
Generating and Learning from 3D Models of Objects through Interactions

Kathryn Baldauf, Aylish Wrench, Kiana Alcala
{kathrynbaldauf, aylish.wrench, kiana.alcala}@utexas.edu

Abstract
In this paper we implement an approach that will al-
low for the creation of 3D models. Being able to au-
tonomously build or recognize a 3D model of an ob-
ject would assist in human-robot interaction and devel-
opmental robotics. Currently the robot is only able to
construct a view of an object from one angle, which
limits the robots capabilities. Manipulation is necessary
when trying to observe and classify an object. There-
fore, in order to create the model, we have the robotic
arm pick up the object, rotate it, and save multiple
point clouds that will eventually be aligned to create
the 3D model. We integrate filtering techniques such
as downsampling, and point cloud alignment methods
such as Sample Consensus Initial Alignment (SAC-IA)
and Iterative Closest Point (ICP). Although the ultimate
goal is to have a full model of an object, the focus
of this paper is implementing and evaluating methods
of alignment as they specifically relate to the segway
base robots of the Building Wide Intelligence (BWI)
lab at the University of Texas at Austin. In the future
we would also like to store information about the object
so that the robot will eventually be able to detect similar
or previously viewed objects.

Introduction
The ability to observe and recognize objects is useful for
a robot as it performs actions and navigates through differ-
ent environments. As of right now, the Building Wide In-
telligence (BWI) segway robot with the Kinova Mico arm is
only able to view an object from one angle. The robot cannot
see an object from all sides without moving either the object
or itself, which limits the robots usable information about
the object. Information that could help in the perception and
detection of an object would be missing. If a 3D model of
the object was available to the robot, it could use that model
to fill in the missing information. Therefore, implementing
code that will allow the robot to construct 3D models of ob-
jects will advance the abilities of the current BWI system.

Related Work
The main goal for this project was to get the robot to use
motor actions to create a 3D model of an object. There have

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been many research efforts that attempt an object model con-
struction as well as a variety of available methods for ap-
proaching this. The basis of this project stems from a curios-
ity of how humans interact with objects and how we could
implement this behavior on the robot and its arm. In order
to have the robot accurately represent interaction with ob-
jects, we first need to understand how children learn through
object experimentation.

The theory that children learn by interacting with objects
is well known in the field of psychology. Jean Piaget (1952)
discusses children learning through sensorimotor activities
in his book, The Origins of Intelligence in Children. Piaget
divides a childs development from birth to the age of two
into six sub-stages. According to Piaget, a child begins to in-
teract with objects in the environment in the third sub-stage
which occurs sometime after the child reaches four months
old. In this sub-stage, the child performs an action with their
body, usually accidentally, which has a visible effect on its
environment. The child not only notices this change, but then
tries to recreate it.

A child’s interest in objects in its environments contin-
ues into the next sub-stage, which begins around eight or
nine months. However, instead of reacting to changes in its
environment, the child actively begins experimenting with
objects. By performing different actions on an object such
as moving or shaking, the child gains a better understand-
ing of the objects properties and abilities. Piagets observa-
tions demonstrate the importance of sensorimotor activities
in human development. We believe that incorporating both
visual and motor functions to gain information about an ob-
ject could prove to be effective in the development of robotic
intelligence. By picking up an object, the robot can ”learn”
more than it would solely with visual data. Combining vi-
sual and motor data would produce a view of areas of the
object that were obscured previously. More importantly, the
robot would be able to accomplish all of this with less as-
sistance from humans. After gaining a better understanding
of how children learn through the observation and manipu-
lation of objects, we formulated a methodology that allows
the robotic arm to mimic the same actions.

One research paper by Krainin et al. (2011) presents var-
ious other research methods involved in manipulator and
object-tracking for in-hand 3D modeling. The paper dis-
cusses visual recognition strategies, object modeling tech-



niques, and alignment processes. The authors of the paper
also outline a process to successfully detect and segment out
point cloud data corresponding to the arm’s hand, which is
a necessity when constructing an in-hand 3D model. The in-
formation discussed in the paper allowed us to decide on the
best procedure for creating 3D models with our own robot.

