

Automated Three-Dimensional Object Scanning

Arnav Jain, Ashay Lokhande, and Brahma Pavse
Computer Science Department

The University of Texas at Austin
arnav_jain@utexas.edu, ashaylok@utexas.edu, brahmasp@utexas.edu

Abstract
This paper addresses the idea of optimizing a procedure
through which a robot with a camera could obtain the most
visual data while exerting the least energy. This procedure
does not just measure the most efficient viewset for energy
cost, but also ensures a minimum threshold for successfully
obtaining meaningful data. In this paper, we identify a few
key aspects of visualization that underlie this functionality.
The actual procedure is identified by simulating robotic
vision on Point Cloud Dataset files and estimating the cost
for this vision using real-life energy cost metrics. The Point
Cloud Dataset files are analyzed by finding the accuracy of
different camera viewpoints relative to the object’s center.
Each viewpoint is considered independently, and then
viewpoints are strung together to create view sets. These
view sets represent real-life instances in which all of an
object cannot be viewed from a single perspective. We
present the results of using this procedure, its success within
our simulation, and future implementations of this
procedure.

 Introduction1
The Building Wide Intelligence project Segway robots are
designed to autonomously roam the Gates-Dell Complex
main building. In providing many different services, the
robots are required to be adept at:

● Autonomously navigating and localizing in the
diverse areas of the Gates-Dell Complex.

● Understanding the surroundings in order to better
service humans and navigate the building.

● Understanding how to interact with objects while
navigating or giving virtual tours.

 Although the current robots are able to navigate
different floors by detecting obstacles and following maps,
they are not good at interacting with their surroundings. As
robots that tour the building, they should be able to interact

1
Thanks to Jivko Sinapov for mentoring us, and to the mentors for

providing guidance and maintaining the robots.

with objects and have knowledge of the objects that
surround them. Currently, these Segway robots have a
Segway base, many sensors, and a camera that allow them
to interact with their surroundings through navigation of
different environments. With a built-in arm, one of the
robots can correctly ascertain other traits of objects.
However, the Segway robots lack the ability to view an
object and construct a three-dimensional rendering of that
object. This rendering requires multiple different views to
be stitched together, posing the question of how to best
obtain these different viewpoints. The best algorithm to
obtain the best views (the greatest percentage of the object
viewed) can be approached in a number of ways [Faugeras,
1993].

Figure 1: Segway robots with Segway bases and cameras. Other

sensors located in the base are used to help the robot navigate the
Gates-Dell Complex.

 Related Works
Cost minimization algorithms all generally require a cost
algorithm which takes into account different metrics

[Elegbede, Chu, Adjallah, Yalaoui, 2003]. These metrics
have to be specific to the use case. In this case, that means
minimizing cost relative to viewing the object. Overall, in
object recognition and reconstruction, there are many
different methods utilized to best reconstruct the object
into a three-dimensional model.

Military Robots
One such example of object reconstruction is military
applications of robotics. In terms of national security,
unmanned military vehicles are the future for warfare.
With regards to national defense, many war situations are
found in hazardous zones, where resources are scarce and
the terrain is unforgiving. Being unmanned, the robot has
to navigate the terrain autonomously. Even robots are
remote-controlled, such as the majority of drones, require
some fall-back mechanism through which they could
readjust for the terrain [Shaker, Wise, 1987].

Figure 2: Unmanned, military scouting robot that has an arm and

a camera to navigate its surroundings.

 Furthermore, in an emergency situation, the robot

needs to have the ability to correctly and efficiently
identify objects around it and determine how to use the
objects. Especially with a lack of resources, many
unmanned robots could be utilized to scout out rough
terrains and determine strategic resources in the
surroundings. Similarly, with regards to unmanned naval
and space-based robots, it is pertinent for robots to have
this visual awareness of their surroundings. Figure 2 above
shows how most of these robots have cameras and arms to
interact with and understand their environment. However,
since most of these military robots are small, they have
small batteries and need to efficiently consume that energy
to be effective. The robot in Figure 2 follows energy usage
minimization principles to be effective as an unmanned
vehicle, especially in hazardous regions [Bhat, Meenakshi,
2016].

