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I. Abstract 
The Building Wide Intelligence’s primary mission is to design fully autonomous robots 
that can become a permanent part of the environment in the Gates-Dell Complex. In the 
process of becoming fully autonomous, these robots have to be able to navigate the 
interior environment of the main building. Currently, the robots are able to navigate a 
pre-configured map environment which is configured using a separate method. 
Ultimately, the goal is to have autonomous robots which can navigate variable 
environments (environments in which objects don’t have a fixed location, but they move 
around dynamically as individuals interact with the environment).  
 
A part of this mission is to implement functionality which would allow the robot to move 
in between floors. Currently, the robots have very little functionality related to interacting 
with the elevators. In this research paper, we explore an important components of this 
key functionality when interacting with the elevator - how the robot is to determine what 
specific floor it is on.  
 
Using a secondary USB camera, we have programmed a Robot Operating System 
node which can take a clear video feed (presumably in an empty elevator) of the 
elevator button panel and detect which specific buttons are lit. This detection is specific 
to circular buttons with floor indicator lights in the center of the button. First, we detect 
the specific buttons and the numbers placed next to them. We use this detection of 
buttons to further work on enabling the node to detect the circles in the center and then 
map a specific button to the relevant floor number in real time.  

II. Introduction 
A prevalent issue that exists in the Building Wide Intelligence lab is the ability for a robot 
or an “intelligent” autonomous system to navigate itself inside a building via an elevator, 
specifically in the Gates-Dell Complex. As described in the abstract we aimed at trying 
to resolving this issue.  
 
The current state of the robots in the Building Wide Intelligence lab is that they are able 
to maneuver themselves on the second and third floor, given that the map for that floor 
exists and is understandable by the robot. As of now, the robot must be manually 
placed in an environment that is “understands.” A problem that gets rectified after 
working towards our goal in this project is that the robot will be able to navigate itself 



from floor to floor via the elevator. When the robot is placed in the elevator, like a 
normal human, it faces towards to the buttons and based upon the lighting of the 
buttons it identifies where it currently is. When the elevator settles on a floor, the last 
recorded floor is the final floor on which the robot is on. Given that the map for the 
required floor has already been constructed the robot can pull up the map for that floor 
and successfully navigate itself on the floor.  
 
The problem we will solve is the development of an automatic robotic system designed 
to identify which floor the robot is on and, hopefully, navigate itself on the detected floor 
with ease. 

III. Background 
The development of this project was initiated after considering the several challenges 
that currently exist with the Building Wide Intelligence lab robots. The motivation to push 
towards this goal was also driven by the fact that this issue is prominent among other 
institutions as well. For example, among the numerous research papers that we studied 
and critiqued, a paper from Stanford University described a similar issue which we 
tackle in our project. The details about how we pursued this problem are discussed 
further in this paper.  
 
Although the technical details are discussed in detail below, an overall summarization of 
the tools we used to accomplish this goal have been the implementation of the Robotics 
Operating System, a framework that enables use to program in C++ and effectively 
communicate with the hardware of the current robot that is under observation. In terms 
of hardware, apart from the physical robot specimen we made use of a USB camera, 
which was used to as our viewfinder to capture the required video, called the rosbags, 
and data points in order perform the project in experiments, and real time. There are of 
course more details to the hardware of the robot used, but that those hardware specs 
are generic and contained no specialization for this project. Further, to accomplish the 
goal we made significant use of the OpenCV library such as HoughCircles, which 
enabled us to identify relevant circles in a given single frame of the rosbag. 
 
One of the difficulties we encountered early in this lab was how we planned to obtain 
the live video feed of the elevator button panel. The Kinect sensor was placed too low 
for us to get an accurate depiction of the button’s form and the status of their lights. 
Thus, we utilized an external 720p Logitech USB camera as our viewfinder. Since this 
camera did not already have a node, we implemented a secondary node (called 
usb_cam) from the ROS Wiki, created by Benjamin Pitzer. In this node, the author 
integrated the Logitech camera drivers to publish the video feed to a common topic 
which we could then subscribe to similar to the Kinect's video feed topic. 