Dorai et al. (1998) focus on registering and integrating
multiple views of objects from range data in order to con-
struct geometric and descriptive 3D models of objects. Al-
though the researchers use a laser range scanner in order to
obtain their data, their goals and much of the technical ap-
proach are similar to the ones we chose to implement in our
project. The paper mentions Iterative Closest Point (ICP), an
algorithm which our work implements and evaluates. The
researchers also applied multiple preprocessing steps to re-
move the noise in the input images. The steps included the
removal of isolated pixels and the use of a median filter-
ing technique. Although we do not use this specific filtering
technique, the work of the authors inspired us to implement
filtering methods that we felt would best suit the robotic arm,
such as a color filter and downsampling.

Another example of 3D model construction using filter-
ing techniques to simplify challenges, in this case manipu-
lator removal, is in the In-Hand Scanner for Small Objects
(Slzle, M., PCL Developers). While this method requires
a human to manipulate the object, the challenge of remov-
ing point cloud data corresponding to the manipulator is the
same. They require that the object be of a different color
from the skin tone of the human manipulating the object or
that the human wear a glove in order to implement the use of
a color filter. This color filter determines a threshold for use
in distinguishing between the object and the hand. We ini-
tially implement a similar filter and evaluate its usefulness
in the Evaluation section of this paper.

The paper that was the most influential in our project is
work done by Krainin, Curless, and Fox (2011). They cre-
ated a system which allows a robot to create a 3D surface
model by moving an object into its view. In their system,
the robot uses a volumetric information driven Next Best
View algorithm to determine how it must pick up and ma-
nipulate the object to achieve the view that will give it the
most information. Once the robot is finished with this view,
it places the object back on the table. The robot cleans up
the generated image by removing any points located on or
near its hand. It then repeats the next best view algorithm
to determine how it should re-grasp and move the object.
This allows the robot to make the model more complete by
cleaning up holes created by its manipulator during the ini-
tial grasp or by allowing it to see areas which it could not
in the previous view. This work represents much of our end
goal.

Methodology
The basic overview of the 3D model creation process is as
follows. The robot grasps an object and lifts it into view
of the stationary camera. The Xtion camera retrieves point
cloud data of the full scene: the table, the hand, and the
object. The object is segmented from the rest of the scene
and saved as a separate point cloud. Once this point cloud

is saved, the robot rotates its end joint, or hand, 20 degrees
and takes a second point cloud image. This process is re-
peated until the object has been rotated a full 360 degrees.
All of the saved point clouds are then combined to create a
single point cloud which shows a complete view of the ob-
ject. This process has been implemented as a ROS action.
Unlike ROS services, ROS actions can be interrupted and
intermediate results can be returned. This allows the user to
obtain a partial model if an error occurs during the process.
The source code for the 3D model action can be found in the
make model as.cpp file found in the model 3d object pack-
age of our code base.

Lifting Object into View
The first step in our process of creating a 3D model is
to have the robot pick up the object and verify that the
object has been lifted. To do this, the Make Model ac-
tion uses existing code from the segbot arm perception and
segbot arm manipulation packages in the BWI code base
(Utexas-bwi/segbot arm). In order to ensure a successful
grasp, we assume the desired object is the only item on the
table.

Once the robot has confirmed that the object has been suc-
cessfully grasped and lifted, it moves its arm into the posi-
tion shown in Figure 1. Through experimentation, we found
this to be the optimal position for the arm as it allows the
Xtion camera to see as much of the object as possible. Since
the robot only has a single, stationary camera, it is impos-
sible to get a view which shows the entire object. To solve
this, the robot rotates its hand 20 degrees until it has rotated
a full 360 degrees, saving a point cloud after each rotation.
This produces a list of point clouds which together depict
every angle of our targeted object.

Figure 1: Scene of the object in the robot’s hand

Object Detection
As previously mentioned, the initial point cloud taken by the
Xtion camera contains everything in the cameras view. This
includes the object, the Kinova arm, and the table. Before
the point cloud can be used to form a correct 3D model,
everything other than the object itself should be removed.
This is the task of the Object Detection service we devel-
oped. To accomplish this goal, the service uses a variety of
functions from the Point Cloud Library (PCL) (Rusu and



Cousins 2011). The service request takes in the center of
the hand. This point is then used in computing the upper
limit of a z filter. The z filter is implemented as a PCL
PassThrough filter, described in section 3.D of Miknis et
al. (2015). The filter removes anything from the point cloud
other than that which lies between the camera and approxi-
mately five inches past the Kinova arm. After applying the
z filter, the resulting point cloud is downsampled to remove
noise. This has the added bonus of reducing the cloud size,
making future computations simpler. For downsampling, we
used PCLs VoxelGrid filter, described in section 3.C of Mik-
nis et al. (2015). An unfortunate side effect of downsam-
pling is that invalid, or NaN, values can be introduced into
the point cloud. Therefore, the point cloud data is passed
through a simple PCL function to remove the NaN values
before proceeding on to the next step.