Normal Aligned Radial Feature (NARF)
A relevant methodology for filtering images and checking
for similarities in images can be found in the article: “Point
feature extraction on 3D range scans taking into account
object boundaries” by Steder, Rusu, Konolige, and
Burgard.

The focus of this paper is to present a keypoint
extraction method on three-dimensional point cloud data
for both object recognition and pose identification. The
authors' goal was to find the similarities between two
different images in order to understand which parts of the
images overlap. This allows one to determine what has
already been scanned and help distinguish between new
data from data that the robot has already taken into
account. In the experiment, the paper discusses using
single range scans, as obtained with three-dimensional
laser-range finders, in which the data is incomplete and
dependent on a viewpoint. In the paper they present a
normal aligned radial feature (NARF), "a novel interest
point extraction method together with a feature descriptor
for points in three-dimensional range data". The NARF
relies on detecting the borders of an object and having
objects placed in locations where the surfaces are stable, as
seen in Figure 3 [Steder, Rusu, Konolige, Burgard, 2011] .

The interest point detection relies on three ideas to
accurately detect interest points in a three-dimensional
image. It must take borders and surface structure into
account, select points that are reliably detectable from
different angles, and points that are in positions that
provide stable areas for normal estimation. The goals for
the development of the NARF Descriptor was to identify
the difference in occupied and free space, to make the
descriptor robust in handling different interest point
positions, and enable them to extract a unique local
coordinate frame at a single point. Once this procedure and
its calculations were explained, the paper introduces two
different experiments that test object matching and stability
in recognizing interest points from different distances and
angles [Steder, Rusu, Konolige, Burgard, 2011].

The above methodology, combined with some
metric for threshold energy or cost factor, is an efficient
and optimized manner of determining the ideal set that can
be potentially used to reconstruct the object in question.
This is a potential area of expansion and adaptation that
can be made to enhance the efficiency and ensure further
accuracy of results [Steder, Rusu, Konolige, Burgard,
2011].

Figure 3: An example of filtering and removing overlap of an
image using the NARF algorithm.

Segmentation and Analysis of Point Clouds
Another relevant paper describes how to approach large
objects which can range in 105 measurements in terms of
the number of points and how to accurately stitch together
images. Since robots need to take multiple views to
accurately get a full three-dimensional rendering of any
given object, it is important to consider this method of
stitching together point clouds. This article is called “Real-
time object classification in three-dimensional point clouds
using point feature histograms” by Himmelsbach, Leuttel
and Wuensche.

In this paper, the motivation behind the given task
was to assist a robot to navigate urban traffic as well as off-
road environments. In order to achieve this goal, the
authors combined two-dimensional and three-dimensional
image processing techniques. Two-dimensional data was
used for segmentation of point clouds into objects and
three-dimensional data was used as raw point clouds to
classify objects. The two-dimensional data was stitched
together using information of relative position with regards
to the entire point cloud [Himmelsbach, Leuttel,
Wuensche, 2009].

Beyond utilizing both forms of image processing,
the paper goes over fast object feature extraction, a unique
perspective to consider with military robots and object
recognition. Since most fast objects are hard to capture, the

techniques used to recognize and map them can be helpful
for robots to quickly obtain information about their
environment without having to analyze the object fully.
The fast objects are captured by histograms over point
features. This paper is unique in its ability to implement a
way to incorporate two-dimensional and three-dimensional
methodologies to solve the problem. For future purposes,
this paper helps account for very large point clouds
[Himmelsbach, Leuttel, Wuensche, 2009].

Figure 4: Some hand-labeled examples of point clouds used for
training a vehicle classifier. Positive examples (top 3 rows) and

negative examples (bottom 2 rows).

