Chapter 2

Binary Image Processing

An image contains a continuum of intensity values before it is quantized
to obtain a digital image. The information in an image is in these gray
values. To interpret an image, the variations in the intensity values must
be analyzed. The most commonly used number of quantization levels for
representing image intensities is 256 different gray levels. It is not uncommon,
however, to see digital images quantized to 32, 64, 128, or 512 intensity levels
for certain applications, and even up to 4096 (12 bits) are used in medicine.
Clearly, more intensity levels allow better representation of the scene at the
cost of more storage.

In the early days of machine vision, the memory and computing power
available was very limited and expensive. These limitations encouraged de-
signers of vision applications to focus their efforts on binary vision systems.
A binary image contains only two gray levels. The difference this makes in
the representation of a scene is shown in Figure 2.1.

In addition, designers noted that people have no difficulty in understand-
ing line drawings, silhouettes, and other images formed using only two gray
levels. Encouraged by this human capability, they used binary images in
many applications.

Even though computers have become much more powerful, binary vision
systems are still useful. First of all, the algorithms for computing properties
of binary images are well understood. They also tend to be less expensive
and faster than vision systems that operate on gray level or color images.
This is due to the significantly smaller memory and processing requirements
of binary vision. The memory requirements of a gray level system working
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Figure 2.1: A gray level image and its corresponding binary image.

with 256 gray levels will be eight times that of a system working with a
binary image of the same size. The storage size may be further reduced by
using techniques such as run-length encoding, covered in Section 2.4. The
processing time requirements are lower because many operations on binary
images may be performed as logical operations instead of integer arithmetic
operations.

Smaller memory requirements and faster execution times are not the only
reasons for studying binary vision systems. Many techniques developed fohr
these systems are also applicable to vision systems which use gray scale im-
ages. A convenient way to represent an object in a gray level or color image is
to use its mask. The mask of an object is a binary picture in which the object
points are 1 and other points are 0. After an object has been separated from
the background, its geometric and topological properties may be required in
decision making. These properties can be computed from its binary image.
All the techniques discussed in this chapter can be applied to a region in a
gray image. Thus, though we will discuss these techniques in the context of
binary images, their application is not limited to binary images.

In general, binary vision systems are useful in cases-where a silhouette
contains enough information to allow recognition of an object and where
the environment can be adequately controlled. To obtain a good silhouette,
the objects must be easily separated from the background. This can be
achieved by using special illumination techniques and by having only a few
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objects in the scene. There are many industrial situations that fulfill these
requirements. For example, binary vision systems have found application in
optical character recognifion, chromosome analysis, and recognition of indus-
trial parts. In these cases, the binary vision system usually uses a threshold
to separate objects from the background. The proper value of this thresh-
old depends on illumination and on reflectance characteristics of objects.
The resulting binary picture allows computation of geometric and topologi-
cal properties (features) of objects for the given task. In many applications,
these characteristics are enough for recognition of objects.

It should be mentioned here, however, that with the increase in the com-
plexity of applications, more and more vision systems are using gray scale
images. This is due to the fact that in many material handling and assembly
tasks, the illumination cannot be controlled to obtain good contrast between
objects and background. Care has to be exercised to make the system in-
sensitive to small changes in illumination and reflectance characteristics of
other objects in a scene. In many applications, this becomes a formidable
task. Similarly, in inspection tasks, it may not be possible to recover subtle
information using only two intensity levels. Internal details of an object may
be lost in thresholding and may make the task of detecting surface defects
very difficult.

Certain generally used conventions concerning binary images will be fol-
lowed in this chapter. Object pixels will have the value 1 and background
pixels will have 0. In displaying pictures, 0 is white and 1 is black; thus, in
binary images, the background is white and objects are black. We will also
assume that pictures are of size n x m pixels and are represented in a com-
puter as a two-dimensional array. This representation allows us to visualize
images with the spatial relationships between points maintained in the form
familiar to people.

The techniques discussed in this chapter, though simple, have played a
very important role in industrial vision. We will study the following aspects
of binary vision systems in this chapter:

e Formation of binary images
e Geometric properties

e Topological properties
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¢ Object recognition in binary images

Many concepts discussed here are used in all aspects of machine vision.
Many definitions are related to digital geometry and are useful in discussions
related to sampled images. In general, after an image has been segmented
into several objects, each object is represented as a region. Discussions re-
lated to these object regions use the terminology and concepts discussed in
this chapter.

2.1 Thresholding

One of the most important problems in a vision system is to identify the
subimages that represent objects. This operation, which is so natural and
so easy for people, is surprisingly difficult for computers. The partitioning
of an image info regions is called segmentation. Ideally, a partition repre-
sents an object or part of an object. Formally, segmentation can be defined
as a method to partition an image, F[i,j], into subimages, called regions,
Py, ..., P, such that each subimage is an object candidate.

Definition 2.1 A region is a subset of an image.
Definition 2.2 Segmentation is grouping pizels into regions, such that
o UL, P; = Entire image ({P,} is an ezhaustive partitioning.)
e PN Pj=0,i#j({P} is an ezclusive partitioning.)
¢ Each region P; satisfies a predicate; that is, all points of the partition
have some common property.

o Pixels belonging to adjacent regions, when taken jointly, do not satisfy

the predicate.

As shown above, a partition satisfies a predicate. This predicate may be
as simple as has uniform intensity but is more complex in most applications.
Segmentation is a very important step in understanding images.