At this point, the resulting point cloud still contains the
robots hand in addition to the object. Our initial approach to
eliminate the hand data was to use a basic color filter. The
color filter removes any points in the point cloud with RGB
values corresponding to grey or black. In order for the color
filter to work successfully, we assume that the Kinova arm is
the only grey/black colored object in the scene. As a result,
this color filter is not effective for manipulation of objects
that are a similar color to the arm. As discussed in our re-
sults, this color filter proved to be fairly ineffective even for
non-grey/black objects. Therefore, in the final version of our
Object Detection service, the color filter has been disabled.

Once all filters have been applied to the original point
cloud, the final cloud should now represent data for just the
object (and possibly the robots hand). This cloud is con-
verted from a PCL format to a ROS message format and
returned as the result of the service. The cloud is then pub-
lished to rViz for debugging purposes.

Alignment and Registration
Each cloud returned from the Object Detection service is
saved in a vector. When the robot has completed a full ro-
tation of its hand, saving point clouds every 20 degrees, the
next step is to combine the point clouds into a single im-
age. The process of combining, also known as registering,
occurs in another ROS service: the Align Service. One of
the advantages of implementing the alignment/combination
process as a service is that it can be used independently of
the Make Model action. For example, for testing purposes
we created a program to save a series of point clouds from
the Object Detection service. We could then use a separate
program to read in these files and combine them. Both of
these programs can be found in our GitHub repository.

In the Alignment Service, the first point cloud in the vec-
tor is designated as the original point cloud. This point cloud
is used as the base of the model when combining the fol-
lowing point clouds. Before a point cloud can be added to
the base, it must first be aligned. Alignment is the process
of rotating and transforming one point cloud so that points
which correspond with those of another point cloud overlap.
There are many different existing alignment algorithms. In
our work, we implemented both Sample Consensus-Initial
Alignment (SAC-IA) and Iterative Closest Point.

The SAC-IA implementation used by PCL is based on the
algorithm described by Rusa, Blodow, and Beetz (2009). To
use SAC-IA, the features, in our case FPFH features, for
a source and target cloud must be computed. A number of
points from the target cloud are then selected. For each of
these points, a histogram is created from its features. From
there, a list of points from the source cloud that have similar
histograms is generated. One of these points is chosen at ran-
dom to correspond to the target point. Once corresponding
points have been determined for each of the target points, a
transformation for the target point cloud is calculated. Due to
the randomness involved in the algorithm, SAC-IA does not
usually produce exact results. However, the algorithm func-
tions best for clouds which are a substantial euclidean dis-
tance or rotation apart. SAC-IA is therefore suitable to create
an initial alignment but another algorithm must be combined
with it to achieve the most accurate results.

To improve the alignment results from using SAC-IA, we
implemented the ICP alignment from PCL. There are many
variants of the ICP algorithm but the basic algorithm, as de-
scribed by Rusinkiewicz and Levoy (2001), is as follows.
An initial guess for the transformation between source and
target point clouds is generated. A subset of points in one or
both of the point clouds is chosen. These points are then
matched to points in the other cloud. The pairs are then
weighted in some manner. Based on previously chosen cri-
teria, certain pairs are rejected. An error metric is then as-
signed based on the remaining pairs. A new transformation
is created which attempts to minimize the error metric. This
process is repeated until specified criteria is met. In the case
of the PCL implementation, the process ends when any of
the following is met: a max number of iterations is reached,
the difference between the last transformation and the cur-
rent transformation is less than a given threshold, or the sum
of Euclidean squared errors is less than a given threshold
(Rusu and Dixon 2016). Since features for the clouds do not
need to be computed, ICP is faster than SAC-IA. For clouds
that are closer together, ICP also produces more accurate re-
sults than SAC-IA. In our work, we use ICP to fine-tune the
results from the SAC-IA algorithm in hopes of producing
the most accurate results possible.