For other implementations of imaging techniques,

the paper discusses vehicle classification theories that can
be used to classify specific vehicles. By using data sets of
vehicles to train a vehicle classifier, the researchers hoped
to train the visualization of vehicles to correctly identify
the vehicle recognized. Figure 4 above gives examples of
data points within a potential training dataset. This
classification is especially relevant for military robots that
need accurate classification algorithms to translate point
cloud datasets into clumps of points that define objects.
Visualization of objects lays the framework for object
classification, upon which robots can eventually take
specific actions. The training works by rewarding correct
classifications and negating incorrect classifications. In this

manner, the classifier generalizes rules for classifying
vehicles or other objects [Himmelsbach, Leuttel,
Wuensche, 2009].

Methodology
Overall our goal was to determine a general trend in the
creation of the most optimal set of views that performs an
accurate three-dimensional scan of an object. The purpose
of our project may be derived from the possibility of
applying these findings to three-dimensional scans of
unknown objects. Our project largely deals with
simulations in rViz with objects that we already have full
three-dimensional scans of. This allows us to test our
findings with the data we used to derive our results from.

In an effort to make our work as compatible and
expandable as possible, we divided our solution into four
key C++ files. These four portions were each made to
complete a single overarching task that could be combined
with the other portions of the project while still being
easily adaptable.

The four sections of code we have include two
separate nodes that must run simultaneously. The first node
is rvizView which we use to publish the point cloud dataset
we need as a topic for the rest of the project to use. The
second process includes three separate C++ files. This
process contains our findPoints, generateViews, and
generateViewset files. Together these files take the data
published in rvizView, create viewpoints around the
object, determine how much of the object can be seen from
these views. Finally, generateViewset determines the most
efficient collection of views in a collection we call a
viewset..

Rviz Viewer
The first process that our project completes was developed
as the rvizView.cpp file. In this ROS node, we convert a
specified Point Cloud Data (.pcd) file into a message of
type sensor_msgs::PointCloud2. This resulting message is
then published to a topic we titled “/cloud” in order to be
referenced by other parts of our project as well as to
display on the rViz simulator. Besides publishing the
dataset to a topic, we could have passed this PointCloud2
object into the functions we will be using it in. However,
the main purpose behind setting up the topic was to make it
easier for future work to send isolated object data in the
form of a topic containing PointCloud2 data. It was also
easier to visualize the entire object in rViz by publishing
the .pcd to the “/cloud” topic [Kammerl, Woodall, 2016].
 The second process that completes the remainder
of our project is comprised of the three remaining files.
Only one of these files, generateViewset, contains a call
back and runs as a ROS node. The other two files contain
code for function calls which are used in generateViewset.

See Figure 5 below for a visual depiction of how these files
interact.

Figure 5: A diagram displaying the behaviors and interactions
between portions of our project. The blue arrows are used to
display which parts of our code contain callbacks and run as

ROS nodes. The green arrows are used to display function calls.
The red arrows display return statements. Finally the gray

arrows indicate that a file is publishing information. 1:
generateViewset calls generateViews once in order to create the

sets of views around the object. 2: generateViews calls findPoints
once for each view created. 3: findPoints returns information

about that view in relation to the object. 4: generateViews sends
each view and the information obtained in step three back to

generateViewset. 5: rvizView publishes the point cloud dataset to
the “/cloud” topic.

Generating Viewsets
This process beings with generateViewset. Though this
function beings the process, it is also where it ends. It
requires both generateViews and findPoints to feed it the
data it requires to determine the most efficient collection of
views. Thus, we will describe the actual data being used by
this file after discussing the files overall goal and function.
The process begins with the assumption that
generateViews and findPoints have correctly fed the
information to generateViewset in the form of a two-
dimensional vector. In this two-dimensional vector, each
element in the innermost vector contains a struct with the
Pose for the view, a filtered cloud containing only points
that can be seen from that view, a boolean map which
indicates which points of the original object can be seen,
and a double that indicates the percent of the object seen
from that view.

