforcement learning, the value of each action in

every encountered state (Leonetti et al. 2016). Given a cost

function for the actions, the value of an action in a given

state is the expected total cost incurred by taking the action

and acting optimally afterwards. Through this mechanism,

the learning executor improves the robot’s efficiency, over

time, at reaching the goals that are repeatedly requested.

The cost function can be anything the user intends to

minimize: time, energy, interactions with users, action

failures, etc. In our system, we use the action execution

time, so that the robot learns to minimize the total time

taken to reach the goals.

4.7 Multi Robot Coordination

The software components described up to this point

are sufficient to enable robust autonomous control of

an individual robot. However, we have not addressed

any of the issues that arise when multiple robots are

operating in the same environment. In particular, the

core ROS infrastructure does not support robust multi-

robot communication and coordination. We therefore

make use of the RObotics in CONcert (ROCON) ROS

modules to enable centralized control over multiple

BWIBots (Stonier et al. 2015).

This multi-robot coordination framework introduces the

fifth and final layer available for controlling the robots:

multi-robot control. Using this framework, it is possible to

execute any one of the other (single-robot) layers of control

on multiple robots.

4.8 Summary

Sections 3-4 describe the hardware and software design

choices behind the BWIBots. All the software outlined

in this section is available open-source∗∗. Next, we

summarize a set of representative research applications that

have utilized this platform. These research contributions

interface with the software architectures using different

modules and control levels.

5 Planning using Action Language BC

In Section 4.6, we explained how the planning module

is implemented, but did not explain how the knowledge

contained within the robot is described, nor how action

effects are encoded. These descriptions are necessary

for the robot to perform planning and reasoning. In

this section, we briefly describe how action language

BC (Lee et al. 2013) can be used for constructing a

general purpose planning description for robot task

planning (Khandelwal et al. 2014). Prior to this work,

action language BC had not been used for robot task

planning. Thus, this section summarizes one of the main

research contributions that utilizes the BWIBots.

General purpose planning domain descriptions can be

written using various modes. Action languages such as BC
are attractive in task planning for mobile robots because

they solve the frame problem, which states that many

axioms are necessary to express that things in the envi-

ronment do not change arbitrarily (McCarthy and Hayes

1969). For example, when a robot picks up an object from

the table, it does not change the location of a different object

on the table. BC solves this problem by easily expressing

rules of inertia. In addition, BC can solve the ramification

problem, which is concerned with the indirect consequences

of an action (Finger 1986). For example, when a robot picks

up a tray from the table, it indirectly changes the location of

any object on the tray. BC can also easily express indirect

and recursive effects of actions.

Existing tools such as COALA (Gebser et al. 2010)

and CPLUS2ASP (Babb and Lee 2013) allow us to

translate action descriptions BC into logic programs under

answer set semantics (Gelfond and Lifschitz 1988, 1991),

and planning can be accomplished using computational

methods of ASP (Marek and Truszczynski 1999; Niemelä

1999).

∗∗https://github.com/utexas-bwi/

Prepared using sagej.cls

https://github.com/utexas-bwi/


10 Journal Title XX(X)

In this section, we demonstrate how action language

BC can be used for robot task planning in domains

requiring planning in the presence of missing information

and indirect/recursive action effects. While we demonstrate

using BC to express a mail collection task, the overall

methodology is applicable to any other planning domains

that require: recursive and indirect action effects, defeasible

reasoning, and acquiring previously unknown knowledge

through human-robot interaction. In addition, we also

demonstrate how answer set planning under action costs

(Eiter et al. 2003) can be applied to robot task planning in

conjunction with BC.

Before we describe how BC is used to construct

a general purpose planning description, we briefly

discuss other related approaches for solving the same

problem. Task planning problems for mobile robots

have also been described using the Planning Domain

Definition Language (PDDL) (Quintero et al. 2011),

which are then solved using planning algorithms such

as Fast-Forward (Hoffmann and Nebel 2001) and Fast-

Downward (Helmert 2006). While PDDL has primarily

been used with an emphasis on efficient plan generation,

it has rarely been used in domains with many indirect or

recursive action effects††, or in domains where defeasible

reasoning is necessary for succinct expressivity. In such

domains, BC provides a viable alternative.

Apart from PDDL, action language

C+ (Giunchiglia et al. 2004) has also been used for

robot task planning (Caldiran et al. 2009; Chen et al.

2010; Chen, Jin and Yang 2012; Erdem and Patoglu 2012;

Erdem et al. 2013; Havur et al. 2013). Unlike BC, C+
cannot encode recursive action effects. In addition, most

of these existing applications do not consider knowledge

acquisition, i.e. they assume that all the information

necessary for planning is available in the initial state,

and do not consider action costs. Recent work improves

on existing ASP approaches for robot task planning by

incorporating a constraint on the total time required to

complete the goal (Erdem et al. 2012). While this previous

work attempts to find the shortest plan that satisfies the goal

within a prespecified time constraint, our work attempts to

explicitly minimize the overall cost to produce the optimal

plan.

5.1 Describing domains in BC

The action language BC, like other action description

languages, describes dynamic domains as transition

systems. A full description of BC can be found in Lee et al.

(2013). Information about the state of the world is expressed

using fluents, and each fluent has a finite domain. An action

description in BC is a finite set consisting of dynamic

and static laws. Dynamic laws represent how the values of

fluents and actions in the current time step affect fluents

in the next time steps, whereas static laws incorporate how

fluents affect other fluents within the current time step.

In this section, we describe a small yet representative set

of BC laws that can be used to express such a domain. These

rules are not designed to completely represent the operation

of a mobile robot, and a more elaborate description is

available in Khandelwal et al. (2014). In this domain, a

robot needs to collect outgoing mail (intended for delivery)

from building residents. Furthermore, it has limited battery

life and must recharge its battery before it runs out to

continue operation. The floor plan for this building is

illustrated in Figure 4. alice, bob, carol and dan are people

who inhabit the building. o1, o2, o3, lab1, and cor are rooms

in the building, connected via doors d1, d2, d3, d4, and d5.

Figure 4. The layout of the example floor plan used in the

text, along with depictions of the locations of Alice, Bob, and

Carol and the robot charger. The location of Dan is not initially

known.

Facts about the structure of the building can be easily
represented in BC. For instance, the following laws express
which rooms have doors, and that two rooms are accessible
to each other if they share the same door. In these laws,
we use meta-variables R,Ri and D,Di to refer to rooms
and doors, respectively. Furthermore the default keyword
is used to refer to defeasible reasoning.

default ∼hasdoor(R,D).
hasdoor(o1, d1). hasdoor(o2, d2). hasdoor(o3, d3).
hasdoor(lab1, d4). hasdoor(lab1, d5).
default ∼acc(R1, D,R2).
acc(R1, D, R2) if hasdoor(R1, D), hasdoor(R2, D).
acc(R1, D, R2) if acc(R2, D, R1).

Additionally, a robot can only approach a door in the
same room as itself, and it can go through this door
once it is adjacent. These navigation actions can only be
performed if the robot has sufficient battery and makes use
of the semantic navigation node. Action preconditions are
imposed by making actions invalid if these preconditions

††The use of PDDL axioms allows PDDL to encode indirect and recursive

action effects (Thiébaux et al. 2003), but this feature is typically not tested

in the International Planning Competition, where different PDDL solvers

are evaluated.

Prepared using sagej.cls



Khandelwal et al. 11

are not met, using the nonexecutable keyword.

approach(D) causes beside(D).
nonexecutable approach(D) if loc = R, ∼hasdoor(R,D).
nonexecutable approach(D) if beside(D).
nonexecutable approach(D) if battery = 0.

gothrough(D) causes ∼beside(D).
gothrough(D) causes loc = R2 if loc = R1, acc(R1, D,R2).
nonexecutable gothrough(D) if ∼beside(D).
nonexecutable gothrough(D) if battery = 0.

We also need to encode the change in battery life as time
progresses, and the following example demonstrates how
BC uses defeasible reasoning to express the change in
battery state without affecting other actions, and how the
battery can be recharged using the recharge action.

default battery = max(a− 1, 0) after battery = 0.
recharge causes battery = 5.
nonexecutable recharge if loc 6= lab1.

Note that the above example is simplistic, and the update
rule can update the battery state based on the passage of
time and the time spent by the robot recharging. Next, we
encode whether a robot knows the location of a person P ,
ensuring that the robot does not believe that a person is in
two rooms at the same time. Additionally, we assume that
a person’s location remains the same in the next time step,
using the inertial keyword.

default ∼inside(P,R).
inside(alice, o1). inside(bob, o2). inside(carol, o3).
inertial inside(P,R).
∼inside(P,R2) if inside(P,R1), R1 6= R2.

If the robot knows where person P is, it can collect mail
from that person using the collectmail action. If another
personP2 passed their mail to P , then P2’s mail is collected
as well, which is a recursive indirect action effect of the
collectmail action:

collectmail(P ) causesmailcollected(P )
mailcollected(P2) if mailcollected(P ), passto(P2, P ).
nonexecutable collectmail(P ) if loc = R, ∼inside(P,R).

5.2 Planning using BC Description

Given a BC description, planning is performed as described
in Section 4.6. During execution, should the robot not know
the location of person P , it can ask person P1 for P ’s
location. The askploc action asks person P ’s location from
person P1:

askploc(P1, P ) causes inside(P,R) if loc = R.

nonexecutable askploc(P1, P ) if loc = R, ∼inside(P1, R).