A binary image is obtained using an appropriate segmentation of a gray
scale image. If the intensity values of an object are in an interval and the

—
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intensity values of the background pixels are outside this interval, a binary
image can be obtained using a thresholding operation that sets the points in
that interval to 1 and points outside that range to 0. Thus, for binary vision,
segmentation and thresholding are synonymous. Many cameras have been
designed to perform this thresholding operation in hardware. The output of
such a camera is a binary image. In most applications, however, cameras
give a gray scale image and the binary image is obtained using thresholding.
Thresholding is a method to convert a gray scale image into a binary im-
age so that objects of interest are separated from the background. For thresh-
olding to be effective in object-background separation, it is necessary that the
objects and background have sufficient contrast and that we know the inten-
sity levels of either the objects or the background. In a fixed thresholding
scheme, these intensity characteristics determine the value of the threshold.
Let us assume that a binary image Bli, j] is the same as a thresholded
gray image Fy[i, j] which is obtained using a threshold T for the original gray

image F|[i, j]. Thus,
Bli,j] = Frli, j] 2.1)

where for a darker object on a lighter background

.. [ 1 ifFfi<T
Frlij] = { 0 otherwise. 2.2)
If it is known that the object intensity values are in a range [T}, T3], then we

may use
a1 BB ESFLT ;
Frli,j] = { 0 otherwise. s

A general thresholding scheme in which the intensity levels for an object may
come from several disjoint intervals may be represented as

1 ifFli,jle Z

FT[I"J.] = { 0 otherwise (24)

where Z is a set of intensity values for object components. The results of
producing an image using different thresholds are shown in Figure 2.2.

Note how knowledge about the application domain is incorporated into
the thresholding algorithm. It has, in fact, been tailored for the domain;
therefore, the same threshold values may not work in a new domain. The
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Figure 2.2: A gray level image and its resulting binary images using different
thresholds. Top: Original gray-level image. Middle left: Original image
thresholded with T' = 48. Middle right: T, = 21 and T, = 48. Bottom !eﬁ.‘
T = 21. Bottom right: T = 135 and T, = 255.
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threshold is usually selected on the basis of experience with the application
, the first few runs of the system may be used for

domain. In some cases
interactively analyzing a scene and determining an appropriate value for the
threshold.

Automatic thresholding of images is often the first step in the analysis of
images in machine vision systems. Many techniques have been developed for
utilizing the intensity distribution in an image and the knowledge about the
objects of interest for selecting a proper threshold value automatically. This
was briefly introduced in Figure 1.11, where an image and its histogram are
given. Many such automatic methods for thresholding an image are presented
in Section 3.2.

2.2 Geometric Properties

Suppose that a thresholding scheme has given us objects in an image. The
next step is to recognize and locate objects. In most industrial applications,
the camera location and the environment are known. Using simple geome-
try, one may find the three-dimensional locations of objects from their two-
dimensional positions in images. Moreover, in most applications the number
of different objects is not large. If the objects are different in size and shape,
the size and shape features of objects may be determined from their images
to help the system recognize them. Many applications in industry have uti-
lized some simple features of regions for determining the locations of objects
and for recognizing them (e.g., size, position, orientation).

If there are several objects, one can compute these features for each ob-
ject. An object is usually represented by a connected component or a region.
The concept of connectedness and the algorithms for finding connected com-
ponents in an image will be discussed later in this chapter. For the present
discussion, let us assume that an image has only one object.

2.2.1 Size

In general, for a binary image it is well known that the area A is given by

A= ZZB[-;’.;;]. (2.5)
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This is the zeroth-order moment.

2.2.2 Position

The position of an object in an image plays an important role in many
applications. There are different ways to specify the position of an object,
such as using its enclosing rectangle or centroid. In industrial applications,
objects usually appear on a known surface, such as a table, and the position
of the camera is known with respect to the table. In such cases, an object’s
position in the image determines its spatial location. The position of an
object in an image may be defined using the center of area of the object
image. Though other methods such as the enclosing rectangle of the object
image may be used, the center of area is a point and is relatively insensitive
to noise in the image.

The center of area in binary images is the same as the center of mass if
we consider the intensity at a point as the mass at that point. To calculate
the position of the object, we use

5223[“3?] = éijB[i'j] (2.6)
] ij Bli,j] = éizﬂ[z‘,j] (2.7)

where & and § are the coordinates of the center of the region. Thus, the
position of an object is -

SR T 5Bl

S 3 e
i1 Loy $B[8, §
e %_M (2.9)

These are the first-order moments. The position calculated using first mo-
ments is not necessarily an integer and usually lies between the integer values
of the image array indices. We emphasize that this does net imply that the
calculated position is better than the resolution of pixel coordinates.
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2.2.3 Orientation

Calculating the orientation of an object is a little more complex than cal-
culating its position. For some shapes (such as circles), orientation is not
unique. To define unique orientation, an object must be elongated. If so,
the orientation of the axis of elongation can be used to define the orientation
of the object. Usually, the axis of least second moment, which in 2-D is
equivalent to the axis of least inertia, is used as the axis of elongation.

The axis of second moment for an object image is that line for which
the sum of the squared distances between object points and the line is min-
imum. Given a binary image, B[z, j], compute the least-squares fit of a line
to the object points in the binary image. Minimize the sum of the squared
perpendicular distances of all object points from the line,

L

n

% =Yy riBl,j, (2.10)
i=1j=1

where r;; is the perpendicular distance from an object point [4, j] to the line.
To avoid numerical problems when the line is nearly vertical, represent the
line in polar coordinates:

p=acost + ysinb. (2.11)

As shown in Figure 2.3, @ is the orientation of the normal to the line with
the z axis, and p is the distance of the line from the origin. The distance r
of a point (z,y) is obtained by plugging the coordinates of the point into the
equation for the line:

r? = (zcosf + ysind — p)°. (2.12)

Plugging the representation of the line into the minimization criterion
yields the regression problem for fitting a straight line to the object points.
Determine the model parameters p and # by minimizing

2

X = (24 cos 8 + y;; sin @ — p)*Bli, j]. (2.13)

=
NgE!

13

i

.
Il

Setting the derivative of x? with respect to p to zero and solving for p yields

p = (Zcosh + ysinh), (2.14)
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p=xcosB+y cos@

Figure 2.3: Polar representation of a straight line.

which shows that the regression line passes through the center of object
points (&, ). After substituting this value of p in the above equation for y2
and replacing

=z—-z v =y-3, (2.15)

the minimization problem becomes
x* = acos® @ 4 bsin 6 cos 0 + csin® . (2.16)
The parameters

- ZZU’ 2B[m (2.17)

=13

.