 Before searching through the views, we create
five initial viewset_object objects that are initialized with
the starting view of the object at five different angles. This
portion of the code is easily expandable and adaptable to
incorporate an assortment of camera angle positions. The
viewset_object contains a vector of the views in this
viewset, a boolean map that is a combination of all the
views in the viewset, and a double holding the total
percentage of points that can be seen, based on the
combined boolean map. These viewset_objects will be
filled with the best combination of views based on that
starting position. Then these viewset_objects can be
compared to determine the most efficient set out of these
optimized sets.
 The procedure we used to determine the most
efficient set of views primarily focuses on the boolean map
associated with each view. Each view is compared to the
current boolean map of the viewset_object to determine
which view would add the most information to the current
set of views. This process occurs indefinitely until the
viewset_object’s total percentage viewed is equal to or
greater than a defined threshold value. This threshold value
is the degree of accuracy desired for the three-dimensional
scan.

Generating Views
The file generateViews.cpp defines a function that is called
by generateViewset to create views, which we represent as
Pose objects, around the object. These views are created in
a manner that best fits the Building Wide Intelligence
project Segway robots in the Gates Dell Complex at The
University of Texas at Austin. These robots currently
operate with cameras at a fixed height. However, it may
still change its orientation. Due to the fact that the camera
may not move its relative position on the robot, we create
the views at a fixed height. The height is stored as a class
constant and can be easily adapted for different heights or
even robots that may change the height of their camera
views. To give the best combination of angle and position
for different camera views, we chose to create the views in
the form of a circle around the object. If we were to expand
our code to work with robots that may change the height of
their cameras, such as quadcopters, we would generate
views as a hemisphere around the object. Regardless, we
create the positions of the camera views such that each is
ten degrees around the the circle from the next closest
view. The circle’s size is determined by multiplying the
length or width of the object, whichever is larger, by 1.5.
This value is used as the radius of the circle that we create
the views on. The orientation of each camera is adjusted so
that it is always looking at the center of the object. For
each view created, generateViews makes a call to
findPoints. The information from calling findPoints on
each view is returned as a struct. The generateViews
function calls returns a two-dimensional vector filled with
this findPoints data. The elements of the outer vector

contain a vector that corresponds to a different view
position. Each element of this vector contains the data for
each separate view at the position. The difference between
the views within the outer vector is each views orientation.
The two-dimensional vector is returned to generateViewset
at the end of generateViews.

Finding Visible Points
The final component of our project is the findPoints.cpp
file. The file consists of a primary method called
findPoints, which is called from the above
generateViews.cpp file. When this method is called, a
PointCloud of the object in question and a given viewpoint
are passed in as arguments to the method. At a high level,
the method traverses the points of the PointCloud and
generates a filtered cloud based on our filtering algorithm.
In addition, the method calculates the percentage of points
viewed from that viewpoint and generates a boolean
structure containing data on which of the points in the
point cloud are visible. All this data is returned to
generateViews through a C++ struct.

Our filtering algorithm is vital for simulating
robotic vision within rViz. The algorithm involves
traversing the points of the PointCloud. For each point, the
method computes the slope between that point and the
given viewpoint (passed as the argument). After the slope
is calculated, the point is added to the map with the slope
as a key and the point as the corresponding value. For now,
this point is considered visible; thus, in the boolean
structure, this point is entered as the key and its
corresponding value as 1 (to designate true). As the method
traverses the cloud, it may find a point that has the same
slope as a point that is already in the map. If this is the
case, the method must find the point closer to the
viewpoint. Using Eucledian distance formulas, the method
determines which point is closer and accordingly update
the map. The closer point is considered visible since it
blocks the view of the farther point. In the case that the
new point is relevant (closer) and the old point is not
visible, the method updates the boolean structure and
marks the old point as 0 (false - not viewed) and the new
point as 1 (true - viewed). Ideally, at the end of this
traversal, we have a map of unique slopes to the closest
viewed points for a given viewpoint.