For planning purposes, it is assumed that P ’s location is

the same as that of the robot. During execution, person P1

should return the true location of P , which is then used

to update the knowledge base. Should the location of P

be different from the robot’s current location, execution

monitoring determines the remaining plan is invalid, and

replanning then determines a plan that considers person P ’s

correct location.

Planning using BC can be computationally expen-

sive, especially when the total plan cost is minimized

instead of the number of actions. It is possible to

use multiple domain abstractions in BC, where each

description encodes a different level of detail and hier-

archical planning techniques can speed up planning

time (Zhang, Yang, Khandelwal and Stone 2015). Hierar-

chical planning requires some modifications to task plan-

ning module presented in Section 4.6, such that planning is

performed across multiple layers of the domain abstraction

hierarchy, and is not covered in this article.

5.3 Experimental Results

We demonstrate a simple experiment that performs cost-

based planning on a BWIBot while learning these action

costs on the fly. The goal of this experiment is to learn

actions costs sufficiently well enough that cost-based

planning always chooses the optimal plan. The real world

domain contains 5 rooms, 8 doors, and 4 people from whom

mail has to be collected, and is illustrated in Figure 5a. Two

people have passed mail such that the robot only needs to

visit a total of 2 people to collect everyone’s mail.

We present the cost curves of 4 different plans in Figure

5b, where Plan 1 is optimal. In this experiment, the robot

starts in the middle of the corridor while not beside any door

as shown in Figure 5a. The learning curves show that the

planner discovers by the episode 12 that plan 1 is optimal.

After the optimal plan is found, no other plans are selected

for execution and their costs do not change.

In this section, we demonstrated how action language

BC can be used to describe general purpose planning

descriptions, and demonstrated how such a description can

be used by the BWIBots. Using action language BC allows

us to easily formalize indirect effects of actions on recursive

fluents, as well as default knowledge.

6 Incorporating Uncertainty into Planning

In the previous section, we discussed how a robot could

achieve a goal by executing multiple high-level actions

on the BWIBots. While action language BC can express

defeasible reasoning, it cannot express probabilities, and

consequently cannot be used for stochastic planning. In

the research contribution summarized in this section, we

introduce a method for robots to efficiently and robustly

fulfill service requests in human-inhabited environments by

simultaneously reasoning about commonsense knowledge

expressed using defeasible reasoning and computing plans

under uncertainty. We illustrate this planning paradigm

using a Spoken Dialog System (SDS), where the robot

Prepared using sagej.cls



12 Journal Title XX(X)

(a) Floor plan (b) Learning Results

Figure 5. The real world domain contains 5 rooms, 8 doors, and 4 people from whom mail has to be collected. The filled circle marks the

robot’s start position, the crosses mark the people who have all the mail (A, C), and the arrows mark how mail was recursively passed to them.

The 4 plans compared in Figure 5b are also marked on the floor plan.

identifies a spoken shopping request from the user in the

presence of noise and/or incomplete instructions. The goal

of the system is to identify the shopping request as quickly

as possible while minimizing the cost of asking questions.

Once confirmed, the robot attempts to deliver the item as

explained in Section 4.6. While this planning paradigm is

described in the context of an SDS, it can just as easily be

applied to other stochastic planning problems as well.

Commonsense knowledge is the knowledge that is

normally true but not always, e.g., office doors are

closed during holidays and people prefer coffee in the

mornings. Logical commonsense knowledge needs to

be expressed via defeasible reasoning, and probabilistic

commonsense knowledge needs to be expressed via

probability distributions. In parallel with commonsense

reasoning, robots frequently need to compute a plan

including more than one action to accomplish tasks that

cannot be completed through single actions. To do so,

it is necessary to model the uncertainty in the robot’s

local, unreliable observations and nondeterministic action

outcomes while planning toward maximizing long-term

reward.

In this section, we describe the CORPP (COm-

monsense Reasoning and Probabilistic Planning) algo-

rithm (Zhang and Stone 2015). While commonsense rea-

soning and planning under uncertainty have been stud-

ied separately, CORPP, for the first time, exploits their

complementary features by integrating POMDPs and P-

LOG (Baral et al. 2009) and enables robots to simultane-

ously reason about both logical and probabilistic common-

sense knowledge and plan toward maximizing long-term

reward under uncertainty.

Different methods have been developed to combine

commonsense reasoning and probabilistic planning. For

instance, Zhang, Sridharan and Wyatt (2015) combined

ASP and POMDPs for integrating logical reasoning and

probabilistic planning, but bridging the gap between answer

sets (i.e., the reasoning results of ASP) and POMDP beliefs

requires significant domain knowledge. Hanheide et al.

(2015) used a switching planner for deterministic and

probabilistic planning and used commonsense knowledge

for diagnostic tasks and generating explanations. In con-

trast, CORPP is an algorithm that integrates commonsense

reasoning and probabilistic planning while exploiting their

complementary features in a principled way. Young et al.

(2013) have reviewed existing techniques and applications

of POMDP-based SDSs, and, similar to other POMDP appli-

cations, such SDSs are ill-equipped to represent and reason

with commonsense knowledge.

Before we describe the CORPP algorithm and present

an experimental evaluation, we briefly discuss the logic

programming language P-LOG used within the algorithm.

6.1 Background

In this subsection, we briefly introduce logic programming

languages ASP and P-LOG. P-LOG is a probabilistic

extension of ASP. More detailed descriptions of ASP and

P-LOG are available by Gelfond and Kahl (2014). An ASP

program can be described using a set of rules of the form:

l0 or · · · or lk ← lk+1, · · · , lm, not lm+1, · · · , not ln.

where l’s are expressions of the form p(t̄) = true or

a(t̄) = y. Symbol not is a logical connective called default

negation; not l is read as “it is not believed that l is true”,

which does not imply that l is believed to be false. E.g.,

not prof(alice) means it is unknown that alice is a

professor. A rule is separated by the symbol “←”. The left

side is called the head and the right side is called the body.

A rule is read as “head is true if body is true”.

Prepared using sagej.cls



Khandelwal et al. 13

Figure 6. Overview of algorithm CORPP for combining

commonsense reasoning with probabilistic planning

Default negation is used in ASP to express defeasible rea-

soning. For instance, the rule: p(X) ← c(X), not ¬p(X).
expresses that if object X has attribute c, it is believed that

X has attribute p unless there is evidence to the contrary.

Inertia can be expressed similarly.

Probabilistic extensions of ASP have been developed

for enabling both logical and probabilistic reasoning

using a single set of syntax and semantics, such as P-

LOG (Baral et al. 2009). P-LOG allows random selections–

saying that if B holds, the value of a(t̄) is selected randomly

from the set {X : q(X)} ∩ range(a), unless this value is

fixed elsewhere:

random(a(t̄) : {X : q(X)})← B.

where B is a collection of extended literals and q

is a predicate. P-LOG also allows directly specifying

probabilities using probability atoms (or pr-atoms):

pr(a(t̄) = y|B) = v.

that states if B holds, the probability of a(t̄) = y is v with

v ∈ [0, 1]. In this work, we use P-LOG for commonsense

reasoning.

6.2 The CORPP algorithm

Before introducing the CORPP algorithm, it is necessary to

classify domain attributes based on their observability. If

an attribute’s value can only be observed using sensors,

we say this attribute is partially observable. For instance,

current location (of a robot) is partially observable, because

self-localization relies on sensors. The values of attributes

that are not partially observable can be specified by facts,

defaults, or reasoning with other attributes’ values. For

instance, the value of attribute, is it within working hours

now, can be inferred from current time. Similarly, identities

of people as facts can be available but not always. The value

of an attribute can be unknown.

We propose algorithm CORPP for reasoning with

commonsense and planning under uncertainty, as shown in

Figure 6. The logical reasoner (LR) includes a set of logical

rules in ASP and takes defaults and facts as input. The facts

are collected by querying internal memory and databases.

It is possible that facts and defaults try to assign values to

the same attributes, in which case default values will be

automatically overwritten by facts. The output of LR is a

set of possible worlds {W0,W1, · · · }. Each possible world,

as an answer set, includes a set of literals that specify the

values of attributes—possibly unknown.

The probabilistic reasoner (PR) includes a set of random

selection rules and probabilistic information assignments

in P-log and takes the set of possible worlds as input.

Reasoning with PR associates each possible world with a

probability:

{W0 : pr0, W1 : pr1, · · · }

Unlike LR and PR, the probabilistic planner (PP), in the

form of a POMDP, is specified by the goal of the task and

the sensing and actuating capabilities of the agent. The prior

in Figure 6 is in the form of a distribution and denoted by

α. The ith entry in the prior, αi, is calculated by summing

up the probabilities of possible worlds that are consistent

with the corresponding POMDP state si. In practice, αi is

calculated by sending a P-log query of this form:

?{si}|obs(l0), · · · , obs(lm), do(lm+1), · · · , do(ln).

where l’s are facts. If a fact l specifies the value of a

random attribute, we use obs(l). Otherwise we use do(l).
do(l) adds l into a program before calculating the possible

worlds, while obs(l) is used to remove the calculated

possible worlds that do not include literal l.

The prior is used for initializing POMDP beliefs in

PP. Afterwards, the robot interacts with the world by

continually selecting an action, executing the action, and

making observations in the world. A task is finished after

falling into a terminating state.