= 2 E:jyijB['l'!JI (218)
i= 1 =]

= > (¥;)*Bli ] (2.19)
i=1 j=1

are the second-order moments. The expression for y? can be rewritten as

1 1 : 1
= 5({1 +c) + E(a — ¢)cos 26 + §bsin 26. (2.20)
Differentiating x?, setting the result to zero, and solving for @ yields
b
tan 26 = - (2.21)
= :
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The orientation of the axis is given by
b

il demmnt (2.22)
b2+ (a — c)?

£ c-——». (2.23)

cos2 = +——
Vo2 + (a —c)?

The axis of orientation is obtained for the minimal value of x2. Note that if
b =0 and a = ¢, the object does not have a unique axis of orientation. The
elongation E of the object is the ratio of the largest to smallest values for x:

A (2.24)
Xmin
When the expressions for sin 26 and cos 28 are substituted into Equation 2.20,
their signs determine whether y? is a maximum or minimum. Note that the
elongation is 1 for a circle and that this is the lower bound on E.

2.3 Projections

The projection of a binary image onto a line may be obtained by partition-
ing the line into bins and finding the number of 1 pixels that are on lines
perpendicular to each bin. A simple example of this is shown in Figure 2.4.
Projections are compact representations of images, since much useful infor-
mation is retained in the projection. However, projections are not unique in
the sense that more than one image may have the same projection. Horizon-
tal and vertical projections can be easily obtained by finding the number of
1 pixels for each bin in the vertical and horizontal directions, respectively, as
shown in Figure 2.5.

The projection H[i] along the rows and the projection V[j] along the
columns of a binary image are given by

Hli) = iB[axji (2.25)
Vil = i}B[i,j], (2.26)
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Figure 2.4: The binary image of a lizard with its horizontal and vertical
projections.
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Figure 2.5: Horizontal and vertical projections of an image.
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Figure 2.6: The binary lizard image with its diagonal projection.
g 3 £ g proj

A general projection onto any line may be defined. An example of a diagonal
projection is given in Figure 2.6.

It can be shown that the first moments of an image equal the first mo-
ments of its projections. Since calculating the position of an object requires
only the first moments, the position can be computed from the horizontal
and vertical projections. Thus,

A;ZVM:ZHM (2.27)

YL iH]) -
s Sl 2.9
7] 1 (2.28)

™ VI

A )

As we saw in the preceding section, the orientation of an object requires

knowledge of the second moment. The second moment can be computed from

the diagonal projection of an image. Thus, orientation may be computed
using horizontal, vertical, and diagonal projections.

In some applications, projections can be used as features for recognition

of objects. Projections offer a compact representation and allow application

T =

(2.29)
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of fast algorithms.

The trick to updating the diagonal projection is to compute the index
for the histogram bucket for the current row and column. Let the row and
column be denoted by ¢ and j, respectively. Suppose that the dimensions of
the image are n rows and m columns, so ¢ and j range from 0 to n — 1 and 0
to m — 1, respectively, and assume that the index d for the diagonal can be
computed by an affine transformation (linear combination plus constant) of

the row and column:
d=ai+bj+e. (2.30)
The diagonal projection will require n +m — 1 buckets. The affine trans-
formation should map the upper right pixel into the first position of the
diagonal projection, and the lower left pixel into the last position. Solve the
equations

a-0+b(m—1)+c =0 (2.31)
a(n—1)+b-0+c =n+m-—2 (2.32)
a= -b (2.33)

to obtain the formula
d=i—j+m-—1. (2.34)

2.4 Run-Length Encoding

Another compact representation of a binary image is its run-length encoding.
In this representation, numbers indicating the lengths of the runs of 1 pixels
in the image are used to represent the image. This coding has been used
for image transmission. Additionally, some properties, such as the area of
objects, may be directly computed from their run-length codes.

Two approaches are commonly used in run-length encoding. In the first,
the start position and lengths of runs of 1s for each row are used. The other
approach uses only lengths of runs, starting with the length of the 1 run.
We will use the second convention and represent run lengths for each row of
an image. Thus, r; denotes the length of the kth run in the ith row of an
image. The run-length codes for an image are shown in Figure 2.7.
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Binary image:

[TlaTafo o]0t o lofolililalelolt [ tJotlL1
glajoloirtilalaiireltlaafafafa(zlGla 1]l
[T[1]1]o]ojofojojojojofofofojojofi [T 1 [T1[1]T

Start and length of 1 runs:  (1,3) (7,2) (12,4) (17,2) (20,3)
(5,13) (19,4)
(1,3) (17,6)

Length of 1 and 0 runs: 38.2.3.4.1:2.1.3
0,4,13,1,4
3,13,6

Figure 2.7: Run-length codes for a simple binary image.

The area of all objects can be obtained by summing the lengths of all 1
runs.

(=5)

n—1 2
A= Z Z Ti2k+1 (235)
=0 k=0
where m; is the number of runs in the ith row.

The horizontal projection can be easily computed from the run-length
code, without generating the image (see Figure 2.8). The vertical and di-
agonal projections can also be computed from the run-length code without
generating the image by using clever code. Area and first and second mo-
ments can be calculated from the projections as explained in Section 2.3.
Calculating other properties of images may require partial or complete re-
generation of the image.

2.5 Binary Algorithms

Segmenting object pixels from background pixcls is a difficult problem. We
will not address this problem here. Let us assume here that somehow an
object can be defined and, using a predicate, the points of an image belonging
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Run-length code  Horizontal projection
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Figure 2.8: Horizontal projection calculated from the run-length code.

to an object may be labeled. The problem then is to group together all points
of an image that are labeled as object points into an object image. In this
chapter we will assume that all such points are spatially close. This notion
of spatial prozimity requires a more precise definition so that an algorithm
may be devised to group spatially close points into a component. For this
purpose, let us introduce some definitions.