Given a camera view, findPoints can determine all
the points that a specific camera viewpoint can see. All
these points are added to the PointCloud object. This object
is published in generateViewset if it is one of the most
optimal views. The final struct returned consists of: a
geometry::Pose object of the camera view, a PointCloud
object of the filtered cloud, a double of the percentage of
the object viewed, and the boolean map of visible and
hidden points.

Results

Once we had unit tested our code to ensure it was
accurately producing the intended data, we applied our
algorithm and code on different PCD data sets. As
discussed earlier, running the code on PCD files enables us
to check our working model in simulation. Further results
involve applying the algorithm on the robot itself.

The general process by which we conduct
experiments and collect data is consistent for all PCD data
files. Our rvizView.cpp node reads a PCD file of the object
we wish to test (spray bottle, cup, office etc) and passes
this object as a PointCloud through our algorithm. At the
conclusion of the program's runtime, our algorithm outputs
the following relevant data:

● The number of points in the PCD.
● The percentage of the object viewed in the

optimal viewset.
● The number of views in the optimal viewset.
● The cost metric calculated for the robot to reach

each view.

Table 1: Data collected from a few PCD files of varying sizes and
with different percentage viewed thresholds.

Item No. of
points

Percent
Viewed

No. of
Views

Energy
Cost (J)

Distance
Cost

Cup 2500 97.24 2 85.40876 3.317
Cup 2500 99.7 3 130.9583 5.086
Cup 2500 99.88 4 131.8596 5.121

Spray
Bottle 2512 98.22 2 105.2095 4.086
Spray
Bottle 2512 99.92 3 110.5910 4.295
Spray
Bottle 2512 100 4 139.3782 5.413
Hand 5080 96.98 2 131.0356 5.089
Hand 5080 99.53 3 140.0992 5.441
Hand 5080 100 5 152.8191 5.935
Office 307000 32.6 1 0 0
Office 307000 100 2 206.5311 8.021

From the the data on the left, we are able to extract more
useful information such as how does the cost vary as we
increase the size of our object. This is a relevant metric that
is required to eliminate wasteful work and optimize robot

visualization in military applications. Collecting data from
many object files, we graphed the relationship.

Figure 6: Graph that represents the Energy Cost (in Joules) vs
the Size of the Object.

As we can see from above, as expected, the energy
increases as the size of the object increases. It is interesting
to note that while we expected a positive linear trend, the
relationship is not actually linear. Instead, it appears to be
logarithmic. This is confirmed via a best-fit curve.
However, given our limited data size, this relationship may
just be coincidental.

In addition to the numerical figures acquired,
below are pictures of the the rViz simulations.

Figure 7: Robot visualizing the cup with 2 views and a 97.24%
accuracy.

Figure 8: Robot visualizing the hand gesture with 2 views and a
96.28% accuracy.

Figure 9: Robot visualizing the spray bottle with 4 views and a
100% accuracy. Note: Although our algorithm outputted a 100%
accuracy, it is much more likely that the robot only sees about

99% or greater. This error could be due to comparison
inaccuracies or a lack of precision within certain calculations in

the algorithm.

From the images above, it is reasonable to conclude that
the views considered optimal by our algorithm comply
with our common sense. However, it is intriguing to see
how each view adds a specific percentage of extra
information to the rendering. More importantly, some
views do not add significant amounts of information. As
seen with the hand above, the robot could see 96.98% of
the hand with two views, but required two more views to
just another 0.46% of the hand.

In general, we found that two views will give a
robot a decent perception of most objects. We define a
decent perception of objects as a visual accuracy of at least
85%. This accuracy can be fine for object identification;
however, for object recognition (a potential future
application), the robot needs more complex visual data. For
example, with the hand gesture, the robot could probably
tell that there is a specific gesture with just three views.
But for the robot to understand emotion in that hand

gesture, it needs the extra two views. In the end, this
algorithm shows us that object recognition requires more
information about the nature of the object and the amount
of complexity necessary for identification. Since more
views involves energy consumption, this information is
necessary to achieve the most cost-efficient data above a
certain minimum.