After applying both alignments, the transformed cloud
and target cloud are combined to become the new ”origi-
nal” model for the next round. We continue the process for
each of the point clouds in the vector. When all point clouds
have been added together, the resulting 3D model is trans-
formed into a ROS message that can be returned to the Make
Model action where it is published for viewing or debugging
in rViz.

Evaluation
For each action or service created, a corresponding program
was written to validate the functions and in some cases, re-
sults. The agile grasping, lift verification, and tabletop per-
ception service were not evaluated for correctness as they are
pre-tested by their original creators. Additionally, we created
two files for saving individual point clouds, one for objects
on the table and one for objects in the hand of the robot,
to speed up testing. These files did not require validation as



they are reproductions of previous code or documentation
within the PCL library.

Object Detection Service
Within this ROS service, we tested the distance of the z
PassThrough filter, the use of the VoxelGrid filter, and lastly
the color filter. As previously mentioned, the z filter is given
a range such that any point cloud data outside of this range
is removed. In order to evaluate our use of this, we first place
a simple object in the arms hand in the view of the camera.
We do not hardcode a set value for the full z filter as this
would significantly limit the use of the service as the arm
would not be able to be moved to other positions. However,
we do hardcode the padding around the arm’s location in
which to expect the object’s full cloud. This follows from
the knowledge that the arm has limited capabilities when
interacting with heavier objects and the assumption that it
will mainly be used with objects typically hand held by a
human, such as a box of food or a spray bottle. This value
is set as 0.125 meters, which is approximately five inches.
After experimenting with values, we determined that this
is an appropriate amount given our preconditions, as any
smaller value would significantly reduce the number of
objects available to be interacted with and any larger value
could present issues by allowing more of the arm or other
objects to be present in the results.

Table 1: Effects of Downsampling
Number
of Clouds
Aligned

Downsampled Not Downsampled

Four Clouds 12.02s 14.45s

Three Clouds 4s 5.05s

The downsampling method we implemented, as previ-
ously mentioned, is the PCL VoxelGrid filter. We set the
leaf size to be approximately 0.005 meters as this allows
for a good amount of information to be used for feature
detection and alignment while still reducing the size of the
point cloud significantly. Since this code is pre-existing, we
instead evaluated the usefulness of including it. In Table 1,
we show the average time of three trials of the completed
alignment process using point clouds of objects on the table
with no color filtering. From this data we conclude that not
only does downsampling decrease computation time, but
also the addition of more point clouds negatively affects the
computation time in a significant way.

Since using a color filter to eliminate certain objects can
both limit the scope of objects that can be interacted with
and introduce holes in the resulting cloud, we decided not to
implement this in our final code. However, we tested the re-
sults as there is potential to combine this functionality with
extended code in the future to produce better results. Figures
2 and 3 show the comparison between a point cloud where
the color filter was not applied and one where the filter was

Figure 2: Point cloud data for a box with no color filtering

Figure 3: Point cloud data for a box with the color filtering

applied. Figure 4 shows the actual box. By comparing these
figures, one can see that many unintentional points were sub-
tracted from the point cloud in Figure 3. This is due partly
to the nature of the color filter, as it will subtract any point
that is outside of the given RGB range with no knowledge
of the surrounding points or the overall object. Additionally,
the Xtion camera introduces noise and false reflections that
can cause points to appear differently and thus be filtered
out. Figure 5 shows an example of the full alignment process
with the arm data filtered out using the color filter. As shown,
the resultant clouds still include some of the arm point cloud
data. While this leftover data could potentially be removed
using other methods, one can see that the majority of the
object’s information was also segmented out, and thus an
incomplete model would always be produced.

Tables 2 and 3 show the fitness scores of two objects
on the table aligned with the ICP algorithm alone. Fitness
scores closer to zero indicate a perceived better alignment.
Subsequently, the fitness score seemed to improve when
the color filter was applied. As discussed above for Figures
2 and 3, Figure 3 has significant portions of important



Figure 4: Real image of the box

information about the object missing despite having a
higher fitness score. This result can be attributed to the fact
that the use of the color filter eliminates crucial point data,
thus increasing the chance of a false alignment.

