
Implementing Multi-Floor Intelligence within a
Moving Elevator
Arnav Jain, Ashay Lokhande, Brahma Pavse

I. Abstract
The Building Wide Intelligence’s primary mission is to design fully autonomous robots
that can become a permanent part of the environment in the Gates-Dell Complex. In the
process of becoming fully autonomous, these robots have to be able to navigate the
interior environment of the main building. Currently, the robots are able to navigate a
pre-configured map environment which is configured using a separate method.
Ultimately, the goal is to have autonomous robots which can navigate variable
environments (environments in which objects don’t have a fixed location, but they move
around dynamically as individuals interact with the environment).

A part of this mission is to implement functionality which would allow the robot to move
in between floors. Currently, the robots have very little functionality related to interacting
with the elevators. In this research paper, we explore an important components of this
key functionality when interacting with the elevator - how the robot is to determine what
specific floor it is on.

Using a secondary USB camera, we have programmed a Robot Operating System
node which can take a clear video feed (presumably in an empty elevator) of the
elevator button panel and detect which specific buttons are lit. This detection is specific
to circular buttons with floor indicator lights in the center of the button. First, we detect
the specific buttons and the numbers placed next to them. We use this detection of
buttons to further work on enabling the node to detect the circles in the center and then
map a specific button to the relevant floor number in real time.

II. Introduction
A prevalent issue that exists in the Building Wide Intelligence lab is the ability for a robot
or an “intelligent” autonomous system to navigate itself inside a building via an elevator,
specifically in the Gates-Dell Complex. As described in the abstract we aimed at trying
to resolving this issue.

The current state of the robots in the Building Wide Intelligence lab is that they are able
to maneuver themselves on the second and third floor, given that the map for that floor
exists and is understandable by the robot. As of now, the robot must be manually
placed in an environment that is “understands.” A problem that gets rectified after
working towards our goal in this project is that the robot will be able to navigate itself

from floor to floor via the elevator. When the robot is placed in the elevator, like a
normal human, it faces towards to the buttons and based upon the lighting of the
buttons it identifies where it currently is. When the elevator settles on a floor, the last
recorded floor is the final floor on which the robot is on. Given that the map for the
required floor has already been constructed the robot can pull up the map for that floor
and successfully navigate itself on the floor.

The problem we will solve is the development of an automatic robotic system designed
to identify which floor the robot is on and, hopefully, navigate itself on the detected floor
with ease.

III. Background
The development of this project was initiated after considering the several challenges
that currently exist with the Building Wide Intelligence lab robots. The motivation to push
towards this goal was also driven by the fact that this issue is prominent among other
institutions as well. For example, among the numerous research papers that we studied
and critiqued, a paper from Stanford University described a similar issue which we
tackle in our project. The details about how we pursued this problem are discussed
further in this paper.

Although the technical details are discussed in detail below, an overall summarization of
the tools we used to accomplish this goal have been the implementation of the Robotics
Operating System, a framework that enables use to program in C++ and effectively
communicate with the hardware of the current robot that is under observation. In terms
of hardware, apart from the physical robot specimen we made use of a USB camera,
which was used to as our viewfinder to capture the required video, called the rosbags,
and data points in order perform the project in experiments, and real time. There are of
course more details to the hardware of the robot used, but that those hardware specs
are generic and contained no specialization for this project. Further, to accomplish the
goal we made significant use of the OpenCV library such as HoughCircles, which
enabled us to identify relevant circles in a given single frame of the rosbag.

One of the difficulties we encountered early in this lab was how we planned to obtain
the live video feed of the elevator button panel. The Kinect sensor was placed too low
for us to get an accurate depiction of the button’s form and the status of their lights.
Thus, we utilized an external 720p Logitech USB camera as our viewfinder. Since this
camera did not already have a node, we implemented a secondary node (called
usb_cam) from the ROS Wiki, created by Benjamin Pitzer. In this node, the author
integrated the Logitech camera drivers to publish the video feed to a common topic
which we could then subscribe to similar to the Kinect's video feed topic.