Future Work
Object classification is the intended application of this
research. Classification can be broken down into two parts:
isolating key points of interest and then correctly
identifying each object and its significance.
Figure 10: Three-dimensional point cloud with objects identified
through segmentation techniques, represented by 3D bounding

boxes (green).

Isolating Key Points
Feature extraction within dense point cloud datasets is
important for robots to quickly notice surroundings. As in
the aforementioned implementation of military robots,
scouting robots used by Defense Advanced Research
Projects Agency need to quickly place points together into
a single point cloud that constitutes each object. Feature
extraction is done by utilizing two-dimensional data sets to
measure differences in key image properties. A difference
in texture, background, or other feature could result in a
change from one object to the next. These segmentation
techniques can help a robot identify different objects
within a point cloud, as seen in Figure 10. When
considered cumulatively, the point clouds are translated
into smaller, condensed images which are local to that
specific object [Himmelsbach, Leuttel, Wuensche, 2009].

This form of feature extraction is similar to many
library functions that utilize image analysis to identify
people and humans. With these images, it is easier for a
robot to correctly identify the object, its nature, its
properties, and its significance [Ziafati, 2016].

Identifying the Object and Significance
Object identification requires taking three-dimensional
data from the Point Cloud Dataset related to the single
object and running it through an object classifier. For our
research, the next step would be to train a classifier that
could identify certain objects. For example, for a military
robot, the classifier would be trained on datasets of
common military weapons, resources, and key points of
interest. On the other hand, the Segway robots in the
Building Wide Intelligence lab would benefit from being
able to recognize common objects found within the Gates-
Dell Complex, such as white boards, chairs, tables and
other robots. This form of object recognition would help
facilitate a truly seamless human-like tour experience for
the Segway robots.
 The training data set we would test it against
would require examples of positive data and negative data.
As we found in the “Point feature extraction on 3D range
scans taking into account object boundaries” paper by
Steder, Rusu, Konolige, and Burgard, these positive data
sets would reflect correct examples of the object and
negative data would reflect incorrect examples of the
object. By giving the classifier examples of correct data
and incorrect data, it would eventually utilize heuristics
and commonalities spotted between the correct data. In
addition, it would avoid commonalities between the
incorrect data. In this manner, the classifier would allow us
to identify important objects for the object to eventually act
upon and interact with the environment [Aldoma et al.,
2012].

Acting on Objects
Upon identifying the item, the robot should be able to act
on the object. Although the current Building Wide
Intelligence Segway bots have some ability to manipulate
objects and characterize objects from these interactions,
these interactions can be improved through visual
feedback. Ideally, a robot could see an object, recognize it,
and then know how to use that object. For example, the
robot could see a squishy ball, recognize it, and know that
it can squish the ball. This function would require training
the robot through reinforcement learning. The robot would
be allowed to interact with the item in any ways and good
interactions would be rewarded while bad interactions will
be discouraged. In this manner, the robot would lean
towards the favorable interactions, and over time learn how
to interact with a specific object. Upon training with many
different objects and then linking those actions to the
images, the robot should be able to interact with its
surroundings. For the Building Wide Intelligence robots,
specifically, this could mean pushing the button to call an
elevator or moving a chair out of the way.
 This sequence of actions is very important for
allowing the robot to interact with its surroundings. In the
military application explored above, the robot would be

able to quickly scout the environment and act upon certain
actionable objects. However, for portable robots, it is
important to minimize the cost of these actions.