CORPP is fully implemented and tested on a shopping

request identification problem. In a campus environment,

the shopping robot can buy an item for a person and

deliver to a room, so a shopping request is in the

form of 〈item, room, person〉. A person can be either a

professor or a student. Registered students are authorized

to use the robot for free, and professors need to pay

for the service of using the robot. The robot has access

to a database to query about registration and payment

information, but the database may be incomplete. The

robot can initiate spoken dialog to gather information

for understanding shopping requests and take a delivery

action when it becomes confident in the estimation.

This task is challenging for the robot because of its

imperfect speech recognition ability. The goal is to identify

shopping requests, e.g. 〈coffee, office1, alice〉, efficiently

and robustly.

Prepared using sagej.cls



14 Journal Title XX(X)

The following two logical reasoning rules state that

professors who have paid and students who have registered

are authorized to place orders.

authorized(P)← paid(P), prof(P).

authorized(P)← registered(P), student(P).

Since the database can be incomplete about the registration

and payment information, we need default knowledge to

reason about unspecified variables. For instance, if it is

unknown that a professor has paid, we believe the professor

has not; if it is unknown that a student has registered, we

believe the student has not.

¬paid(P)← not paid(P), prof(P).

¬registered(P)← not registered(P), student(P).

ASP is strong in default reasoning in that it allows

prioritized defaults and exceptions at different lev-

els (Gelfond and Kahl 2014). LR has the Closed World

Assumption (CWA) for some predicates, e.g., the below

rule guarantees that the value of attribute authorized(P)
must be either true or false (cannot be unknown):

¬authorized(P)← not authorized(P).

The following two pr-atoms state the probability of

delivering for person P to P’s working place (0.8) and the

probability of delivering coffee in the morning (0.8).

pr(req room(P) = R | place(P, R)) = 0.8.

pr(req item(P) = coffee|curr time = morning) = 0.8.

Random selection rules and pr-atoms, such as the ones

above, allow us to represent and reason about commonsense

with probabilities. Finally, a shopping request is specified as

follows:

task(I, R, P)←req item(P) = I, req room(P) = R,

req person = P, authorized(P).

PR takes queries from PP and returns the joint probability.

For instance, if it is known that Bob, a professor, has paid,

and the current time is morning, a query for calculating the

probability of 〈sandwich, office1, alice〉 is of the form:

?{task(sandwich, office1, alice)} | do(paid(bob)),

obs(curr time = morning).

The fact that bob paid increases the uncertainty in

estimating the value of req person by bringing in

additional possible worlds that include req person = bob.

A POMDP needs to model all partially observable

attributes relevant to the task at hand. In the shopping

request identification problem, an underlying state is

composed of an item, a room and a person. The robot can

ask polar questions such as “Is this delivery for Alice?”, and

wh-questions such as “Who is this delivery for?”. The robot

expects observations of “yes” or “no” after polar questions

and an element from the sets of items, rooms, or persons

after wh-questions. Once the robot becomes confident in

the request estimation, it can take a delivery action that

deterministically leads to a terminating state. Each delivery

action specifies a shopping task.

6.3 Experimental results

We have implemented the proposed approach on a BWIBot

to identify shopping request tasks. The planner helps the

robot decide whether to ask more questions (and what

to ask) or to take a delivery action (and which delivery

action), balancing the cost of asking questions and the

penalty of wrong deliveries. The robot has to model the

uncertainty in observations to account for the unreliable

speech recognition techniques. The robot keeps asking

questions and updates its belief about the shopping requests

being identified. This question-asking process ends when

the robot is certain about the shopping request and decides

to take a delivery action using the planning module

explained in Section 4.6.

We present the belief change in an illustrative trial in

Figure 7, where i, r and p are an item, room and person.

i0 is sandwich and i1 is coffee. The robot first reads

its internal memory and collects a set of facts such as

the current time is “morning”, p0’s office is r0, and p1’s

office is r1. Reasoning with commonsense produced a

prior shown in the top-left of Figure 7b, where the most

probable two requests were 〈i1, r0, p0〉 and 〈i1, r1, p1〉.
The robot took the first action to confirm the item was

coffee. After observing a “yes”, the robot further confirmed

p1 and r1. Finally, it became confident in the estimation

and successfully identified the shopping request. Therefore,

reasoning with domain knowledge produced an informative

prior, based on which the robot could directly focus on

the most likely attribute values and ask corresponding

questions. In contrast, when starting from a uniform prior

(Figure 7a), the robot would have needed at least six actions

before the delivery action. A demo video is available at:

http://www.cs.utexas.edu/˜larg/bwi_web/research/.

Figure 8 shows the experimental results. Each set of

experiments has three data points because we assigned

different penalties to incorrect identifications in PP.

Generally, a larger penalty requires the robot to ask

more questions before taking a delivery action. POMDP-

based PP without commonsense reasoning produced the

worst results. Combining LR with PP improves the

performance by reducing the number of possible worlds.

Finally, the proposed algorithm, CORPP, produced the best

performance in both efficiency and accuracy.

Prepared using sagej.cls

http://www.cs.utexas.edu/~larg/bwi_web/research/


Khandelwal et al. 15

(a) Belief change using baseline (PP only) (b) Belief change using CORPP

Figure 7. Belief change using both approaches in an illustrative trial. As illustrated, CORPP takes fewer questions to reach the

same conclusion using informative priors.

2 4 6 8 10 12 14

0.4

0.6

0.8

1

Identification cost

Id
en

ti
fi

ca
ti

o
n
 a

cc
u
ra

cy

 

 

 CORPP: LR + PR + PP (POMDP)

 LR + PP (POMDP)

 PP (POMDP)

Figure 8. CORPP performs better than the other approaches

in both efficiency and accuracy. Three data points on each

curve correspond to different penalties of incorrect

identifications. From left to right, the penalties are 10, 60 and

100 respectively.

In this section, we described an approach that integrates

commonsense reasoning and probabilistic planning and

allows the robot to handle dialog management with a human

while using commonsense reasoning to specify a state space

and instantiate a prior belief on the dialog.

7 Understanding Natural Language

Requests

While the research contributions of the previous sections

pertained mainly to fully autonomous planning, control,

and reasoning, both for task planning and dialog systems,

human responses during interaction are expected to be

exact, and from a given range of possible responses.

One of the most natural forms of human-robot interaction

for humans is through natural language. However natural

language processing remains a challenging research area

within AI, and intelligent service robots should be able

to efficiently and accurately understand commands from

human users speaking in natural language.

In this section, we describe our research contributions

pertaining to language learning to facilitate on-line

improvement of the robots’ understanding of spoken

commands. We use a dialog agent embodied in a BWIBot

to communicate with users through natural language

and improve language understanding over time using

data from these conversations (Thomason et al. 2015). By

learning from conversations, our approach can recognize

more complex language than keyword-based approaches

without needing the large-scale, hand-annotated training

data associated with complex language understanding tasks.

We train a semantic parser with a tiny set of

expressions paired with robot goals. The natural language

understanding component of our system is this semantic

parser together with a conversational dialog agent.

The dialog agent keeps track of the system’s partial

understanding of the goal the user is trying to convey and

asks clarification questions to refine that understanding.

For example, given a high-level directive like “bring

some java to Alice,” our dialog agent uses follow-

up questions to clarify any missing piece of needed

information. If the agent does not recognize the phrase

“some java,” it may ask “What should I bring to Alice?”

User clarifications provide training data pairs for a semantic

parser. In this example, the user specifying “coffee” also

lets the system know that “some java” and “coffee” mean

the same thing. Less trivially, the agent may ask the user

to rephrase his or her whole query, ultimately resulting in

training pairs of commands to fully-formed action goals.

Using the conversation from the dialog agent to build

training examples for the semantic parser, the natural

language component as a whole is able to correctly interpret

user commands faster over time.

Prepared using sagej.cls



16 Journal Title XX(X)

7.1 Related Work

The work presented in this section is the first approach

to intersect semantic parsing, dialog, and robot language

grounding.

At the intersection of semantic parsing and language

grounding, prior work uses restricted language and a static,

hand-crafted lexicon to map natural language to action

specifications (Matuszek et al. 2013). These specifications

are grounded against a knowledge base onboard a robot,

similar to how we can resolve semantic forms for

expressions like “Alice’s office” to physical rooms in the

environment. We also use the knowledge base used for

planning on the robot to ground semantic expressions.

At the intersection of dialog and language grounding,

past work presented a dialog agent used together with a

knowledge base and understanding component to learn new

referring expressions during conversations that instruct a

mobile robot (Kollar, Perera, Nardi and Veloso 2013). They

use semantic frames of actions and arguments extracted

from user utterances, while we use λ-calculus meaning

representations. Our agent reasons about arguments like

“Mallory Morgan’s office”, by considering what location

would satisfy the expression, while semantic frames instead

add a lexical entry for the whole phrase explicitly mapping

to the appropriate room. Our method is more flexible for

reasoning (e.g. “the person whose office is next to Mallory

Morgan’s office”) and changes to arguments (e.g. “George

Green’s office”).

Learning from conversations in our work is inspired

by past work at the intersection of semantic parsing and

dialog (Artzi and Zettlemoyer 2011). That work used logs

of conversations users had with an air-travel information

system to train a semantic parser for understanding user

utterances. Our approach to learning is similar, but done

incrementally from conversations the agent has with users,

and our training procedure is integrated into a complete,

interactive robot system.