2.5.1 Definitions
Neighbors

A pixel in a digital image is spatially close to several other pixels. In a digital
image represented on a square grid, a pixel has a common boundary with
four pixels and shares a corner with four additional pixels. We say that two
pixels are 4-neighbors if they share a common boundary. Similarly, two pixels
are 8-neighbors if they share at least one corner. For example, the pixel at
location [i, 7] has 4-neighbors [i + 1, 7], [i — 1,7], [i,j + 1], and [¢, j — 1]. The
8-neighbors of the pixel include the 4-neighbors plus [i+1,j+1], [i+1,7 —1],
[i—1,7+1]and [i—1,j—1]. A pixel is said to be 4-connected to its 4-neighbors
and 8-connected to its 8-neighbors (see Figure 2.9).

r
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d4-neighbors [i + 1,4], [i — 1,4, [&,5 + 1], [i,7 — 1]

]

8-neighbors [i + 1,7+ 1), i+ 1,7 1], [ —Lj+ 1], [i = 1,5 — 1] plus all of
the 4-neighbors

[¢, 5]

Figure 2.9: The 4- and 8-neighborhoods for a rectangular image tessellation.
Pixel [1, j] is located in the center of each figure.
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Figure 2.10: Examples of a 4-path and an 8-path.

Path
A path from the pixel at [y, jo] to the pixel at [i,, j,] is a sequence of pixel in-
dices [ig, jo), [i1, 1], [i2, 42], - - -, [n, Ju] such that the pixel at [i, ji] is a neigh-

bor of the pixel at [ix41, fi41] for all £ with 0 < k& < n — 1. If the neighbor
relation uses 4-connection, then the path is a 4-path; for 8-connection, the
path is an 8-path. Simple examples of these are shown in Figure 2.10.

Foreground

The set of all 1 pixels in an image is called the foreground and is denoted by

S.

Connectivity

A pixel p € S is said to be connected to ¢ € S if there is a path from p to ¢
consisting entirely of pixels of S.

Note that connectivity is an equivalence relation. For any three pixels p,
g, and r in S, we have the following properties:

1. Pixel p is connected to p (reflexivity).

2. If p is connected to g, then g is connected to p (commutativity).
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3. If p is connected to ¢ and g is connected to r, then p is connected to r
(transitivity).

Connected Components

A set of pixels in which each pixel is connected to all other pixels is called a
connected component.

Background

The set of all connected components of S (the complement of S) that have
points on the border of an image is called the background. All other compo-
nents of S are called holes.

Let us consider the simple picture shown below:
=

i 1
1

How many objects and how many holes are in this figure? If we consider
4-connectedness for both foreground and background, there are four objects
that are 1 pixel in size and there is one hole. If we use 8-connectedness,
then there is one object and no hole. Intuitively, in both cases we have an
ambiguous situation. A similar ambiguous situation arises in a simple case
like:

1]0]
0]1]
where if the 1s are connected, then the Os should not be.

To avoid this awkward situation, different connectedness should be used
for objects and backgrounds. If we use 8-connectedness for S, then 4-
connectedness should be used for S.

Boundary

The boundary of S is the set of pixels of S that have 4-neighbors in S. The
boundary is usually denoted by S'.
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(b) B Boundary pixels
B Interior pixels
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(a) Original image
[ Surrounds pixels

Figure 2.11: A binary image with its boundary, interior, and surrounds.

Interior

The interioris the set of pixels of S that are not in its boundary. The interior
of Sis (S —8').

Surrounds

Region T surrounds region S (or S is inside T'), if any 4-path from any point
of S to the border of the picture must intersect 7. Figure 2.11 shows an
example of a simple binary image with its boundary, interior, and surrounds.

2.5.2 Component Labeling

One of the most common operations in machine vision is finding the con-
nected components in an image. The points in a connected component
form a candidate region for representing an object. As mentioned earlier,
in computer vision most objects have surfaces. Points belonging to a surface
project to spatially close points. The notion of “spatially close” is captured
by connected components in digital images. It should be mentioned here
that connected component algorithms usually form a bottleneck in a binary
vision system. The algorithm is sequential in nature, because the operation
of finding connected components is a global operation. If there is only one
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Figure 2.12: An image (a) and its connected component image (h).

object in an image, then there may not be a need for finding the connected
components; however, if there are many objects in an image and the object
properties and locations need to be found, then the connected components
must be determined.

A component labeling algorithm finds all connected components in an
image and assigns a unique label to all points in the same component. Fig-
ure 2.12 shows an image and its labeled connected components. In many
applications, it is desirable to compute characteristics (such as size, position,
orientation, and bounding rectangle) of the components while labeling these
components. There are two algorithms for component labeling: recursive
and sequential.

Recursive Algorithm

A recursive algorithm is given as Algorithm 2.1. On a sequential processor,
this algorithm is very inefficient. Due to its inefficiency, this algorithm is
rarely used on general-purpose computers; but is commonly used on parallel
machines.
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Algorithm 2.1 Recursive Connected Components Algorithm
1. Scan the image to find an unlabeled 1 pizel and assign it a new label L.

2. Recursively assign a label L to all its I neighbors.

-

3. Stop if there are no more unlabeled 1 pizels.

4. Go to step 1.

Sequential Algorithm

The sequential algorithm usually requires two passes over the image. Since
this algorithm works with only two rows of an image at a time, it can be used
even when images are stored as a file and space limitations do not allow the
full image to be brought into memory. This algorithm, given as Algorithm
2.2, looks at the neighborhood of a pixel and tries to assign already used
labels to a 1 pixel. In case of two different labels in the neighborhood of
a pixel, an equivalence table is prepared to keep track of all labels that are
equivalent. This table is used in the second pass to assign a unique label to
all pixels of a component.