Table 2: ICP Alone, Object On the Table, No Color Filter
Object Avg.

1st Pair
Fitness
Score

Avg.
2nd Pair
Fitness
Score

Avg.
3rd Pair
Fitness
Score

Box 8.533e-05 4.050e-04 3.110e-04

Crayon 6.224e-05 2.490e-05 1.333e-05

Table 3: ICP Alone, Object On the Table, with Color Filter
Object Avg.

1st Pair
Fitness
Score

Avg.
2nd Pair
Fitness
Score

Avg.
3rd Pair
Fitness
Score

Box 7.595e-05 7.5066e-
05

2.325e-04

Crayon 1.139e-04 1.912e-04 4.699e-05

Figure 5: Alignment in hand using the color filter

Alignment Service

Within the alignment service, we tested the use of ICP, SAC-
IA, and the corresponding parameters for each. SAC-IA is
well known to be appropriate for large distances or turns. In
our current implementation of model construction, this is not
the case. However as discussed in detail in the future work
section, we still implemented and tested it appropriately as
it will be applicable in extended work. We compare the re-
sults using ICP alone as well as using SAC-IA followed by
the ICP. Appropriate parameters were tested and altered if
necessary.

In order to test the functionality of the ICP algorithm, we
first fed in two point clouds, with the second one having
some small rotational difference from the first. The first
cloud was fed in as the ”InputSource” and the latter as the
”InputTarget”. Upon completion of the alignment algorithm,
we combined the original cloud with the resulting cloud
returned from the align function call of ICP. While our con-
vergence scores were relatively good, the resulting model
seemed to look as if the clouds had not been transformed
at all. Upon further investigation, we discovered this was a
result of changed documentation that led to confusion for
this algorithm in the PCL library. When calling the align
function in ICP, the resultant cloud is the transformation
of the InputSource cloud onto the InputTarget cloud. Thus,
instead of adding the original cloud with the resultant cloud,
the resultant cloud and target cloud should be combined
and stored for the next round of alignment. After fixing this,
the ICP algorithm performed as expected and converged for
each alignment. As shown earlier in Table 2 and 3, the ICP
fitness score was relatively low both with and without color
filtering when the object was on the table. Additionally,
we determined that the algorithm will converge in under
fifty iterations given point cloud data from our situation,
as the data will always be of the same object with small
rotations and translations. Other changes in parameters did
not greatly impact the results.



Table 4: Testing Minimum Sample Distance
Min Sample Dis-
tance

Resulting
Fitness
Score

0.001 3.722e-04

0.005 3.722e-04

0.01 3.722e-04

0.35 2.578e-03

0.40 2.670e-03

0.45 1.739e-04

0.5 1.876e-04

0.75 9.349e-04

1 4.007e-04

The SAC-IA presented many challenges to implement
and test. Similar to the ICP algorithm, the resultant cloud
contained the transformed InputSource. However, unlike
the ICP algorithm, certain parameters greatly impacted the
algorithm’s fitness score and ability to converge. Table 4
shows the results of our experimentation with the Minimum
Sample Distance parameter of the SAC-IA algorithm. This
parameter determines the smallest distance between the
points selected in the target cloud. We initially implemented
the algorithm using a minimum sample distance of 0.005
meters, the size of our VoxelGrid leaf size. After some
experimentation, as shown in Table 4, we discovered that
a much larger value, one closer to 0.45, produced better
fitness scores at face value. However, this is a result of the
sample points being too far away and thus reducing how
strict the algorithm behaves. Other parameters were found
to have little or no effect on the resulting fitness score and
correctness of alignment.

Table 5: SAC-IA and ICP, Object in Hand, No Color Filter
Object Avg.

1st Pair
SAC-IA
Fitness

Avg.
1st Pair
ICP/Final
Fitness
Score

Avg.
2nd Pair
SAC-IA
Fitness
Score

Avg.
2nd Pair
ICP/Final
Fitness
Score

Box 4.728e-
03

4.795e-
03

6.852e-
03

1.679e-
02

Crayon 3.192e-
03

2.501e-
03

2.628e-
03

2.754e-
03

Table 6: SAC-IA and ICP, Object On the Table, No Color Filter
Object Avg.