7.2 Methodology

Figure 9 shows the interaction workflow between a human

user and the embodied dialog agent. Users interacted with a

BWIBot through the GUI by typing in natural language. In

the example interaction, the underspecified command “go

to the office” is parsed, grounded against the knowledge

representation and reasoning node, which contains the

knowledge base, and used to update the dialog agent’s belief

about the user’s intent. The agent generates the response

“Where should I walk?”, having understood the action it

should take but correctly recognizing that the destination

was not specific enough. When the agent is confident in

the user’s intended command, a planning task with an

appropriate goal is generated and passed to the software

module responsible for task planning and execution, which

Figure 9. Dialog agent workflow. Dashed boxes show

processing of user command “go to the office”. When a

command is understood, ASP generates a series of actions

realized as robot behavior to carry out that command.

generates the necessary sequence of actions that the

robot executes to accomplish that task. Consequently, this

research contribution makes use of high-level action control

for interacting with the user, and planning level control for

grounding language in the knowledge base and executing

requests.

For testing, users were asked to instruct the robot for

one navigation task and one delivery task. These tasks

were fixed for our 20 test users, who were divided into

before- and after-training groups. Users could skip tasks

if they felt they could not convey specified goals to the

robot. Users filled out an experience survey after they were

finished: “The tasks were easy to understand” (Tasks Easy);

“The robot understood me” (Understood); “The robot

frustrated me” (Frustrated); “I would use the robot to find a

place unfamiliar to me in the building” (Use Navigation);

and “I would use the robot to get items for myself or

others” (Use Delivery). Users answered on a 5-point Likert

scale: “Strongly Disagree”(0), “Somewhat Disagree”(1),

“Neutral”(2), “Somewhat Agree”(3), “Strongly Agree”(4).

The initial group of 10 users (INIT TEST) interacted with

the robot-embodied dialog agent with the semantic parser

bootstrapped with a tiny set of expression/goal pairs.

We then allowed the system to perform incremental

learning for four days in our office space. People working

at the University of Texas at Austin Computer Science

Department were encouraged to chat with the robot,

but were not instructed on how to do so beyond a

panel displaying information about people, offices, and

items for delivery and a brief prompt saying the robot

could only perform “navigation and delivery tasks”. After

understanding and carrying out a goal, the robot prompted

Prepared using sagej.cls



Khandelwal et al. 17

Figure 10. This abridged conversation is from when the

system had only been bootstrapped and not yet trained.

Because of this conversation, the agent learned that “calander”

and “day planner” mean “calendar” during retraining.

the user for whether the actions taken were correct. If they

answered “yes” and the goal was not in the test set, the agent

retrained its semantic parser with new training examples

aligned from the conversation. Thirty-five such successful

conversations were used to retrain the system before further

evaluation.

To exemplify these training examples, Figure 10 shows

a conversation the dialog agent had with a user in a

prior, controlled experiment where users were told what

goal to convey (similar to the methodology when testing

performance). In addition to the prompt for the task to be

completed, the user was shown a table of pictures with

numbered slots; in slot 5 was a picture of a calendar.

From this conversation, the agent pairs “please bring the

item in slot 5 to dave daniel” with the correct semantic

form understood after all clarifying questions, enabling

it to learn that the construction “item in slot 5” can

mean “calendar.” Additionally, when trying to clarify the

item to be brought, it learns the synonym “day planner”

and the misspelling “calander” for “calendar.” A video

demonstrating the learning process on the BWIBot is

available at: https://youtu.be/FL9IhJQOzb8.

We evaluated the retrained agent as before with the 10

remaining test users (TRAINED TEST) and the same set of

testing goals.

7.3 Results

During training, the robot understood and carried out 35

goals, learning incrementally from these conversations.

Table 2 compares the survey responses of users and the

number of goals users completed of each task type in the

INIT TEST and TRAINED TEST groups.

Table 2. Average survey responses from the two test groups

and the proportion of task goals completed. Means in bold

differ significantly (p < 0.05). Means in italics trend different

(p < 0.1).

INIT TEST TRAINED TEST

Survey Question Likert [0-4]

Tasks Easy 3.8 3.7

Robot Understood 1.6 2.9

Robot Frustrated 2.5 1.5

Use Navigation 2.8 2.5

Use Delivery 1.6 2.5

Goals Completed Percent

Navigation 90 90

Delivery 20 60

We note that there is significant improvement in user

perception of the robot’s understanding and trends towards

less user frustration and higher delivery-goal correctness.

Though users did not significantly favor using the robot for

tasks after training, several users in both groups commented

that they would not use guidance only because the BWIBot

moved too slowly.

In this section, we have implemented an agent that

expands its natural language understanding incrementally

from conversations with users by combining semantic

parsing and dialog management. We have demonstrated

that this learning on the BWIBot platform yields significant

improvements in user experience and dialog efficiency

when learning was restricted to natural, uncontrolled, in-

person conversations the agent had over a few days’ time.

8 Grounded Language Learning through

Human-Robot Interaction

In the previous section, the research contribution focused

on how commands can be provided via natural language,

and the responses were grounded using the knowledge

base on the robot. However, often it is necessary for a

robot to ground language using its own perception and

actions with respect to objects. Consider the case where

a human asks a service robot, “Please bring me the full

red bottle”. To fulfill such a request, a robot would need

to detect objects in its environment and determine whether

the words “full”, “red”, and “bottle” match a particular

object detection. Furthermore, such a task cannot be solved

using static visual object recognition methods as detecting

whether an object is full or empty may often require the

robot to perform a certain action on it (e.g., lift the object to

measure the force it exerts on the arm).

In this section, the research contribution focuses on

solving the symbol grounding problem (Harnad 1990), a

longstanding challenge in AI, where language is grounded

Prepared using sagej.cls

https://youtu.be/FL9IhJQOzb8


18 Journal Title XX(X)

Figure 11. The exploratory behaviors used by the robot. The

look action is not depicted.

using the robot’s perception and action (Tellex et al. 2011;

Matuszek et al. 2012; Krishnamurthy and Kollar 2013;

Perera and Allen 2013; Kollar, Krishnamurthy and Strimel

2013; Tellex et al. 2014; Matuszek et al. 2014; Parde et al.

2015; Spranger and Steels 2015). To address this problem,

we enable a robot to undergo two distinct developmental

stages:

1. Object Exploration Stage – the robot interacts with

objects using a set of exploratory behaviors designed

to produce different kinds of multi-modal feedback.

2. Social Learning Stage – the robot interacts with

humans in order to learn mappings from its

sensorimotor experience with objects to words that

can be used to described the objects.

8.1 Object Exploration Stage

To fulfill the first stage, the BWIBot featuring the Kinova

Mico arm was equipped with several different exploratory

behaviors, such as grasping on object, lifting it, pushing it,

etc. These actions were modeled after the types of behaviors

infants and toddlers use to learn about objects in the early

months and years of life (Power 1999).

In a preliminary experiment, the robot explored 32

common household and office objects including various

containers, cups, toys, etc. The robot’s behavior repertoire

consists of 7 different exploratory actions: grasp, lift, hold,

lower, drop, push, and press. During the execution of

each action the robot recorded visual, auditory and haptic

sensory feedback. In addition, the robot is also equipped

with the static look behavior which captures the object’s

visual appearance before the robot begins to interact with it.

Figure 11 shows the exploratory actions used by the robot.

During the execution of the look behavior, the robot’s

visual system segments the 3D point cloud of the

Figure 12. Left: the robot guesses an object described by a

human participant as silver, round, and empty. Right: a human

participant guesses an object described by the robot as light,

tall, and tub.

object from the tabletop and computes color histogram

features in RGB space, shape histogram features as

implemented by Rusu et al. (2009), and deep visual features

computed by the 16-layer VGG network proposed by

Simonyan and Zisserman (2014). During the execution of

each of the remaining 7 exploratory behaviors, the robot

computes auditory and haptic features as described by

Sinapov et al. (2014). In addition, when performing the

grasp behavior, the robot used the same methodology to

extract proprioceptive features capturing how the fingers’

joint positions change over time.

For a more detailed description of the objects and

data collection methods used for this dataset, consult

contemporary work on object ordering using haptic and

proprioceptive behavior (Sinapov et al. 2016).

8.2 Social Learning Stage

To learn words describing individual objects, our robot

uses a variation on the children’s game “I Spy”. During

each game session, the human and the robot take turns

describing objects from among 4 on a tabletop, as shown

in Figure 12. On the human’s turn, the robot asks him

or her to pick an object and describe it in one phrase.

The robot subsequently attempts to guess which object

matches the words heard from the human. To do so, over

the course of multiple sessions the robot learns a behavior-

grounded classifier for each word that it observes using

the methodology of Sinapov et al. (2014). Given the words

uttered by the human, the robot then picks the object that

has the highest scores from the classifiers corresponding to

the words. To indicate its pick, the robot moves the arm,

points to the object, and asks the human if the choice is

correct.

During the robot’s turn, an object is chosen at random

from those on the table and described by the robot using

3 words corresponding to the 3 classifiers with the highest

score for that object. The robot then asks the human to make

a guess by physically touching or lifting the object. After

a correct guess, the robot asks questions about the object

Prepared using sagej.cls



Khandelwal et al. 19

in the form of “would you use the word X to describe the

object?” where X is one of the words that the robot has

observed.