In the algorithm, there are three cases of interest when scanning an image
left to right and top to bottom. The algorithm looks at only two of a pixel’s
4-neighbors: the ones above and to the left of it. Note that these two pixels
have already been seen by the algorithm. If none of these pixels is 1, then
the pixel requires a new label. If only one of the two pixels is 1 and has been
assigned a label L, then the pixel will be assigned L. If both pixels are 1s and
have been assigned the same label L, then the new pixel will be assigned L;
however, in the case where the neighbors have been assigned different labels
M and N, then the two labels have been used for the same component and
they must be merged. In this case the pixel is assigned one of the labels,
usually the smaller label, and both labels are recorded as equivalent labels
in the equivalence table,

The equivalence table contains the information to assign unique labels to
each connected component. In the first scan, all those labels that belong to
one component are declared equivalent. In the second pass, one label from an
equivalent set is selected to be assigned to all pixels of a component. Usually
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Algorithm 2.2 Sequential Connected Components Algorithm us-
ing 4-connectivity

1. Scan the image left to right, top to bottom.
2. If the pizel is 1, then

(a) If only one of its upper and left neighbors has a label, then copy
the label.

(b) If both have the same label, then copy the label.

(c) If both have different labels, then copy the upper’s label and enter
the labels in the equivalence table as equivalent labels.

(d) Otherwise assign a new label to this pizel and enter this label in
the equivalence table.

3. If there are more pizels to consider, then go to step 2.
4. Find the lowest label for each equivalent set in the equivalence table.

5. Scan the picture. Replace each label by the lowest label in its equivalent

set.

the smallest label is assigned to a component. The second pass assigns an
unique label to each component.

After all of the connected components have been found, the equivalence
table should be renumbered so that gaps in the labels are eliminated; then
the image is rescanned using the equivalence table as a lookup table for
renumbering the labels in the image.

Area, first moments, and second moments can be caleulated for each com-
ponent as part of the sequential connected components algorithm. Of course,
separate variables must be used to accumulate the moment information for
each region. When regions are merged, the moment accumulations for each

region are just added together.

2.5.3 Size Filter

It is very common to use thresholding for finding a binary image. In most
cases, there are some regions in an image that are due to noise. Usually, such
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Algorithm 2.3 Boundary-Following Algorithm

1. Find the starting pizel s € S for the region using a systematic scan,
say from left to right and from top to bottom of the image.

2. Let the current pizel in boundary tracking be denoted by c. Setc = s
and let the {-neighbor to the west of s be b € S.

3. Let the eight 8-neighbors of ¢ starting with b in clockwise order be
ny, Na, ..., ng. Find n;, for the first i that is in S.

4. Setc=n; andb=m;_;.

5. Repeat steps 3 and 4 until c = s.

2.5.5 Region Boundary

The boundary of a connected component S is the set of pixels of S that are
adjacent to S. A simple local operation may be used to find pixels on the
boundary. In most applications, one wants to track pixels on the boundary in
a particular order. One common approach is to track all pixels of a region in a
clockwise sequence. Here we discuss a simple boundary-following algorithm.

The boundary-following algorithm selects- a starting pixel s € S and
tracks the boundary until it comes back to the starting pixel, assuming that
the boundary is not on the edge of an image. The algorithm is given as
Algorithm 2.3. This algorithm will work for all regions whose size is greater
than 1. The boundary found by this algorithm for an 8-connected region is
given in Figure 2.16.

2.5.6 Area and Perimeter

As we discussed earlier, the area is the number of pixels in §. If there
are several components Sq,Ss,...,Sy,, then the area of each component is
the number of pixels in that component. The number of pixels in each
component may be obtained along with the labeling of the components. In
a general case, the area of each of the n components may be obtained in one
scan of an image.

|
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Figure 2.16: Results of a boundary-following algorithm. Left: Original binary
object. Right: Calculated boundary.

The perimeter of a component may be defined in many different ways.
Some common definitions are:

1. The sum of lengths of the “cracks” separating pixels of S from pixels
of 5. A crack is a line that separates a pair of pixels p and ¢ such that
pe Sandgq€S.

2. The number of steps taken by a boundary-following algorithm.
3. The number of boundary pixels of S.

The measured perimeter will be very different according to different defini-
tions. In general, the perimeter obtained using definition 1 is much longer
than the perimeter measurements obtained using the other two definitions.

2.5.7 Compactness

It is well known that the compactness of a continuous geometric figure is
measured by the isoperimetric inequality

2
‘% > 4r (2.37)

where P and A are the figure's perimeter and area, respectively. A circle is
the most compact figure (i.e., has the smallest compactness value) according
to this measure. In the case of a circle, the ratio P?/A achieves its minimal
value of 47; for other figures the ratio is larger. Consider a circle at an angle
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relative to the viewer. As the circle is tilted and assumes the shape of an
ellipse, the area decreases but the perimeter does not decrease as rapidly, so
the compactness increases. At the extreme angle of tilt, the ellipse is squeezed
into a line and the compactness goes to infinity. For digital pictures, P2/A
is computed by dividing the square of the length of the boundary by the
size (number of pixels). This provides a good measure of dispersedness or
compactness. This ratio has been used in many applications as a feature of
a region.

Another way of viewing compactness is that a more compact region en-
closes a larger amount of area for a given perimeter. Note that a square is
more compact than a rectangle with the same perimeter.

2.5.8 Distance Measures

In many applications, it is necessary to find the distance between two pixels
or two components of an image. Unfortunately, there is no unique method of
defining distance in digital images. One can define distance in many different
ways. For all pixels p, ¢, and r, any distance metric must satisfy all of the
following three properties: i

L. d(p,g) 20 and  d(p,q)=0 iff p=gq

2. d(g,p) =d(p,q)
3. d(p,r) < d(p,q) + d(q,r)

Several distance functions have been used in digital geometry. Some of the
more common distance functions are:

Fuclidean
diuctigean([i1, 1], [i2, 2]) = /(i1 = 2)2 + (jy — ja)? (2.38)
City-block
deity = |iy — | + |j1 — ja (2.39)
Chessboard
dehess = max(|iy — ia], |jy — ja) (2.40)

—
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Figure 2.17: Examples of (a) Euclidean, (b) city-block, and (c) chessbhoard
distance measures.

