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Abstract. Advances in the field of cognitive science and developmen-
tal behavior has shown that infants typically learn via association and
through visual-manual exploration [1]. To mimic this developmental learn-
ing in robotic agents, the robot must be able to interact with objects and
learn features as a result of its actions. Specifically, we intend to move
past solely visual cues in order to discern the characteristics and behav-
ior of objects. In order to achieve this, we will utilize various machine
learning algorithms to train the robot to be able to accurately predict fu-
ture results. The process will consist of three major parts, 1) having our
robotic arm manipulate different objects and recording all state informa-
tion, 2) picking pertinent features to use as a basis for classification, and
3) training based on these features and then predicting the trajectory of
objects depending on how the robot interacts with it.

1 Introduction

As humans, after our early ages, we are able to accurately discern what objects
are like. This means being able to understand objects based on their shape, size,
density and other such features. We can fairly easily predict what will happen to
a half-full water bottle if we push it towards the top and contrast that with the
result of pushing it at the bottom. With our understanding of the physical world,
we know that pushing at the top is likely to make it tip over (because of torque),
and pushing it at the bottom will at most make it slide across the surface it’s
on (or perhaps do nothing at all). Results of this type obviously depend on the
action taken, where on the object the action is utilized, and how much force
is used to complete the action. Clearly, it is not possible to "hard-code" this
knowledge into any physical agent as it is highly-dimensional and not feasible to
encode every combination. As such, it is necessary that we explore other avenues
in order to implement such understanding.

There are many applications for this kind of understanding. In the general
case, knowing how objects behave and react to certain actions will allow a robot
to make more complex decisions in a complex environment. The uses for such
intelligence are widespread, and we demonstrate this variety by listing some ex-
amples of what our robot could potentially do. Consider the case where we want
the robot to deliver an object to someone. It may know how to get somewhere,



but it is not entirely useful if the arm cannot safely pick up an object. If we
want to reach for something and there is an obstacle in the way, being able to
consider the consequences of moving the obstacles without any harm would be
a useful skill to have. Furthermore, understanding objects in the surroundings
could allow the robot to do neat things like cleaning! The specific applications
of understanding object dynamics are seemingly limitless.

2 Background and Related Work

This ability to understand object dynamics is a fairly important aspect of "in-
telligence" for any physical agent that must interact with its surroundings. To
implement this ability in our robots in the Building Wide Intelligence (BWI)
Lab, we look towards some studies in human development as well similar robotic
experiments. We see from research in cognitive science that human infants typ-
ically learn in two ways - by association and by visual-manual exploration [1].
This second method occurs when children play with toys or objects and then
gain some understanding of them. Similarly, we hope to train our infant-like
robotic arm to manipulate objects, and glean data from said manipulation. If
we can store data on the characteristics of the action and the resulting move-
ments, perhaps we can predict what those actions will result in when applied in
the future. In essence, can we use the results of previous iterations to guess the
trajectory of subsequent ones.

Parts of our process are similar to the work seen in [2]. This experiment
attempted to classify a large group of objects into several categories based on
multiple features. Sinapov et al. grouped 100 objects into 20 groups and further
clustered the groups into a hierarchy as seen in figure 1. The features Sinapov et
al. extracted were from visual, proprioceptive, and audio data. Proprioception
takes into account the nearby parts of the body (in our case this will be the
arm) as well as the relative motions of these parts. This paper makes the point
that multiple sensory modalities can provide different different viewpoints and
insights on certain events. As such, we hope to use both visual and propriocep-
tive data to understand the dynamics of the objects we are studying. However,
we will likely be using a smaller subset of items than those used in this work.

For the complete proposed work-flow to achieve this goal, see the Technical
Approach section.

3 Problem Formulation and Technical Approach

Intelligent physical agents (robots) should be able to understand objects. How-
ever, currently the agents do not yet have an understanding of the dynamics of
objects, i.e. how would an object react if action A was acted upon the object. If
we can teach our robots to play with objects and then learn from them that, the
way infants do, then we could make our robots more "intelligent". The robot



Fig. 1. A hierarchical clustering of 20 categories based on the confusion matrix en-
coding how often each pair of categories is confused by the robot’s context-specific
category recognition models [2].

we will be using to train and collect data from is the Kinova robot arm in the
Building Wide Intelligence (BWI) Lab. The arm sits on top of a Segway base.
The arm itself has six degrees of freedom and has 2 gripper fingers.

To solve this problem, we plan to use three steps: collecting data, extracting
features, and predicting results from machine learning algorithms.

3.1 Collecting Data

We plan on training the robot with three basic motions: push (across the table),
drop, and squeeze (push from the top of an object). For each of the three basic
actions we want to train the physical agent on, we want to add parameters to
the actions. For example, the angle/ orientation at which the object is originally
placed test each motion at different angles, the position on the object where the
motion is performed (i.e. the top vs the bottom of the object), the force/ velocity
that is applied to the object, etc.