8.3 Experiment

To test our system, we conducted an experiment involving

42 human participants, consisting of undergraduate and

graduate students, staff, and faculty. To measure the robot’s

learning progress over time, we divided an object set into

four folds. For each fold, at least 10 participants each played

4 rounds of “I Spy” with the robot. After each fold, the

robot’s classifiers were re-training using the newly gathered

data, and new classifiers were created for words that were

novel to that fold.

We measured the number of guesses it took the robot

and the human to correctly identify the object during their

respective turns. The experiment was conducted under two

conditions: vision-only during which the robot attempts to

ground words using only visual sensory feedback detected

during the look behaviors, and multi-modal, during which

the robot used all available sensory feedback from all

behaviors.

8.4 Results

By the end of the experiment, the robot had learned

behavior-grounded classifiers for around 70 words that

the participants used to describe objects (Thomason et al.

2016). Most noticeably, in the multi-modal condition, there

was a statistically significant decrease in the number of

guesses it took the robot to identify the object as a result

of the robot’s interactive game-play experience. During the

first fold, it took the robot an average of 2.5 guesses to solve

each task. During the second fold, the robot was able to

identify the object with an average of 1.98 guesses, which

dropped to 1.73 during the third fold.

Figure 13 details these results. Because we had access

to the scores the robot assigned each object, we calculated

the expected number of robot guesses for each turn. For

example, if all 4 objects were tied for first, the expected

number of robot guesses for that turn was 2.5, regardless

of whether it got (un)lucky and picked the correct object

(last)first. (The expected number for 4 tied objects is 2.5

because the probability of picking in any order is equal, so

the expected turn to get the correct object is 1+2+3+4

4
=

10

4
= 2.5)

A close look at the classifiers learned by the robot

showed that for many words, such as “full”, “empty”, and

“heavy”, visual features alone were insufficient for accurate

grounding. Using the framework for grounding semantic

categories proposed by Sinapov et al. (2014), the robot was

able to estimate the reliability of particular combinations

of a sensory modality and a behavior for the task of

recognizing whether a particular word fits an object. These

Figure 13. Average expected number of guesses the robot

made on each human turn with standard error bars shown.

Bold: significantly lower than the average at fold 0 with

p < 0.05 (unpaired Student’s t-test). *: significantly lower than

the competing system on this fold on participant-by-participant

basis with p < 0.05 (paired Student’s t-test).

Metric System

vision only multi-modal

precision .250 .378+

recall .179 .348*

F1 .196 .354*

Table 3. Average performance of predicate classifiers used by

the vision only and multi-modal systems in

leave-one-object-out cross validation. *: significantly greater

than competing system with p < 0.05. +: p < 0.1 (Student’s

un-paired t-test).

estimates show that for words describing the internal state

of objects, the robot largely relied on the haptic sensory

feedback produced when manipulating the object. Words

describing the shape (e.g., “cylindrical”) and color of the

object were in turn best recognized using visual features.

Auditory features were most useful for words denoting

the object’s material (e.g., “metal” vs “plastic”) as well as

compliance (e.g., objects that are “soft” produce less sound

when dropped and pushed).

To demonstrate the effectiveness of multi-modal ground-

ing quantitatively, we obtained agreement scores between

the multi-modal versus vision only classifiers with human

labels on objects. Training the predicate classifiers using

leave-one-out cross validation over objects, we calculated

the average precision, recall, and F1 scores of each against

human predicate labels on the held-out object. Table 3 gives

these metrics for the 74 predicates used by the systems.‡‡

Across the objects our robot explored, our multi-modal

system achieves consistently better agreement with human

‡‡There were 53 predicates shared between the two systems. The results

in Table 3 are similar for a paired t-test across these shared predicates with

slightly reduced significance.

Prepared using sagej.cls



20 Journal Title XX(X)

assignments of predicates to objects than does the vision

only system.

Ongoing and future work will focus on expanding our

service robots’ ability to learn about objects from humans.

While our existing focus was on a game-play scenario in

which participants were brought to the lab, we envision that

in the near future our robot will be able to autonomously

find people and engage in dialogue with the propose of

learning. Towards that goal, we are currently implementing

a system for autonomous object exploration and fetching

which will enable a robot to find an interesting object,

explore it, and finally engage a person in dialogue about the

object for the purpose of grounded language acquisition.

9 Robot-centric Human Activity

Recognition

In the research contributions described in the previous

sections, the robot aims to understand human intention via

direct means such as spoken or written commands specified

in natural language. For a robot to effectively function in a

human-inhabited environment, it would also be useful for

it to be aware of the activities and intentions of humans

around it based on its own observations. For example,

consider the case where a BWIBot is navigating a crowded

environment such as an undergraduate computer lab. If the

robot could recognize when a person needs help, or when

a person is trying to approach or engage it (or avoid it), its

social and navigational skills would improve dramatically.

In this section, we describe a research contribution which

explores how human activity can be recognized, making it

possible for a BWIBot to understand the intent of humans

in its vicinity.

To address visual activity recognition, the com-

puter vision research community has produced a wide

array of methods for recognizing human activities (see

Aggarwal and Ryoo (2011) for a review). Most relevant to

our work are studies in which the video is captured by a

robot. Such studies are relatively new and include the works

of Ryoo et al. (2015); Xia et al. (2015); Ryoo and Matthies

(2013); Chrungoo et al. (2014). This existing work is sub-

ject to several limitations: 1) The activities were not carried

out spontaneously but rather, were rehearsed or commanded

by the experimenters; 2) The activities were performed by

a small number of people, typically 5-8; 3) The robot was

typically either stationary or teleoperated.

Our work on activity recognition overcomes these limi-

tations in several important ways. First, our robot uses its

autonomous navigation capability in a large, unstructured,

and human-inhabited environment, as opposed to a lab-

oratory. Second, the activities learned by our robot were

performed spontaneously by many different people who

interacted with (or were observed by) the robot, as opposed

to the standard methodology of asking study participants

to perform certain actions. And third, in contrast to classic

computer vision approaches, our system uses both visual

and non-visual cues when recognizing the activities of

humans that it interacts with.

Next, we describe the robot’s activity recognition system

and present experimental results conducted from a week

long experiment in which the BWIBot autonomously

patrolled through an undergraduate and a graduate student

lab via randomly generated planning tasks. Video captured

during this experiment was then processed offline to

categorize different human activities.

9.1 Overview of Activity Recognition System

We formulate the problem of activity recognition as a multi-

class classification problem, i.e., the robot has to recognize

an observed activity as one of k activity classes. As input,

the robot is given some visual and non-visual sensory

feature descriptors computed from the set of frames during

which the robot’s sensor detected and tracked a person.

To perform human detection and tracking, the robot uses

the KinectV2, as explained in Section 3.4. The Kinect SDK

is capable of simultaneously detecting and tracking up to

6 people at a time, as well as estimating the positions

of 21 joint markers corresponding to joints such as the

neck, shoulders, waist, elbows, knees, etc. Whenever a new

person is detected by the robot, the robot’s system recorded

a sequence of RGB images, I ∈ R
512×424×3×t, a sequence

of depth images D ∈ R
512×424×t, and a sequences of joint

markers, J ∈ R
21×3×t, where t is the number of frames

during which the system detected and tracked the person.

The raw image and joint-marker data are too highly

dimensional to be used as direct input to standard

classification algorithms. To reduce dimensionality, we

implemented five different visual feature extraction

algorithms:

• Covariance of the joint positions over time (COV) as

described by Hussein et al. (2013).

• Histogram of the joints in 3D (HOJ3D) as described

by Xia et al. (2011).

• Pairwise Joint Relation Matrix features (PRM) as

described by Gori et al. (2015).

• Histogram of Direction Vectors (HODV) as described

by Chrungoo et al. (2014).

• Histogram of Oriented 4D Normals (HON4D) as

described by Oreifej and Liu (2013).

Each of these methods computes a real-valued feature

vector for each frame in a given sequence of joint-marker

data or depth image data. To further reduce dimensionality,

the feature vectors that were extracted for each frame

were quantized using k-means and represented using

Bag Of Words (BoW). Thus, each sequences of frames

Prepared using sagej.cls



Khandelwal et al. 21

Figure 14. An overview of the robot’s activity recognition system. As the robot navigates the environment, it uses the Kinect

sensor to detect humans in its environment. Subsequently, the robot computes visual and non-visual features for each detection,

quantizes the features, and uses them as an input to a Support Vector Machine for activity recognition.

was represented as a single feature vector encoding the

distribution of visual “words”.

In addition to visual features, our system also uses non-

visual data as input to the activity recognition classifier.

We hypothesized that the types of activities that humans

may perform in front of the robot may be influenced by

the distance between the robot and the person. In addition,

it is likely that different activities may be more likely to

occur at different locations in the robot’s environment (e.g.,

the activity of sitting down on a desk is more likely to be

observed in the open lab area where there are many desks as

opposed to a hallway). Therefore, as described in Gori et al.

(2015), we added three additional non-visual features:

• Human-Robot velocity features representing the

movement of the person with respect to the robot

• Human-Robot distance features representing the

distance between the human and the robot

• Robot location features representing the robot’s pose

(i.e., position and orientation) in the map over the

course of the observation

As with the visual features, the non-visual features

were also computed for each frame of each observation,

quantized with k-means, and represented using BoW.