The city-block and chessboard distance measures are preferred over Euclidean
due to their simplicity of calculation. These three functions are illustrated
in Figure 2.17.

A set of pixels at distance < k according to a distance metric is called a
disc of radius k under that metric. Figure 2.18 shows discs of size 3 according
to the above three measures. Note that the shapes of the neighborhood
are significantly different. An important consideration in using a distance
measure is the fact that though the Euclidean distance is closest to the
continuous case, it is computationally the most expensive and results in real-
valued distances. The integer-valued square of the Euclidean distance can
also be used as a distance measure.

2.5.9 Distance Transforms

In certain applications, such as character recognition, the minimum distance
between a pixel of an object component and the background is used. Thus,
given an object region, S, we must compute the distance to the background
region, S, for all pixels in S. The transform for obtaining an image rep-
resenting such distances is called a distance transform. A parallel iterative
algorithm to compute the distance transform is obtained using the equations

£°li,4) = fli, ) (2.41)
i, 5] = £°[i, 5] + min ( ™, v]) (2.42)
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FEuclidean distance:

City-block distance:

Chessboard distance:
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Figure 2.18: Different, distance measures.
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Figure 2.19: Distance transform of an image after the first and second itera-
tions.

where m is the iteration number for all pixels [u, v], such that d([u, v], [i, j]) =
1. Note that this only uses the 4-neighbors of [i, j].

This algorithm does not change pixels of S. In the first iteration, all of
the pixels that are not adjacent to S are changed to 2. In the succeeding
iterations, pixels farther away from S change. No pixel changes after the
distances to all pixels are obtained. The operation of this algorithm is shown

in Figure 2.19.

2.5.10 Medial Axis

We say that the distance d([z, 5], S) from the pixel [i, ] in S to S is locally
maximum if

d([i, 3], 8) > d([u, v), 5) (2.43)
for all pixels [u,v] in the neighborhood of [, j]. The set of pixels in S with
distances from S that are locally maximum is called the skeleton, symmetric
axis, or medial axis of S and is usually denoted by S*. Some examples of the
medial axis transform are given in Figures 2.20 and 2.21. Figure 2.22 shows
that a small amount of noise in the original image can cause a significant
difference in the resulting medial axis transform.

The original set S can be reconstructed from S* and the distances of
each pixel of S* from S. S* is a compact representation of S. S* is used
to represent the shape of a region. By deleting pixels of S* whose distances
from S are small, we can create a simplified version of §*.

The medial axis has been used for compact representation of objects.
However, a region in a binary image may also be represented using its bound-
ary. A boundary-following algorithm may be used to obtain a sequence of
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H o +H EEasandmas Thinning is an image-processing operation in which binary-valued image re-
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for representing lines in a drawing or character strokes in a text image.

Figure 2,20: Examples of the medial axis transform. The thinning requirements are formally stated as follows:

1. Connected image regions must thin to connected line structures.
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Figure 2.22: Sequence of five iterations of thinning the letter “e.” On each
lteration a layer of the boundary is peeled off. On iteration 5, the end

is detected because no pixels change (Courtes /
; y of Lawrence O’Gorman,
ATET Bell Laboratories.) .
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2. The thinned result should be minimally 8-connected (explained below).
3. Approximate endline locations should be maintained.
4. The thinning results should approximate the medial lines.

5. Extraneous spurs (short branches) caused by thinning should be mini-
mized.

That the results of thinning must maintain connectivity as specified by re-
quirement 1 is essential. This guarantees a number of connected line struc-
tures equal to the number of connected regions in the original image. Require-
ment 2 stipulates that the resulting lines should always contain a minimal
number of pixels that maintain 8-connectedness. Requirement 3 states that
the locations of endlines should be maintained. Since thinning can be achieved
by iteratively removing outer boundary pixels, it is important not to also it-
eratively remove the last pixels of a line. This would shorten the line and fail
to preserve its location. Requirement 4 states that the resultant lines should
best approximate the medial lines of the original regions. Unfortunately, in
digital space, the true medial lines can only be approximated. For exam-
ple, for a 2-pixel-wide vertical or horizontal line, the true medial line should
run at the half-pixel spacing along the middle of the original line. Since it
is impossible to represent this in digital images, the result will be a single
line running at one side of the original. With respect to requirement 5, it
isn’t obvious that noise should be minimized, but it is often difficult to say
what is noise and what isn’t. We don’t want spurs to result from every small
bump on the original region, but we do want to recognize when a somewhat
larger bump is a feature. Though some thinning algorithms have parame-
ters to remove spurs, we believe that thinning and noise removal should be
performed separately. Since one person’s undesired spur may be another’s
desired short line, it is best to perform thinning first and then, in a separate
process, remove any spurs whose length is less than a specified minimum.
A common thinning approach is to examine each pixel in the image within
the context of its neighborhood region of at least 3 x 3 pixels and to “peel”
the region boundaries, one pixel layer at a time, until the regions have been
reduced to thin lines. This process is performed iteratively: on each iteration,
every image pixel is inspected within n x n windows, and single-pixel-thick
boundaries that are not required to maintain connectivity or the position of
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a line end are erased. In Figure 2.22 you can see how, on each iteration,
the outside layer of a 1-valued region is peeled off in this manner. When no
changes are made on an iteration, the process is complete and the image is
thinned.

2.5.12 Expanding and Shrinking

A component of an image can be systematically expanded or contracted.
When a component is allowed to change such that some background pixels
are converted to 1, the operation is called expanding. If object pixels are
systematically deleted or converted to 0, then it is called shrinking. A simple
implementation of expanding and shrinking may be:

Expanding: Change a pixel from 0 to 1 if any neighbors of the pixel are 1.

Shrinking: Change a pixel from 1 to 0 if any neighbors of the pixel are 0.

Thus, shrinking may be considered as expanding the background. Example
of these operations are given in Figure 2.23.