1st Pair
SAC-IA
Fitness

Avg.
1st Pair
ICP/Final
Fitness
Score

Avg.
2nd Pair
SAC-IA
Fitness
Score

Avg.
2nd Pair
ICP/Final
Fitness
Score

Box 1.721e-
04

1.837e-
04

3.382e-
04

5.861e-
04

Crayon 2.211e-
04

1.881e-
04

4.077e-
04

4.341e-
04

We then evaluated using both SAC-IA and ICP alignment
on the resultant model. Table 6 shows the results of align-
ment after SAC-IA followed by ICP with an object on the
table and no color filtering. Compared to the results of Table
2 with just the ICP alone, there is a noticeable deteriora-
tion in fitness score when the SAC-IA algorithm is called
first. We attribute this to the random nature previously dis-
cussed of the SAC-IA algorithm when used with clouds that
have such small difference in rotation or translation. Fig-
ure 6 shows an example resultant model aligned using this
method on a crayon shaped object on the table and Figure
7 shows an image of the actual object. Comparing the two,
it is easy to see that the resultant cloud has one image of
the crayon combined with a flipped image, creating an im-
age with two ”crayon tops”. This is an example of an issue
that can arise using the SAC-IA algorithm on models that
have little change as the model ended up being completely
wrong. This could also be a result of using an object of this
nature, with minimal feature differences around the circum-
ference. However, this issue occurred even on more rigid ob-
jects, such as the box shown in Figure 8.

Figure 6: Point cloud aligned using SAC-IA followed by ICP



Table 5 shows results of the same method but in the arm’s
hand. The fitness scores as compared to other alignments
mentioned in this paper are particularly bad. This is due to
the fact that the arm has not been eliminated from the point
cloud of the object and thus is skewing the information and
causing false or bad alignments. The resulting cloud com-
puted in the arm’s hand does not reflect the actual object at
all. We discuss how we intend to handle this problem in the
future works section of this paper.

Figure 7: Image of the crayon

Further, we found that after each alignment and registra-
tion of clouds, the fitness score diminishes regardless of the
method of alignment. This can be seen in Tables 2, 3, 5, and
6. We hypothesize that this is a result of slight errors when
combining clouds after each alignment. If the features and
normals do not match up entirely, the partial point cloud’s
data will be slightly disrupted when combined. As this pro-
cess continues, the reliability of the cloud lessens along with
the fitness score and correctness of the model. An example
of this is seen in Figure 8, where the box sides aligned back
to back instead of as intended. We outline our plan to handle
this issue in the future work section of this paper.

Future Work
The most limiting challenge we faced within this project
was determining a method to remove point cloud data cor-
responding to the arm before alignment. As we discussed,
without this removal the model construction was greatly hin-

Figure 8: SAC-IA and ICP alignment of the box

dered. However, basic filtering techniques, such as the color
filtering, proved to not be useful in our situation. A simple
approach to eliminating this issue would be creating a vir-
tual, predetermined sized box around the location of the ma-
nipulator and subtracting any points within this region from
the perceived region of interest. Another potential path for
this is in the previously mentioned related work by Krainin
et al (2011). In the paper, the authors use a Kalman filter,
which uses statistical measurements over time to determine
estimates of unknown variables, to track and distinguish be-
tween the object and the manipulator. They combine this
with a variation of the ICP algorithm to gradually create an
updated model of both the object and the hand as it moves in
the environment. We hope to research and implement these
techniques to evaluate the increase in alignment and useful-
ness as it relates to our situation.

We additionally plan to develop a way to fill in holes cre-
ated around areas of manipulator subtraction. In order to do
this, we will follow a similar approach as mentioned previ-
ously the related work of Krainin, Curless, and Fox (2011).
Similar to their work, we plan to replace the object on the ta-
ble and repeat our final alignment process. This reposition-
ing of the object could create issues further down the road
in the case that the table is crowded, causing confusion in
grasping the correct object. We hope, with the use of a par-
tial model, to track the object even when it is not in the arm’s
hand to reduce the impact of the hole filling process.