IV. Technical Approach 
After developing the required rosbags from the video stream. We use this as our data to study in 
order to accomplish the required goal. We perform this by converting frames of the given rosbag 
into a gray scale composite image. After we perform this task, we make a clone of this 
grayscale image in order to perform a thresholding method on it. We threshold the grayscale 
image to identify the black circles; these circles contain the floor number that the associated 
button represents. When we are able to successfully identify these black buttons we use this 
information to get the location of the buttons and map which buttons represent a given floor 

number. 
 
After we perform the steps 
above, we blur the image in 
order to remove any 
unnecessary noise and 
interference, which might 
conflict with our result 
sampling. The Gaussian Blur 
assists our process 
tremendously because it 
maintains only the relevant 
information and data on the 
frame for the given rosbag. 
After we remove the noise, 
we use Hough-Circle 
transformation. The purpose 
of this transformation is to 
successfully locate the 
circles to the left of the 
actual buttons. The circles 

that we add to the vector is that circle that is within 3 radii of the x and y coordinates of the circle 
already present in the vector.  These circles to the left of the actual buttons are the black circles 
that contain the floor number within them. These black circles next to the actual buttons are 
sequentially added to a vector. Each object in the vector consists of the three components - the 
radius of the circle collected, and its x and y coordinates of the center. Like this, we repeat this 
process until we collect 10 elements in the vector. In other words, we keep populating the vector 
until we get the 10 circles in the vector; we have a hard number of 10 because we know that 
there are only 10 buttons that are under observation and relevance to accomplish the required 
goal. 
 
Once the vector of circles of size 10 has been acquired, we loop through the vector iteratively to 
find which circle contains the maximum radius; we try to find the maximum radius in order to 
normalize the data and reduce errors. Once we acquire the maximum radius, we apply this 
maximum radius to all the circles in the vector in order to, as mentioned before, normalize the 
data. 
 
After normalizing the data, we have data to work with it because it has been standardized. We 
then sort the vector of circles based on the y coordinate of the center of the circle objects. When 



we do this, we allow ourselves to identify which index in the vector corresponds to which button. 
We know that the last three buttons are meaningless to identify the floor numbers, so we sort 
the vector to bring them together in order to ignore them altogether. After we get the sorted 
circles, based on the y coordinate, we sort the vector as groups of three based on their x axis. 
The reason we consider a group of three is because the elevator panel consists of three 
columns of buttons. Once the circles have been sorted in all the required manners, we know 
which index in the vector corresponds to which button on the panel. To identify floor numbers 
we do not need the last three buttons; rather than ignoring them entirely, we erase them from 
the vector in order to have the vector contain relevant buttons. 
 
At this point in the process, we have filtered the vector to contain only relevant circles. We loop 
through the vector and find buttons that have a y coordinate within 2 radii of where the last 
deleted button was. After applying this further filtering, we reach the stage where we can map 
an index of buttons to the floor numbers: 
 

Using these relevant indices, we can calculate 
the amount of white pixels (the pixels that pertain 
light from the buttons). If this amount crosses a 
certain established threshold, we can decide if a 
button is lit or not. Based on lit or unlit we draw 
the appropriate circle, to track the lit button.  
 
Overall, every fifth frame we count the total white 
pixels again and compare to the average count 
through the array. If there is a significant change 
in difference of the amount of white pixels 
calculated we know that the light has been 
turned off; in other words, the button is unlit. 
Through this procedure, we can identify if a 

button is lit or unlit. 

V. Evaluation 

We ran our tests with two variables to test upon. Our method of testing involved 
collecting rosbags for the information published by the external USB camera. The 
rosbags we collected recorded data from the /usb_camera/image_raw topic. In our 
collection of the rosbags, we placed the robot at three different distances from the 
elevator button panel.  
 