It is interesting that simple operations like expanding and shrinking can
be used to do some very useful and seemingly complex operations on images.
Let us denote:

S®): 5 expanded k times
Gk S shrunk k times

It can be shown that the following properties hold:
(Sm)—ﬂ # {’S—ﬂ)m
?c__ S{m—n}

5 C (5%)*
e

Expanding followed by shrinking can be used for filling undesirable holes,
and shrinking followed by expanding can be used for removing isolated noise
pixels (see Figure 2.24). Expanding and shrinking can be used to determine
isolated components and clusters. In morphological image processing and
dilation and erosion operations, generalized forms of expanding and shrinking
are used extensively to do many tasks.

#
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Figure 2.23: An example of expanding and shrinking operations on the letter |
“s.” Left: The original image. Middle: Expanded image. Right: Shrunken

image.

2.6 Morphological Operators

Mathematical morphology gets its name from the study of shape. This ap-
proach exploits the fact that in many machine vision applications, it is natural
and easy to think in terms of shapes when designing algorithms. A morpho-
logical approach facilitates shape-based, or iconic, thinking. The fundamen-
f tal unit of pictorial information in the morphological approach is the binary
' image.

The intersection of any two binary images A and B, written AN B, is the
binary image which is 1 at all pixels p which are 1 in both A and B. Thus,

ANB={plpe Aand p € B}. (2.44)
The union of A and B, written A U B, is the binary image which is 1 at

all pixels p which are 1 in A or 1 in B (or 1 in both). Symbolically,
AUB={plpe Aor pe B}. (2.45)

Let §2 be a universal binary image (all 1) and A a binary image. The
complement of A is the binary image which interchanges the 1s and Os in A.
Thus,

A={plpeQandp¢A}. (2.46)

The vector sum of two pixels p and ¢ with indices [i, j] and [k,!] is the :

pixel p + ¢ with indices [i + &, j + {]. The vector difference p — q is the pixel y
with indices [i — k,j — ].
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Figure 2.24: Sequences of expanding and shrinking the letter “h.” Top: The

original noisy image. Middle: Expanding followed by shrinking. Bottom:

Shrinking followed by expanding. Note that expanding followed by shrink-

ing effectively filled the holes but did not eliminate the noise. Conversely,

;lnl'inking followed by expanding eliminated the noise but did not fill the
oles.
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If A is a binary image and p is a pixel, then the translation of Abypis

an image given by
Ap = {a+pla e A} (2.47)

Dilation

Translation of a binary image A by a pixel p shifts the origin of Atop. If
Apy, Abgy - - -y Ab, are translations of the binary image A by the 1 pixels of the

binary image B = {b, bz, .. ., b, }, then the union of the translations of A by
the 1 pixels of B is called the dilation of A by B and is given by
A®B= | Au- (2.48)
b,eB

Dilation has both associative and commutative properties. Thus, in a
sequence of dilation steps the order of performing operations is not important.
This fact allows breaking a complex shape into several simpler shapes which
can be recombined as a sequence of dilations.

Erosion

The opposite of dilation is erosion. The erosion of a binary image A by a
binary image B is 1 at a pixel p if and only if every 1 pixel in the translation
of B to pis also 1 in A. Erosion is given by

Ao B = {p|B, C A}. (2.49)

Often the binary image B is a regular shape which is used as a probe on
s referred to as a structuring element. Erosion plays a very

image A and i
by a structuring

important role in many applications. Erosion of an image
element results in an image that gives all locations where the structuring
element is contained in the image.

Figures 2.25 through 2.28 ilustrate the dilation and erosion operations
with a simple binary object and an upside-down “T-shaped” structuring ele-
ment. Figure 2.26 shows examples of translations of the structuring element
to 1 pixels of the original figure where the entire structuring element does not
fit entirely inside the original object. In this case, during a dilation, every
pixel in the structuring element will be present in the final dilated image,
including the pixel not contained in the original object (shown as a lightly
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Figure 2.25: The original test image A (left} and structuring element B i
(right). Note that the origin of the structuring element is darker than the
other pixels in B.

Figure 2.27: The dilation of A by B. The boundary of the original figure A
is shown as a bold line.

i B R
Figure 2.26: Translations of the structuring element B to 1 pixels in A where Ao B={p|B, C A)
the entire structuring element is not contained within A. During a dilation s
operation, every pixel in the structuring element will be present in the final Figure 2.28: The erosion of A by B. The boundary of the original figure A
image. During an erosion operation, the pixel at origi he structuri o : " "
g g I pixel at the origin of the structuring is shown as a bold line.

element will be deleted.
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shaded pixel). But during an erosion operation the pixel at the origin of the
structuring element will be removed because the entire structuring element
is not, within the object. Conversely, in the case where the entire structuring
element does fit within the original object, there will be no change to the
final dilated or eroded image (i.e., no pixels will be added or deleted at that
point).

Dilation and erosion exhibit a dual nature that is geometric rather than
logical and involves a geometric complement as well as a logical complement.
The geometric complement of a binary image is called its reflection. The
reflection of a binary image B is that binary image B’ which is symmetric
with B about the origin, that is

B' = {-p|p € B}. (2.50)
The geometric duality of dilation and erosion is expressed by the relationships
A®B=A0B (2.51)

and B
AcB=A@B. (2.52)

reometric duality confrasts with logical duality:

AUB=AnB (2.53)

and

AAB =4UB, ' (2.54)
also called deMorgan’s law. The duality of dilation and erosion are illustrated
in Figures 2.29 through 2.31.

Erosion and dilation are often used in filtering images. If the nature
of noise is known, then a suitable structuring element can be used and a
sequence of erosion and dilation operations can be applied for removing the
noise. Such filters affect the shape of the objects in the image.

The basic operations of mathematical morphology can be combined into
complex sequences. For example, an erosion followed by a dilation with the
same structuring element (probe) will remove all of the pixels in regions which
are too small to contain the probe, and it will leave the rest. This sequence
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:I_.
1

Figure 2.29: The complement of A and the reflection of B. Note that the
origin of the reflected structuring element is still the darker pixel.