IV. Technical Approach
After developing the required rosbags from the video stream. We use this as our data to study in
order to accomplish the required goal. We perform this by converting frames of the given rosbag
into a gray scale composite image. After we perform this task, we make a clone of this
grayscale image in order to perform a thresholding method on it. We threshold the grayscale
image to identify the black circles; these circles contain the floor number that the associated
button represents. When we are able to successfully identify these black buttons we use this
information to get the location of the buttons and map which buttons represent a given floor

number.

After we perform the steps
above, we blur the image in
order to remove any
unnecessary noise and
interference, which might
conflict with our result
sampling. The Gaussian Blur
assists our process
tremendously because it
maintains only the relevant
information and data on the
frame for the given rosbag.
After we remove the noise,
we use Hough-Circle
transformation. The purpose
of this transformation is to
successfully locate the
circles to the left of the
actual buttons. The circles

that we add to the vector is that circle that is within 3 radii of the x and y coordinates of the circle
already present in the vector. These circles to the left of the actual buttons are the black circles
that contain the floor number within them. These black circles next to the actual buttons are
sequentially added to a vector. Each object in the vector consists of the three components - the
radius of the circle collected, and its x and y coordinates of the center. Like this, we repeat this
process until we collect 10 elements in the vector. In other words, we keep populating the vector
until we get the 10 circles in the vector; we have a hard number of 10 because we know that
there are only 10 buttons that are under observation and relevance to accomplish the required
goal.

Once the vector of circles of size 10 has been acquired, we loop through the vector iteratively to
find which circle contains the maximum radius; we try to find the maximum radius in order to
normalize the data and reduce errors. Once we acquire the maximum radius, we apply this
maximum radius to all the circles in the vector in order to, as mentioned before, normalize the
data.

After normalizing the data, we have data to work with it because it has been standardized. We
then sort the vector of circles based on the y coordinate of the center of the circle objects. When

we do this, we allow ourselves to identify which index in the vector corresponds to which button.
We know that the last three buttons are meaningless to identify the floor numbers, so we sort
the vector to bring them together in order to ignore them altogether. After we get the sorted
circles, based on the y coordinate, we sort the vector as groups of three based on their x axis.
The reason we consider a group of three is because the elevator panel consists of three
columns of buttons. Once the circles have been sorted in all the required manners, we know
which index in the vector corresponds to which button on the panel. To identify floor numbers
we do not need the last three buttons; rather than ignoring them entirely, we erase them from
the vector in order to have the vector contain relevant buttons.

At this point in the process, we have filtered the vector to contain only relevant circles. We loop
through the vector and find buttons that have a y coordinate within 2 radii of where the last
deleted button was. After applying this further filtering, we reach the stage where we can map
an index of buttons to the floor numbers:

Using these relevant indices, we can calculate
the amount of white pixels (the pixels that pertain
light from the buttons). If this amount crosses a
certain established threshold, we can decide if a
button is lit or not. Based on lit or unlit we draw
the appropriate circle, to track the lit button.

Overall, every fifth frame we count the total white
pixels again and compare to the average count
through the array. If there is a significant change
in difference of the amount of white pixels
calculated we know that the light has been
turned off; in other words, the button is unlit.
Through this procedure, we can identify if a

button is lit or unlit.

V. Evaluation

We ran our tests with two variables to test upon. Our method of testing involved
collecting rosbags for the information published by the external USB camera. The
rosbags we collected recorded data from the /usb_camera/image_raw topic. In our
collection of the rosbags, we placed the robot at three different distances from the
elevator button panel.

The first placement of the robot was at 0.5 feet from the elevator panel. The second one
was at 1.5 feet from the panel. The third one was 1.0 foot from the panel. Our purpose
for seeking three different placements was to see if the distance from the elevator panel
distorted our detection algorithm. In doing so, we were able to first test our basic code
on the farther detection algorithm and then increase the accuracy of the node to detect
the light change from different distances. Furthermore, we recorded the rosbags with

Index Button Floor Number

0 5

1 6

2 7

3 2

4 3

5 4

6 1

sequentially pressed buttons in different arrays to simulate the random nature of buttons
on a typical trip up or down the floors in the GDC.