Figure 14 shows an overview of the activity recognition

system.

9.2 Experimental Evaluation and Results

The robot’s activity recognition system was evaluated

by collecting a dataset over the course of the robot’s

autonomous navigation of the environment, which con-

sisted of a graduate and an undergraduate student lab,

connected by two door ways. The robot traversed the

environment for 1-2 hours per day, for 6 days, traveling a

total of 14.03 km. After the observations were recorded,

each detection of a person was manually labeled with one

Prepared using sagej.cls



22 Journal Title XX(X)

of several activity labels: approach, block, pass by, take

picture, side pass, sit, stand, walk away, wave, false. The

label false corresponded to false detections by the Kinect

SDK, which typically corresponded to fixed objects in the

environment. In total, there were 1204 detections, each

labeled with one of the 10 activity classes.

The classifier implemented by our activity recognition

system was a non-linear Support Vector Machine using

the X 2 kernel function. Other kernel functions (e.g.,

Gaussian and Polynomial) and other classifiers (e.g.,

Naive Bayes, C4.5 decision tree) achieved comparable

results. The classifier’s performance was evaluated using

stratified 6-fold cross-validation, which was performed 10

different times with random fold splits. The dataset is

very imbalanced with respect to the activity labels (i.e.,

some activities are much more common than others) and

therefore, the performance was measured in terms of

Cohen’s kappa coefficient (Cohen 1960) which compares

the classifier’s accuracy against chance accuracy:

K =
Pr(a)− Pr(e)

1− Pr(e)
,

where Pr(a) is the probability of correct classification

by the classifier, and Pr(e) is the probability of correct

classification by chance. A kappa of 1.0 corresponds to a

perfect classifier, while 0.0 corresponds to a classifier that

randomly assigns a class labels based on the prior label

distribution.

Figure 15. Activity recognition results using 5 different visual

feature descriptors under 2 different conditions: visual features

only, and visual + non-visual features. The error bars represent

standard error.

Figure 15 shows the results of the cross-validation test

with 5 different visual feature descriptors and two different

conditions: visual features only, and visual features

concatenated with non-visual features. The HON4D visual

feature descriptor performs the best out of all 5 – unlike

the rest which are computed from joint-marker data, the

HON4D descriptor is computed from the saved depth

image sequences which may explain why it performs

substantially better (a drawback to the HON4D descriptor is

that it is much more computationally expensive to compute

than the rest). Adding the three non-visual features to

the representation improves the SVM’s performance and,

depending on the visual descriptor, the improvement can be

quite substantial and significant.

In ongoing and future work, we are exploring how the

robot’s activity recognition system can be used for activity-

aware autonomous navigation. For example, if the robot

recognizes that a person is taking a picture of it, it would

be intuitive for it to pause its current task and motion for

a moment. In addition, while the existing system focuses

only on activities performed by individual persons, we plan

to extend it by adding the ability to learn about interactions

between multiple people performing activities in relation to

each other and/or the robot. We believe that enabling a robot

to learn and reason about the activities of people around it

has the potential to greatly improve its ability to navigate

around and interact with people, particularly in large and

crowded environments.

10 Conclusion

In this paper, we have presented an overview of the

BWIBots, both from a hardware and software perspective.

We have also outlined how these robots have enabled

research on a variety of projects pertaining to robot

reasoning, action planning, and human-robot interaction.

Specifically, the first research contribution presented in

this paper has demonstrated how action language BC can

be used construct a planning and action execution system

that is able to express defeasible reasoning and recursively

defined fluents. The second contribution has integrated

probabilistic and symbolic reasoning for constructing a

spoken dialog system that uses commonsense reasoning

to resolve queries efficiently. The third and fourth

contributions have looked into how requests in natural

language can be interpreted by a robot, how these requests

can be grounded in a robot’s perception and actions. Finally,

the last contribution investigates how human activity can be

categorized from afar.

While all the research contributions presented in this

paper are used for single-robot applications, one of the

main goals behind the development of the BWIBots is

to enable multi-robot research and applications. When

multiple robots share a physical environment, their plans

might interact such that their independently-computed

optimal plans become suboptimal at runtime. Toward

achieving the global optimality in a multirobot system,

the robots need to compute plans to simultaneously share

Prepared using sagej.cls



Khandelwal et al. 23

limited domain resources and realize synergy within the

robot team. However, robots’ noisy action durations pose

a challenge to achieve such robot behaviors. In our ongoing

research, we are investigating algorithms for multi-robot

planning while considering the uncertainty in noisy action

durations (Zhang et al. 2016).

Another multi-robot application that we intend to work

on is a real-world implementation of a multi-robot human

guidance system (Khandelwal et al. 2015). In this previous

work, we have explored how multiple robots in simulation

can be coordinated to efficiently guide a human to his

destination, while simultaneously minimizing the time each

robot is diverted from other duties to do so. A real-world

implementation of this work helps verify many modeling

assumptions made in the simulation, and helps explore

how robots can effectively provide instructions with less

ambiguity to people.

In addition to multi-robot research, we expect that

the current and future BWIBots will continue to support

research on HRI and other areas of AI and robotics. Our

long-term goal is for the BWIBots to be an always-on,

permanent fixture in the UT Austin Computer Science

building, such that inhabitants of and visitors to the building

expect to interact with them and find them useful and

entertaining. We hope that this article will help inspire and

inform other such systems throughout the world.

Acknowledgements

This work has taken place in the Learning Agents Research

Group (LARG) at the Artificial Intelligence Laboratory, The

University of Texas at Austin. LARG research has been supported

in part by grants from the National Science Foundation (CNS-

1330072, CNS-1305287), ONR (21C184-01), AFOSR (FA8750-

14-1-0070, FA9550-14-1-0087), Yujin Robot, and the Freshmen

Research Initiative (FRI) at UT Austin.

The authors would like to thank Chien-Liang Fok, Sriram

Vishwanath, and Christine Julien for providing the Segway RMP

bases used in the first two iterations of the BWIBots. Liang’s

help and design ideas were instrumental in constructing the first

BWIBots, without which future evolution of the platform would

not be possible.

The authors would also like to thank Jack O’Quin for

maintaining many of the software packages used by the BWIBots,

as well as streamlining the operation of the BWI Lab. His work

has enabled many of the authors to focus on the core research

contributions presented in this paper.

The authors would also like to thank many FRI students,

and in particular, Yuqian Jiang, Rolando Fernandez, and Patricio

Lankenau for their assistance in developing and maintaining the

hardware and software behind the BWIBots.

References

Aggarwal, J. K. and Ryoo, M. S. (2011), ‘Human activity analysis:

A review’, ACM Computing Surveys (CSUR) 43(3), 16.

Artzi, Y. and Zettlemoyer, L. (2011), Bootstrapping semantic

parsers from conversations, in ‘Proceedings of the Conference

on Empirical Methods in Natural Language Processing

(EMNLP)’, Association for Computational Linguistics,

Stroudsburg, PA, USA, pp. 421–432.

URL: http://dl.acm.org/citation.cfm?id=2145432.2145481

Babb, J. and Lee, J. (2013), Cplus2ASP: Computing action

language C+ in answer set programming, in ‘International

Conference on Logic Programming and Nonmonotonic

Reasoning (LPNMR)’.

Baral, C., Gelfond, M. and Rushton, N. (2009), ‘Probabilistic

reasoning with answer sets’, Theory and Practice of Logic

Programming 9(01), 57–144.

Bastianelli, E., Bloisi, D., Capobianco, R., Cossu, F., Gemignani,

G., Iocchi, L. and Nardi, D. (2013), On-line semantic

mapping, in ‘16th International Conference on Advanced

Robotics (ICAR)’.

Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E.

and Patoglu, V. (2009), Bridging the gap between high-

level reasoning and low-level control, in ‘International

Conference on Logic Programming and Nonmonotonic

Reasoning (LPNMR)’.

Chen, K., Lu, D., Chen, Y., Tang, K., Wang, N. and Chen,

X. (2014), The intelligent techniques in robot kejia–the

champion of robocup@ home 2014, in ‘RoboCup 2014:

Robot World Cup XVIII’, Springer, pp. 130–141.

Chen, X., Ji, J., Jiang, J., Jin, G., Wang, F. and Xie, J. (2010),

Developing high-level cognitive functions for service robots,

in ‘International Conference on Autonomous Agents and

Multiagent Systems (AAMAS)’.

Chen, X., Jin, G. and Yang, F. (2012), Extending C+ with

composite actions for robotic task planning, in ‘International

Conference on Logical Programming (ICLP)’.

Chen, X., Xie, J., Ji, J. and Sui, Z. (2012), ‘Toward open

knowledge enabling for human-robot interaction’, Journal of

Human-Robot Interaction 1(2), 100–117.

Chrungoo, A., Manimaran, S. and Ravindran, B. (2014), Activity

recognition for natural human robot interaction, in ‘Social

Robotics’, Springer, pp. 84–94.

Cohen, J. (1960), ‘A coefficient of agreement for nominal scales’,

Educational and Psychological Measurement 20(1), 37–46.

Coltin, B., Veloso, M. M. and Ventura, R. (2011), Dynamic user

task scheduling for mobile robots., in ‘Automated Action

Planning for Autonomous Mobile Robots’.