In Jivko’s paper, ’Grounding semantic categories in behavioral interactions:
Experiments with 100 objects’, Jivko et al, trained the robot on a large data



set (100 objects) with a few data points/ behaviors. However, in this project we
want to focus on learning the dynamics of objects and will instead be training
the arm robot on a smaller set of objects (10-20 objects) but with many varia-
tions of actions/ behaviors (dozens of actions). In addition, the original location
of the object will be kept the same to remove any noise from the background.

The raw data that we will collect will include both visual and proprioceptive
data. Visual data will include the color/ RGB frames, SURF to extract the
main feature points, and optical flow of before, during, and after the action
is performed. The proprioceptive data collected will detail the force each joint
applies during the action. In addition, the position and orientation of the arm
and object before and after the action is performed, and the qualities of the
action performed (the parameters on actions detailed above).

3.2 Extracting Features

Once all of the raw data is collected, we will want to extract the important
features from the raw signals. The main questions we want to answer from the
data collected are

1. Is there any change to the position or orientation of the object?
2. How far away did the object end up?
3. How long did the object take to get to it’s final position?
4. What path/ trajectory did the object take?

These questions can be answered by getting the important information/ features
from SURF and optical flow.

Fig. 2. Illustration of the proprioceptive feature extraction routine. The input signal
is sampled during the execution of a behavior at 500Hz and consists of the raw torque
values for each of the robot’s seven joints. Features are extracted by discretizing time
(horizontal axis) into 10 temporal bins, resulting in a 7 x 10 = 70 dimensional feature
vector. [2].



The proprioceptive data collected on the forces used by each of the joints
(sampled at 500 Hz) will provide many data points. Obviously, this will provide
too many data points to feasibly feed and train in a machine learning model. To
solve this issues and extract the main features, the time (horizontal axis) will be
discretized into ten temporal bins, as shown in Figure 2. A similar technique is
used to extract the important auditory signals as shown in Figure 3.

Fig. 3. Illustration of the auditory feature extraction procedure. The input consists of
the discete Fourier transform spectrogram of the audio wave recorded while a behavior
is executed. The spectrogram encodes the intensity of 129 frequency bins and was
calculated using a raised cosine window of 25.625 ms computed every 10.0 ms. To reduce
the dimensionality of the signal both the time and the frequencies were discretized into
10 bins, resulting in a 10 x 10 = 100 dimensional feature vector. [2]

3.3 Machine Learning Algorithm and Predicting Results of Actions

Once the input and output signals have been collected, they will be fed into a
machine learning models to train the physical agent to be able to predict the
effects of the actions it performs on various objects, i.e. be able to predict the
trajectory the object will take as the result of a push at certain angle and ve-
locity. For example, Sinapov showed that it was possible to train the physical
agent to predict and classify possible trajectories and object will take, as shown
in Figure 4 [3].

There are several possible machine learning models that could be used to
train the robot. Some examples include category recognition model, k-nearest
neighbor model, decision tree learning, reinforcement learning, deep learning,
and neural networks. WEKA (Waikato Environment for Knowledge Analysis)
may be used as a simple and efficient way to test and use multiple machine
learning models. As we further know our specific inputs and outputs, we will be
able to determine which machine learning will be best to use.



Fig. 4. All twelve leaf outcome classes of the learned taxonomy for the L-Stick tool.
The dark trajectory shows the outcome prototype for each leaf class in the learned
taxonomy, while the lighter trajectories visualize the observed outcomes that fall within
vj [3].

4 Metric for Success and Evaluation

We will measure our success in three main ways: Accuracy of prediction from
the machine learning model, ability to classify objects, and ability of judging
behavior of new objects it has not seen before.

4.1 Machine Learning Prediction

We will want to see how accurately the robot can predict the trajectory objects
will take. For example, we will compare the predicted trajectory (as mentioned
above) with the actual trajectory.

4.2 Classification

We want to see how accurately the robot can classify objects into separate cat-
egories (i.e. empty box, full box, empty bottle, etc.). This can be calculated
from

%Accuracy =
#correct classifications
#total classifications

× 100

.



4.3 Novel Objects

Last, but not least, we will want to see the the trained robot will be able to
predict the trajectories of objects and classify new objects it has not yet seen or
been trained on yet.

5 Expected Contribution and Extensions

As mentioned above, we hope to be able to predict the trajectories of objects
given a motion/action that the robot performs. That, in essence, is the overarch-
ing goal of this project. The applications of this feature will follow after. There-
fore, if we can provide some basis for learning about the dynamics of objects,
we could apply this to the many possibilities enumerated in the Applications
section, as well as other extensions. For example, we would like to be able to
generalize our understanding to more motions, not just the ones we trained and
tested on. Similarly, removing the dependency of the type of object would also
be a logical next step as we want to be able to make estimates about all objects,
not just a tiny subset. Lastly, we could demonstrate true understating if we were
able to make observations in the reverse direction. For example, if we are able
to predict that a bottle of a certain weight will roll a certain way, it would be
impressive to see a bottle rolling and classify its characteristics. The scope is this
area of inquiry is fairly large, and we hope to explore as much of it as possible.
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