To address the issue of long computation times and to bet-
ter use the SAC-IA algorithm, we hope to combine our work
with a next best view, or similar, algorithm. A next best view
algorithm would be beneficial in this scenario as it would al-
low for the minimal amount of angles, and thus point cloud
data, of the object to be used in the alignment process. While
this would significantly reduce overall computation time, it
would require the use of the SAC-IA algorithm as the turns
would no longer be a set 20 degrees and could differ greatly
between each view.

Further, in creating features for use in the various align-



ment algorithms, we used FPFH features. These features
only take into account the curvature and geometry of an ob-
ject without color information. However, color patterns and
changes are an important characteristic of objects. We plan
to adjust our final alignment process to use features that con-
tain both geometry and color.

Once a successful model has been created, we hope to use
the model construction process as well as the model itself for
various applications down the road. This could include ob-
ject recognition and machine learning applications. By pro-
viding the robots in the BWI lab a database of 3D objects
that are commonly viewed or interacted with in the environ-
ment, object recognition can then be implemented to allow
the robot to potentially identify predetermined targets, such
as a bag of chips or a package, to retrieve. Following this, us-
ing a machine learning algorithm, we hope to train the robot
to determine the best way to manipulate objects within this
database. For example, train the robot to grasp and manipu-
late a water bottle in a different way than that of grasping a
fragile bag of chips.

References
Piaget, J. 1952. The Origins of Intelligence in Children (5th
ed., Vol. 8) New York: International Universities Press.

Krainin, M., Henry, P., Ren, X., Fox, D. 2011. Manipula-
tor and Object Tracking for In-Hand 3D Object Modeling.
International Journal of Robotics Research, 30(11), 1311-
1327.

Dorai, C., Wang, G., Jain, A. K., Mercer, C. 1998. Registra-
tion and integration of multiple object views for 3D model
construction. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(1), 83-89.

Krainin, M., Curless, B., Fox, D. 2011. Autonomous gener-
ation of complete 3D object models using next best view ma-
nipulation planning. Robotics and Automation (ICRA), 2011
IEEE International Conference. IEEE., 5031-5037.

Utexas-bwi/segbot arm. n.d.. Retrieved December 12, 2016,
from https://github.com/utexas-bwi/segbot arm/

Rusu, R. B., Cousins, S. 2011. 3d is here: Point cloud li-
brary (pcl). In Robotics and Automation (ICRA), 2011 IEEE
International Conference. IEEE., 1-4.

Miknis, M., Davies, R., Plassmann, P., Ware, A. 2015. Near
real-time point cloud processing using the PCL. Interna-
tional Conference on Systems, Signals and Image Process-
ing (IWSSIP). IEEE., 153-156.

Rusu, R. B., Blodow, N., Beetz, M. 2009. Fast Point Feature
Histograms (FPFH) for 3D registration. IEEE International
Conference on Robotics and Automation, 3212-3217.

Rusinkiewicz, S., Levoy, M. 2001. Efficient variants of the

ICP algorithm. In Proceedings Third International Confer-
ence on 3-D Digital Imaging and Modeling, 145-152.

Rusu, R. B., Dixon, M. 2016. Point Cloud Li-
brary (PCL): Pcl::IterativeClosestPoint Class Tem-
plate Reference. Retrieved December 12, 2016, from
http://docs.pointclouds.org/trunk/classpcl 1 1 iterative
closest point.html

Slzle, M., PCL Developers. In-hand Scanner for
Small Objects. Retrieved December 13, 2016, from
http://pointclouds.org/documentation/tutorials/in hand
scanner.php

Acknowledgments
We would like to thank Peter Stone, Jivko Sinapov, and the
Freshman Research Initiative Program at the University of
Texas at Austin for giving us the resources and guidance
necessary to pursue this project.

Resources
Link to our presentation: https://goo.gl/dVzg1d

Link to video footage: https://youtu.be/
eetU4vX8_F4

Link to our github repository: https://github.
com/katiewasnothere/model_3d_object

https://goo.gl/dVzg1d
https://youtu.be/eetU4vX8_F4
https://youtu.be/eetU4vX8_F4
https://github.com/katiewasnothere/model_3d_object
https://github.com/katiewasnothere/model_3d_object

	Introduction
	Related Work
	Methodology
	Lifting Object into View
	Object Detection
	Alignment and Registration

	Evaluation
	Object Detection Service 
	Alignment Service 

	Future Work
	References
	Acknowledgments
	Resources