Ao B

Figure 2.30: The dual of dilation: the result of eroding the background of A
with the reflection of B. The original boundary is shown as a bold line.
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Figure 2.31: The dual of erosion: the result of dilating the background of A
with the reflection of B. The original boundary is shown as a bold line.

is called opening. As an example, if a disc-shaped probe image is used,
then all of the convex or isolated regions of pixels smaller than the disc will
be eliminated. This forms a filter which suppresses positive spatial details.
The remaining pixels show where the structuring element is contained in the
foreground. The difference of this result and the original image would show
those regions which were too small for the probe, and these could be the
features of interest, depending on the application.

The opposite sequence, a dilation followed by an erosion, will fill in holes
and concavities smaller than the probe. This is referred to as closing. These
operations are illustrated in Figures 2.32 and 2.33 with the same T-shaped
structuring element. Again, what is removed may be just as important

~as what remains. Such filters can be used to suppress spatial features or

discriminate against objects based upon their size. The structuring ele-
ment used does not have to be compact or regular, and can be any pat-
tern of pixels. In this way, features made up of distributed pixels can be
detected.

—
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Figure 2.32: Opening operation. Left: Initial erosion. Right: Succeeding
dilation. The boundary of the original figure A is shown as a bold line.

Figure 2.33: Closing operation. Left: Initial dilation. Right: Succeeding
erosion. The boundary of the original figure A is shown as a bold line.
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2.7 Optical Character Recognition

Morphological operations can be used for optical character recognition when
the characters are relatively noise-free and are of the same font and size.
First, extract the character to be recognized from one of the images in which
the character appears. Next, use expanding or closing to fill holes and cav-
ities. Then shrink the character image to remove unwanted regions and to
reduce the size of the character so that it will fit comfortably inside an in-
stance of the character. This processed image is the model for the character.

To recognize instances of the character in other images, use that character
model as a probe and perform erosion. The images may have to be cleaned
(holes filled and unwanted clutter removed) before performing erosion. After
erosion, compute connected components, apply the size filter to discard re-
gions that are too small, and compute the position of each region that passes
through the size filter. This provides the position of each recognized instance
of the character model in the image. Good character models obtained after
cleaning, filling, and shrinking will match most instances of the character,
including instances in a slightly different font and size. However, omnifont
recognition has been a very challenging problem for researchers. Optical
character recognition can be implemented in real time with special-purpose
hardware.

Further Reading

Several aspects of binary vision are given in the books by Rosenfeld and
Kak [206] and Horn [109]. Morphological image processing is discussed in
the books [103, 68]. An example of the use of morphological operations in
a practical application is provided in the paper by Mitchell and Gillies on
reading hand-printed zip codes [168]. For a tutorial on optical character
recognition and document analysis see O’Gorman and Kasturi [188].

Exercises

2.1 We saw in this chapter that the zeroth-, first-, and second-order mo-
ments for a binary region provide important information about the
image’s size, location, and orientation. Define higher moments of a

—
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region. Do you think that these moments will provide any useful char-
acteristics for the region? If so, what will be the nature of information
provided by these higher moments?

2.2 In many applications an early step is to determine where in an image
are interesting objects. After these objects are located, most processing
is focused only on these areas. How can you use projections for such
focus-of-attention computations?

2.3 A component labeling algorithm is a computation bottleneck in many
applications. This can be considered a bridge between lower levels and
higher (semantic) levels in a vision system. How can you develop a
fast algorithm to compute connected components? Can you develop a
parallel algorithm?

Computer Projects

2.1 Use a thresholding program (or write your own) and see an image at
many thresholding levels. Find a suitable threshold to get the best
representation of an object in the image. Now select another object
and find the best threshold for it. Repeat this for each object. Are
these thresholds the same? Why? Repeat this experiment with several
images.

2.2 Develop algorithms to compute area and first and second moments of
a region from its run-length code.

2.3 Develop a medial axis algorithm. Apply it to several binary images
of irregularly shaped objects to study the strengths and weaknesses of
this technique to represent shapes of objects.

2.4 In many robotic applications, for a given domain a medial axis can be
used for path planning. Consider the map of a building floor. Find the
medial axis for the hallways and see which hallways can be navigated
by a robot of specific size.

2.5 Construct algorithms to implement expanding and shrinking opera-
tions. Use these algorithms to implement different types of noise re-

moval in binary images.
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1rink algorithm to make it intelligent so that it does
a region. This feature can then be used to
a region. Implement

2.6 Modify your st
not completely eliminate ;
compute the number of connected components in

this algorithm.

2.7 Design a machine vision system to identify objects from their binary Chapter 3

1 ITE T " s '\.Ild
images Consider common objects such as coins, pens, notebooks, 8 1
other desk accessories. Develop a recognition strategy based on the

features that you studied in this chapter. Implement all operations

and test your system.

Regions

A region in an image is a group of connected pixels with similar properties.
Regions are important for the interpretation of an image because they may
correspond to objects in a scene. An image may contain several objects and,
in turn, each object may contain several regions corresponding to different
parts of the object. For an image to be interpreted accurately, it must be
partitioned into regions that correspond to objects or parts of an object.
However, due to segmentation errors, the correspondence between regions
and objects will not be perfect, and object-specific knowledge must be used
in later stages for image interpretation.

3.1 Regions and Edges

Consider the simple image shown in Figure 3.1. This figure contains several
objects. The first step in the analysis and understanding of this image is to
partition the image so that regions representing different objects are explicitly
marked. Such partitions may be obtained from the characteristics of the gray
values of the pixels in the image. Recall that an image is a two-dimensional
array and the values of the array elements are the gray values. Pixels, gray
values at specified indices in the image array, are the observations, and all
other attributes, such as region membership, must be derived from the gray
values. There are two approaches to partitioning an image into regions:
region-based segmentation and boundary estimation using edge detection.