Robot Movement for Different Size Objects
In minimizing costs, the robot needs to accurately estimate
the cost for a considered course of action. In the case of
different sizes of objects, this may require moving the
camera, using the arm to move the object around, or
driving around the object. If the object is a wall, the
camera has to move. If the object is a table, the robot has to
move. If the object is a small stuffed animal, the robot has
to move the object with the arm. Each of these requires
different actions that use different amounts of energy. In
the cost estimation we use for our data in this paper, we
assume that the robot moves around the object. However,
that may not always be the most optimal means of
visualizing the object. Using the arm takes way less energy
than moving a Segway base [Heinzmann, Taylor, 2007].
As such, we would include accurate estimation of cost for
different modes of interaction [Mohammed, Schmidt,
Wang, Gao, 2014].
 This accurate estimation would allow us to
generalize our algorithm for finding the most optimal set of
views for all forms of environmental interaction. This is
the next step in more accurately identifying what is indeed
the most optimal set of viewpoints.

Conclusion
Through this paper we explore determining the

most efficient set of camera positions for a mobile robot to
create a complete three-dimensional scan of an object. We
explore the development of a general procedure for
scanning an unknown object through our testing in
simulation. We take fully developed three-dimensional
scans and visualize, through rViz, how much of the object
our procedure would capture as well as the cost of what we
determine is the best set of those views. Through rviz we
may also visualize the views in order to make
generalizations. The biggest challenge we faced was
adding the factor of angles to our visualization of the
objects. What our biggest challenge in simulation was that
the PCD files that we found had a lot of space between
points. This space produced false results for our method of
determining whether or not a point is can be seen from a
view. The problem arose when the point was on the other
side of the object from the view, but could still appear to
be viewable because there was nothing blocking the view
from the point. Another point of difficulty that we
encountered was factoring in the angle between the point
and the camera view. This was to account for the range of
angles that the camera could see from a given orientation.

Overall, we were able to complete our goals while
only sacrificing a few features we wished to incorporate.

Our project was entirely centered around simulation with
key features made to be easily adaptable for
implementation with the Building Wide Intelligence
Segway robots at The University of Texas at Austin. We
were able to generate views around an object, collect the
required data, and determine the most effective set of these
views. We were able to add the factor of cost as well. We
were not able to go as in-depth with the cost function as we
would have liked. This is because we did not factor in
whether or not the object would be picked up by the robot
or remain where it was found. Overall this project can be
used as a stepping stone for further derivations of trends
and functions.

References
Aldoma, A., Marton, Z., Tombari, F., Wohlkinger, W., Potthast,
C., Zeisl, B., . . . Vincze, M. (2012, September 10). Three-
Dimensional Object Recognition and 6 DoF Pose Estimation.
IEEE Robotics & Automation Magazine, 80-90.

Bhat, S., & Meenakshi, M. (2014). Vision Based Robotic
System for Military Applications (Rep.). IEEE.

Elegbede, A., Chu, C., Adjallah, K., & Yalaoui, F. (2003).
Reliability allocation through cost minimization (1st ed., Vol.
52, IEEE Transactions on Reliability, pp. 106-111, Rep.). IEEE.

Faugeras, O. (1993). Three-dimensional Computer Vision: A
Geometric Viewpoint. Boston, MA: Massachusetts Institute of
Technology.

Heinzmann, J. D., & Taylor, B. M. (2007). The Role of the
Segway Personal Transporter (PT) in Emissions Reduction and
Energy Efficiency (pp. 4-5, Rep.). Segway.

Himmelsbach, M., Luettel, T., & Wuencshe, H. (2009). Real-
time object classification in 3D point clouds using point feature
histograms (Intelligent Robots and Systems (IROS), Rep.).
IEEE.

Mohammed, A., Schmidt, B., Wang, L., & Gao, L. (2014).
Minimizing Energy Consumption for Robot Arm Movement (pp.
400-405, Rep.). Elsevier.
Shaker, S., & Wise, A. (1987). War without men. Robots on the
future battlefield. Elmsford, NY: Pergamon Books.

Steder, B., Rusu, R. B., Konolige, K., & Burgard, W. (2011).
Point Feature Extraction on 3D Range Scans Taking into
Account Objesct Boundaries (Robotics and Automation
(ICRA), Rep.). IEEE.

Ziafati, P. (2016, February 12). Face_recognition.