One of the biggest variables we anticipated in our testing was the reflection of natural
light in the elevator. We tried to control for this variable, however, we found it extremely

difficult to narrow the natural light reflection since the elevator is made of metal
(reflection) and the robot’s main hours of operation are during the day (natural light).
Hence, we took our rosbags with the reflection in order to mirror real usage conditions.

Another primary challenge that existed, specifically to the Gates-Dell Complex, is
making the distinction between the buttons in the elevator. The construction of the
button panel in the Gates-Dell Complex elevators is made in a manner such that the
button circumference is extremely light, which makes it hard to distinctly detect a button.
This challenge escalated further when we incorporated the Gaussian Blur; we used this
feature in order to avoid unnecessary noise and interference. However, in addition to
avoiding noise the blur faded out the already light circumference of the buttons, which
added onto current challenge that we were presented.

After taking our rosbags, we ran our node side-by-side with the rosbags. We did this
multiple times with the rosbags we collected at 0.5 feet. We then recorded the accuracy
of the robot based on if it detected the light correctly (which we can observe is lit or not).

VI. Conclusion
Overall, we learned a good deal of handling a task with such a high variability of
success given our current knowledge and skill level. At the end of this project, we can
place a mobile robot in the elevator facing the required button panels and navigate the
Gates-Dell Complex building elevators, and hopefully in unknown elevators. From there,
we can use the lighting of the buttons to identify which floor we currently on. The
technicality of this information is described above in the paper. After performing several
tests, we have a fairly decent success rate for finding the buttons and detecting the
lights. We found through our testing process, we could detect the buttons with an
average 96% success rate and detect the lights with an average 56% success rate with
most errors originating from extra detections due to the reflecting light.

The reason we have such a low success rate for the light detection comes back to our
previous problem, discussed in our evaluation, of light reflection within the elevator. The
natural light, when
reflecting towards
our camera,
appeared similar to
the lights that turn
on when an
elevator is pressed,
thus fooling our
algorithm. One of
the biggest
challenges we
foresaw entering
this project was
that this
interference could
make our node less
optimal. Even
though we have
optimized this node
for real usage
scenarios, we were able to make substantial development towards the goal and we
hope to reach a higher success rate in the future to account for the reflecting natural
light.

For further research, we look to the human-elevator interaction paradigm. Your typical
human presses the button of the direction he/she wishes to go, detects which elevator
opens, enters the correct elevator, locates the elevator button panel, presses the button
he/she wants to get off at, and then detects the floors changing as the elevator moves
up or down. In this paradigm, we have created a node which can detect the elevator

button panel and detect which floor the elevator is currently on. To improve upon the
robot’s role in the above paradigm, we could program nodes that can navigate the robot
inside the door once it has detected the specific elevator door that has opened (there
are two elevators). Once it enters the elevator, it could navigate to the correct position in
front of the elevator button panel, as indicated by the figure above. Similarly, we can
program the robot to exit the elevator once it has detected the elevator has reached its
floor.

VII. References
"Feature Detection." Feature Detection — OpenCV 2.4.13.0 Documentation. Opencv.

<http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight
=houghcircles>.

J.-G. Kang, S.-Y. An, and S.-Y. Oh, “Navigation strategy for the service robot in the
elevator environment,” in International Conference on Control and Automation
Systems, 2007, pp. 1092–1097.

Klingbeil, Ellen, Blake Carpenter, Olga Russakovsky, and Andrew Y. Ng. "Autonomous
Operation of Novel Elevators for Robot Navigation."
<http://ai.stanford.edu/~olga/papers/icra10-OperationOfNovelElevators.pdf>.

Pitzer, Benjamin. "Usb_cam." Usb_cam. ROSWiki. <http://wiki.ros.org/usb_cam>.
S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert, “An empirical study of

context in object detection,” in Computer Vision and Pattern Recognition (CVPR),
2009.

