

CS 378: Autonomous Intelligent Robotics

Instructor: Jivko Sinapov

http://www.cs.utexas.edu/~jsinapov/teaching/cs378/

Audio Processing and Computational Perception of Natural Sound

Why Sound?

Why Sound?

What actually happened:

The robot dropped a soda-can

Why Natural Sound is Important

"...natural sound is as essential as visual information because **sound tells us about things that we can't see**, and it does so while our eyes are occupied elsewhere. "

"Sounds are generated when materials interact, and the sounds tell us whether they are **hitting**, **sliding**, **breaking**, **tearing**, **crumbling**, **or bouncing**. "

"Moreover, **sounds differ according to the characteristics of the objects**, according to their size, solidity, mass, tension, and material. "

Don Norman, *"The Design of Everyday Things*", p.103

Why Natural Sound is Important

Why should a robot use acoustic information?

Human environments are cluttered with objects that generate sounds

Help a robot perceive events and objects outside of field of view

Help a robot perceive material properties of objects, and form natural object categories

....from a computer's point of view, raw audio is a sequence of 44.1K floating point numbers arriving each second

Sine Curve

Frequency

• Measured in Hertz (Hz)

• Named after Heinrich Hertz

• 1 Hertz = 1 repetition per second

• Typically denoted with the letter f

Period

• How long does one cycle take?

• It is the reciprocal of the frequency

Measured in seconds

• Typically denoted with the letter T

Frequency vs Period Animation

[http://en.wikipedia.org/wiki/Frequency]

Frequency vs Period

Frequency	1 mHz	1 Hz	1 kHz	1 MHz	1 GHz	1 THz
	(10 ^{–3})	(10 ⁰)	(10 ³)	(10 ⁶)	(10 ⁹)	(10 ¹²)
Period (time)	1 ks (10 ³)	1 s (10 ⁰)	1 ms (10 ⁻³)	1 µs (10 ^{–6})	1 ns (10 ^{–9})	1 ps (10 ⁻¹²)

$$T = \frac{1}{f}$$

Amplitude (vertical stretch)

[http://www.sparknotes.com/math/trigonometry/graphs/section4.rhtml]

Frequency (horizontal stretch)

[http://www.sparknotes.com/math/trigonometry/graphs/section4.rhtml]

What is the Period and the Amplitude?

[http://www.sparknotes.com/math/trigonometry/graphs/problems_3.html]

What is the Period and the Amplitude?

[http://www.sparknotes.com/math/trigonometry/graphs/problems_3.html]

Sines vs Cosines

[http://en.wikipedia.org/wiki/Sine_wave]

Formula for the Sine Wave

$y(t) = A \cdot \sin(\omega t + \phi)$

Formula for the Sine Wave

$$y(t) = A \cdot \sin(\omega t + \phi)$$

- A, the amplitude, is the peak deviation of the function from its center position.
- ω, the angular frequency, specifies how many oscillations occur in a unit time interval, in radians per second
- φ, the phase, specifies where in its cycle the oscillation begins at t = 0.

A function x(t) is periodic if we can find a T for which the following hold

$x(t) = x(t+T) = x(t+2T) = x(t+3T) = \dots$

Sinusoidal waves of various frequencies

Low Frequency

High Frequency

[http://en.wikipedia.org/wiki/Frequency]

Spectrum

[http://en.wikipedia.org/wiki/Spectrum]

Light Spectrum

UNITED STATES FREQUENCY

ALLOCATIONS

THE RADIO SPECTRUM

The local classes register that is special based on the local state of the local state of

No back in the second of the state is a measure the last the state of the state of

Standing Wave

(shown in black, equal to the sum of the red and the blue waves traveling in opposite directions)

Fourier Series

A Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating functions, namely sines and cosines

Approximation

[http://en.wikipedia.org/wiki/Fourier_series]

Approximation

Discrete Fourier Transform

Discrete Fourier Transform

Discrete Fourier Transform

Research Question

Can the DFT be used by a robot to perceive objects and their properties using sound?

Research Question

Can the DFT be used by a robot to perceive objects and their properties using sound?

How should the robot associate a particular sound with an object?

Object Exploration by a Robot

Object Exploration by a Robot

Objects

[Sinapov, Weimer, and Stoytchev, ICRA 2009]

Behaviors

Grasp:

Shake:

Drop:

Push:

Tap:

Recognition Video

Behavior Execution:

WAV file recorded:

Discrete Fourier Transform:

1. Training a self-organizing map (SOM) using DFT column vectors:

1. Training a self-organizing map (SOM) using column vectors:

2. Discretization of a DFT of a sound using a trained SOM

 $S_i = s_1^i s_2^i \dots s_{l^i \ \text{is the}}^i$ sequence of activated SOM nodes over the duration of the sound

Problem Formulation

Recognition Model

• k-NN: memory-based learning algorithm

With k = 3: 2 neighbors 1 neighbors

Therefore, Pr(red) = 0.66 Pr(blue) = 0.33

Off-Line Evaluation

- 10 trials performed with each of the 36 objects with each of the 5 behaviors
- A total of 1800 interactions, about 12 hours
- 10 fold cross-validation
- Performance Measure for object and behavior recognition:t

$$\% Accuracy = \frac{\# \ correct \ predictions}{\# \ total \ predictions} \times 100$$

Evaluation Results

Behavior	k-Nearest Neighbor	Support Vector Machine
Grasp	67.89 %	75.27 %
Shake	49.47 %	50.56 %
Drop	85.79 %	80.56 %
Push	82.89 %	84.44 %
Тар	78.15 %	75.84 %
Average	72.84 %	73.33 %

Chance accuracy = 2.7 %

Evaluation Results

Fig. 6. Object recognition performance with k-Nearest Neighbor as the number of interactions with the object is varied from 1 (the default, used to generate Table I) to 5 (applying all five behaviors on the object).

Estimating Acoustic Object Similarity using Confusion Matrix

Predicted

Actual

	-			
	40	4	0	0
	6	42	0	0
	0	0	21	6
10	0	0	8	35

: similar

: similar

: different

: different

Recognizing the sounds of objects manipulated by other agents

Recognizing the sounds of objects manipulated by other agents

Further Reading

- Sinapov, J., Wiemer, M., and Stoytchev, A. (2008).
 Interactive Learning of the Acoustic Properties of Objects by a Robot. In proceedings of the "Robot Manipulation: Intelligence in Human Environments" workshop held at the Robotics Science and System Conference, 2008.
- Sinapov, J., Wiemer, M., and Stoytchev, A. (2009).
 Interactive Learning of the Acoustic Properties of Household Objects. In proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA).

Discussion

• What kind of sounds should our mobile robots pay attention to?

• What would auditory perception allow them to do that they currently cannot?

THE END