Cousins, S. (2010), ‘Ros on the pr2 [ros topics]’, Robotics &

Automation Magazine, IEEE 17(3), 23–25.

Eiter, T., Faber, W., Leone, N., Pfeifer, G. and Polleres, A. (2003),

‘Answer set planning under action costs’, Journal of Artificial

Intelligence Research (JAIR) .

Prepared using sagej.cls



24 Journal Title XX(X)

Erdem, E., Aker, E. and Patoglu, V. (2012), ‘Answer set program-

ming for collaborative housekeeping robotics: representation,

reasoning, and execution’, Intelligent Service Robotics (ISR) .

Erdem, E. and Patoglu, V. (2012), Applications of action

languages in cognitive robotics, in ‘Correct Reasoning’.

Erdem, E., Patoglu, V., Saribatur, Z. G., Schüller, P. and Uras, T.

(2013), ‘Finding optimal plans for multiple teams of robots

through a mediator: A logic-based approach’, Theory and

Practice of Logic Programming (TPLP) .

Finger, J. (1986), Exploiting Constraints in Design Synthesis, PhD

thesis, Stanford University.

Fox, D., Burgard, W., Dellaert, F. and Thrun, S. (1999), ‘Monte

carlo localization: Efficient position estimation for mobile

robots’, AAAI/IAAI 1999, 343–349.

Gebser, M., Grote, T. and Schaub, T. (2010), Coala: a compiler

from action languages to ASP, in ‘European Conference on

Logics in Artificial Intelligence (JELIA)’.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub,

T. and Schneider, M. (2011), ‘Potassco: The potsdam answer

set solving collection’, Ai Communications 24(2), 107–124.

Gelfond, M. and Kahl, Y. (2014), Knowledge representation,

reasoning, and the design of intelligent agents: The answer-

set programming approach, Cambridge University Press.

Gelfond, M. and Lifschitz, V. (1988), The stable model semantics

for logic programming, in ‘International Logic Programming

Conference and Symposium (ICLP/SLP)’.

Gelfond, M. and Lifschitz, V. (1991), ‘Classical negation in

logic programs and disjunctive databases’, New Generation

Computing .

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N. and

Turner, H. (2004), ‘Nonmonotonic causal theories’, Artificial

Intelligence 153(1), 49–104.

Gori, I., Sinapov, J., Khante, P., Stone, P. and Aggarwal, J. (2015),

Robot-centric activity recognition in the wild, in ‘Social

Robotics’, Springer International Publishing, pp. 224–234.

Grisetti, G., Stachniss, C. and Burgard, W. (2007), ‘Improved

techniques for grid mapping with rao-blackwellized particle

filters’, Robotics, IEEE Transactions on 23(1), 34–46.

Hanheide, M., Göbelbecker, M., Horn, G. S., Pronobis, A.,

Sjöö, K., Aydemir, A., Jensfelt, P., Gretton, C., Dearden,

R., Janicek, M. et al. (2015), ‘Robot task planning

and explanation in open and uncertain worlds’, Artificial

Intelligence .

Harnad, S. (1990), ‘The symbol grounding problem’, Physica D:

Nonlinear Phenomena 42(1), 335–346.

Havur, G., Haspalamutgil, K., Palaz, C., Erdem, E. and Patoglu,

V. (2013), A case study on the Tower of Hanoi challenge:

Representation, reasoning and execution, in ‘International

Conference on Robotics and Automation (ICRA)’.

Helmert, M. (2006), ‘The fast downward planning system.’, J.

Artif. Intell. Res.(JAIR) 26, 191–246.

Hoffmann, J. and Nebel, B. (2001), ‘The ff planning system: Fast

plan generation through heuristic search’, Journal of Artificial

Intelligence Research pp. 253–302.

Hussein, M. E., Torki, M., Gowayyed, M. A. and El-Saban, M.

(2013), ‘Human action recognition using a temporal hierarchy

of covariance descriptors on 3d joint locations’, International

Joint Conference on Artificial Intelligence (IJCAI) .

Kass, M., Witkin, A. and Terzopoulos, D. (1988), ‘Snakes: Active

contour models’, International journal of computer vision

1(4), 321–331.

Khandelwal, P., Barrett, S. and Stone, P. (2015), Leading the way:

An efficient multi-robot guidance system, in ‘Proceedings

of the 2015 International Conference on Autonomous

Agents and Multiagent Systems’, International Foundation

for Autonomous Agents and Multiagent Systems, pp. 1625–

1633.

Khandelwal, P. and Stone, P. (2014), Multi-robot human guidance

using topological graphs, in ‘AAAI Spring 2014 Symposium

on Qualitative Representations for Robots’.

Khandelwal, P., Yang, F., Leonetti, M., Lifschitz, V. and Stone,

P. (2014), Planning in action language ⌊⌋ while learning

action costs for mobile robots, in ‘International Conference

on Automated Planning and Scheduling (ICAPS)’.

Koenig, N. and Howard, A. (2004), Design and use paradigms for

gazebo, an open-source multi-robot simulator, in ‘Intelligent

Robots and Systems, 2004.(IROS 2004). Proceedings. 2004

IEEE/RSJ International Conference on’, Vol. 3, IEEE,

pp. 2149–2154.

Kollar, T., Krishnamurthy, J. and Strimel, G. (2013), Toward

interactive grounded language acquisition, in ‘Robotics:

Science and Systems’.

Kollar, T., Perera, V., Nardi, D. and Veloso, M. (2013),

Learning environmental knowledge from task-based human-

robot dialog, in ‘Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA)’, Karlsruhe,

pp. 4304–4309.

Krishnamurthy, J. and Kollar, T. (2013), ‘Jointly learning to parse

and perceive: Connecting natural language to the physical

world’, Transactions of the Association for Computational

Linguistics 1, 193–206.

Kuindersma, S. R., Hannigan, E., Ruiken, D., Grupen, R.

et al. (2009), Dexterous mobility with the ubot-5 mobile

manipulator, in ‘Advanced Robotics, 2009. ICAR 2009.

International Conference on’, IEEE, pp. 1–7.

Lee, J., Lifschitz, V. and Yang, F. (2013), Action Language BC: A

Preliminary Report, in ‘Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI)’.

Leonetti, M., Iocchi, L. and Stone, P. (2016), ‘A synthesis of

automated planning and reinforcement learning for efficient,

robust decision-making’, Artificial Intelligence 241, 103 –

130.

Prepared using sagej.cls



Khandelwal et al. 25

Lifschitz, V. (2008), What is answer set programming?, in

‘Proceedings of the 23rd National Conference on Artificial

Intelligence - Volume 3’, AAAI’08, AAAI Press, pp. 1594–

1597.

URL: http://dl.acm.org/citation.cfm?id=1620270.1620340

Lowe, D. G. (2004), ‘Distinctive image features from scale-

invariant keypoints’, International journal of computer vision

60(2), 91–110.

Luber, M. and Arras, K. O. (2013), Multi-hypothesis social

grouping and tracking for mobile robots., in ‘Robotics:

Science and Systems’.

Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B. and

Konolige, K. (2010), The office marathon: Robust navigation

in an indoor office environment, in ‘Robotics and Automation

(ICRA), 2010 IEEE International Conference on’, IEEE,

pp. 300–307.

Marek, V. and Truszczynski, M. (1999), Stable models and

an alternative logic programming paradigm, in ‘The Logic

Programming Paradigm: a 25-Year Perspective’, Springer

Verlag.

Matuszek, C., Bo, L., Zettlemoyer, L. and Fox, D. (2014),

Learning from unscripted deictic gesture and language for

human-robot interactions, in ‘Proceedings of the 28th AAAI

Conference on Artificial Intelligence’, Quebéc City, Quebéc,

Canada.

Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo, L. and Fox,

D. (2012), A joint model of language and perception,

in ‘Proceedings of the 29th International Conference on

Machine Learning’, Edinburgh, Scotland, UK.

Matuszek, C., Herbst, E., Zettlemoyer, L. and Fox, D.

(2013), Learning to parse natural language commands to a

robot control system, in ‘Experimental Robotics’, Springer

International Publishing, pp. 403–415.

McCarthy, J. and Hayes, P. (1969), Some philosophical problems

from the standpoint of artificial intelligence, in ‘Machine

Intelligence’, Edinburgh University Press.

Mudrova, L. and Hawes, N. (2015), Task scheduling for mobile

robots using interval algebra, in ‘Robotics and Automation

(ICRA), 2015 IEEE International Conference on’, IEEE,

pp. 383–388.

Munaro, M. and Menegatti, E. (2014), ‘Fast rgb-d people tracking

for service robots’, Autonomous Robots 37(3), 227–242.

Niemelä, I. (1999), ‘Logic programs with stable model

semantics as a constraint programming paradigm’, Annals of

Mathematics and Artificial Intelligence .

Oreifej, O. and Liu, Z. (2013), ‘Hon4d: Histogram of oriented 4d

normals for activity recognition from depth sequences’, IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR) .

Parde, N., Hair, A., Papakostas, M., Tsiakas, K., Dagioglou, M.,

Karkaletsis, V. and Nielsen, R. D. (2015), Grounding the

meaning of words through vision and interactive gameplay,

in ‘Proceedings of the 24th International Joint Conference on

Artificial Intelligence’, Buenos Aires, Argentina, pp. 1895–

1901.