The first placement of the robot was at 0.5 feet from the elevator panel. The second one 
was at 1.5 feet from the panel.  The third one was 1.0 foot from the panel. Our purpose 
for seeking three different placements was to see if the distance from the elevator panel 
distorted our detection algorithm. In doing so, we were able to first test our basic code 
on the farther detection algorithm and then increase the accuracy of the node to detect 
the light change from different distances. Furthermore, we recorded the rosbags with 

Index Button Floor Number 

0 5 

1 6 

2 7 

3 2 

4 3 

5 4 

6 1 



sequentially pressed buttons in different arrays to simulate the random nature of buttons 
on a typical trip up or down the floors in the GDC. 
 
One of the biggest variables we anticipated in our testing was the reflection of natural 
light in the elevator. We tried to control for this variable, however, we found it extremely 

difficult to narrow the natural light reflection since the elevator is made of metal 
(reflection) and the robot’s main hours of operation are during the day (natural light). 
Hence, we took our rosbags with the reflection in order to mirror real usage conditions.  
 
Another primary challenge that existed, specifically to the Gates-Dell Complex, is 
making the distinction between the buttons in the elevator. The construction of the 
button panel in the Gates-Dell Complex elevators is made in a manner such that the 
button circumference is extremely light, which makes it hard to distinctly detect a button. 
This challenge escalated further when we incorporated the Gaussian Blur; we used this 
feature in order to avoid unnecessary noise and interference. However, in addition to 
avoiding noise the blur faded out the already light circumference of the buttons, which 
added onto current challenge that we were presented. 
 
After taking our rosbags, we ran our node side-by-side with the rosbags. We did this 
multiple times with the rosbags we collected at 0.5 feet. We then recorded the accuracy 
of the robot based on if it detected the light correctly (which we can observe is lit or not).  



VI. Conclusion 
Overall, we learned a good deal of handling a task with such a high variability of 
success given our current knowledge and skill level. At the end of this project, we can 
place a mobile robot in the elevator facing the required button panels and navigate the 
Gates-Dell Complex building elevators, and hopefully in unknown elevators. From there, 
we can use the lighting of the buttons to identify which floor we currently on. The 
technicality of this information is described above in the paper. After performing several 
tests, we have a fairly decent success rate for finding the buttons and detecting the 
lights. We found through our testing process, we could detect the buttons with an 
average 96% success rate and detect the lights with an average 56% success rate with 
most errors originating from extra detections due to the reflecting light.  
 
The reason we have such a low success rate for the light detection comes back to our 
previous problem, discussed in our evaluation, of light reflection within the elevator. The 
natural light, when 
reflecting towards 
our camera, 
appeared similar to 
the lights that turn 
on when an 
elevator is pressed, 
thus fooling our 
algorithm. One of 
the biggest 
challenges we 
foresaw entering 
this project was 
that this 
interference could 
make our node less 
optimal. Even 
though we have 
optimized this node 
for real usage 
scenarios, we were able to make substantial development towards the goal and we 
hope to reach a higher success rate in the future to account for the reflecting natural 
light. 
 
For further research, we look to the human-elevator interaction paradigm. Your typical 
human presses the button of the direction he/she wishes to go, detects which elevator 
opens, enters the correct elevator, locates the elevator button panel, presses the button 
he/she wants to get off at, and then detects the floors changing as the elevator moves 
up or down. In this paradigm, we have created a node which can detect the elevator 



button panel and detect which floor the elevator is currently on. To improve upon the 
robot’s role in the above paradigm, we could program nodes that can navigate the robot 
inside the door once it has detected the specific elevator door that has opened (there 
are two elevators). Once it enters the elevator, it could navigate to the correct position in 
front of the elevator button panel, as indicated by the figure above. Similarly, we can 
program the robot to exit the elevator once it has detected the elevator has reached its 
floor. 
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