Perera, I. and Allen, J. F. (2013), Sall-e: Situated agent for

language learning, in ‘Proceedings of the 27th AAAI

Conference on Artificial Intelligence’, Bellevue, Washington,

USA, pp. 1241–1247.

Power, T. G. (1999), Play and exploration in children and animals,

Psychology Press.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs,

J., Wheeler, R. and Ng, A. Y. (2009), Ros: an open-source

robot operating system, in ‘ICRA workshop on open source

software’, Vol. 3, p. 5.

Quinlan, S. and Khatib, O. (1993), Elastic bands: Connecting path

planning and control, in ‘Robotics and Automation, 1993.

Proceedings., 1993 IEEE International Conference on’, IEEE,

pp. 802–807.

Quintero, E., Garcia-Olaya, Á., Borrajo, D. and Fernández,

F. (2011), ‘Control of autonomous mobile robots with

automated planning’, Journal of Physical Agents (JoPhA) .

URL: http://www.plg.inf.uc3m.es/ dbor-

rajo/papers/jopha11.pdf

Reiser, U., Connette, C., Fischer, J., Kubacki, J., Bubeck, A.,

Weisshardt, F., Jacobs, T., Parlitz, C., Hägele, M. and Verl, A.

(2009), Care-o-bot® 3: creating a product vision for service

robot applications by integrating design and technology, in

‘Proceedings of the 2009 IEEE/RSJ international conference

on Intelligent robots and systems’, IEEE Press, pp. 1992–

1998.

Rosenthal, S., Biswas, J. and Veloso, M. (2010), An effective

personal mobile robot agent through symbiotic human-robot

interaction, in ‘Proceedings of the 9th International Confer-

ence on Autonomous Agents and Multiagent Systems: vol-

ume 1-Volume 1’, International Foundation for Autonomous

Agents and Multiagent Systems, pp. 915–922.

Rusu, R. B., Blodow, N. and Beetz, M. (2009), Fast point

feature histograms (fpfh) for 3d registration, in ‘Robotics and

Automation, 2009. ICRA’09. IEEE International Conference

on’, IEEE, pp. 3212–3217.

Rusu, R. B. and Cousins, S. (2011), 3d is here: Point cloud

library (pcl), in ‘Robotics and Automation (ICRA), 2011

IEEE International Conference on’, IEEE, pp. 1–4.

Ryoo, M., Fuchs, T. J., Xia, L., Aggarwal, J. and Matthies, L.

(2015), Robot-centric activity prediction from first-person

videos: What will they do to me, in ‘Proceedings of the Tenth

Annual ACM/IEEE International Conference on Human-

Robot Interaction (HRI)’, ACM, pp. 295–302.

Ryoo, M. S. and Matthies, L. (2013), ‘First-person activity

recognition: What are they doing to me?’, IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) .

Simonyan, K. and Zisserman, A. (2014), ‘Very deep convolutional

networks for large-scale image recognition’, arXiv preprint

Prepared using sagej.cls



26 Journal Title XX(X)

arXiv:1409.1556 .

Sinapov, J., Khante, P., Svetlik, M. and Stone, P. (2016), Learning

to order objects using haptic and proprioceptive exploratory

behaviors, in ‘Proceedings of the 25th International Joint

Conference on Artificial Intelligence (IJCAI)’.

Sinapov, J., Schenck, C., Staley, K., Sukhoy, V. and Stoytchev,

A. (2014), ‘Grounding semantic categories in behavioral

interactions: Experiments with 100 objects’, Robotics and

Autonomous Systems 62(5), 632–645.

SPENCER Project (2016), http://www.spencer.eu/.

Spranger, M. and Steels, L. (2015), Co-acquisition of syntax

and semantics — an investigation of spatial language, in

‘Proceedings of the 24th International Joint Conference on

Artificial Intelligence’, Buenos Aires, Argentina, pp. 1909–

1915.

Srinivasa, S. S., Berenson, D., Cakmak, M., Collet, A., Dogar,

M. R., Dragan, A. D., Knepper, R., Niemueller, T., Strabala,

K., Vande Weghe, M. et al. (2012), ‘Herb 2.0: Lessons

learned from developing a mobile manipulator for the home’,

Proceedings of the IEEE 100(8), 2410–2428.

Stonier, D., Lee, J. and Kim, H. (2015), ‘Robotics in concert’,

http://www.robotconcert.org/.

STRANDS (2016), http://strands.acin.tuwien.ac.at/.

Taylor, P., Black, A. W. and Caley, R. (1998), ‘The architecture of

the festival speech synthesis system’.

Tellex, S., Knepper, R., Li, A., Rus, D. and Roy, N. (2014),

‘Asking for help using inverse semantics’, Proceedings of

Robotics: Science and Systems .

Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee, A. G.,

Teller, S. and Roy, N. (2011), ‘Approaching the symbol-

grounding problem with probabilistic graphical models’, AI

Magazine 32(4), 64–76.

Thiébaux, S., Hoffmann, J. and Nebel, B. (2003), In defense

of PDDL axioms, in ‘International Joint Conferences on

Artificial Intelligence (IJCAI)’.

Thomason, J., Sinapov, J., Svetlik, M., Stone, P. and Mooney, R.

(2016), Learning multi-modal grounded linguistic semantics

by playing “I spy”, in ‘Proceedings of the 25th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI)’,

pp. 3477–3483.

Thomason, J., Zhang, S., Mooney, R. and Stone, P. (2015), Learn-

ing to interpret natural language commands through human-

robot dialog, in ‘Proceedings of the 24th International Joint

Conference on Artificial Intelligence (IJCAI)’, pp. 1923–

1929.

Vasquez, D., Okal, B. and Arras, K. O. (2014), Inverse

reinforcement learning algorithms and features for robot

navigation in crowds: an experimental comparison, in

‘Intelligent Robots and Systems (IROS 2014), 2014

IEEE/RSJ International Conference on’, IEEE, pp. 1341–

1346.

Veloso, M., Biswas, J., Coltin, B. and Rosenthal, S. (2015),

Cobots: robust symbiotic autonomous mobile service robots,

in ‘Proceedings of the 24th International Conference on

Artificial Intelligence’, AAAI Press, pp. 4423–4429.

Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E.,

Wolf, P. and Woelfel, J. (2004), ‘Sphinx-4: A flexible open

source framework for speech recognition’.

Wisspeintner, T., Van Der Zant, T., Iocchi, L. and Schiffer,

S. (2009), ‘Robocup@ home: Scientific competition and

benchmarking for domestic service robots’, Interaction

Studies 10(3), 392–426.

Xia, L., Chen, C.-C. and Aggarwal, J. K. (2011), ‘View

invariant human action recognition using histograms of 3d

joints’, IEEE Conference on Computer Vision and Pattern

Recognition Workshop (CVPRW) .

Xia, L., Gori, I., Aggarwal, J. K. and Ryoo, M. S. (2015), Robot-

centric activity recognition from first-person rgb-d videos,

in ‘IEEE Winter Conference on Applications of Computer

Vision’.

Young, S., Gasic, M., Thomson, B. and Williams, J. D. (2013),

‘Pomdp-based statistical spoken dialog systems: A review’,

Proceedings of the IEEE 101(5), 1160–1179.

Zhang, S., Jiang, Y., Sharon, G. and Stone, P. (2016), Multirobot

symbolic planning under temporal uncertainty, in ‘IJCAI’16

Workshop on Autonomous Mobile Service Robots’.

Zhang, S., Sridharan, M. and Wyatt, J. L. (2015), ‘Mixed logical

inference and probabilistic planning for robots in unreliable

worlds’, Robotics, IEEE Transactions on 31(3), 699–713.

Zhang, S. and Stone, P. (2015), Corpp: Commonsense reasoning

and probabilistic planning, as applied to dialog with a mobile

robot., in ‘AAAI’, pp. 1394–1400.

Zhang, S., Yang, F., Khandelwal, P. and Stone, P. (2015),

Mobile robot planning using action language bc with

an abstraction hierarchy, in ‘Proceedings of the 13th

International Conference on Logic Programming and Non-

monotonic Reasoning (LPNMR)’.

Prepared using sagej.cls


	1 Introduction
	2 Related Work
	3 Hardware
	3.1 Mobile Base and Customized Chassis
	3.2 Auxiliary Power and Power Distribution
	3.3 Computation and Interface
	3.4 Perception
	3.5 Mobile Manipulation

	4 Software
	4.1 Map Server
	4.2 Perception
	4.3 Simulation
	4.4 Robot Navigation
	4.5 High-Level Robot Actions
	4.6 Robot Task Planning
	4.7 Multi Robot Coordination
	4.8 Summary

	5 Planning using Action Language BC
	5.1 Describing domains in BC
	5.2 Planning using BC Description
	5.3 Experimental Results

	6 Incorporating Uncertainty into Planning
	6.1 Background
	6.2 The corpp algorithm
	6.3 Experimental results

	7 Understanding Natural Language Requests
	7.1 Related Work
	7.2 Methodology
	7.3 Results

	8 Grounded Language Learning through Human-Robot Interaction
	8.1 Object Exploration Stage
	8.2 Social Learning Stage
	8.3 Experiment
	8.4 Results

	9 Robot-centric Human Activity Recognition
	9.1 Overview of Activity Recognition System
	9.2 Experimental Evaluation and Results

	10 Conclusion

