
1

Expanding Virtour
Walter Sagehorn

Abstract—Virtour, developed by the Building Wide Intelligence
Laboratory at UT Austin, is designed to give web-based virtual
tours of the Gates-Dell Complex at UT. This project improves
Virtour by making it more user friendly and informative as
a tour system and improving its capability to be utilized as
a research tool. This was accomplished by integrating CMASS
(Centralized Multi-Agent Status Server) into Virtour as a scalable
and secure means of data transfer. The inclusion of CMASS
into the BWI system allowed improvements to be made on the
user-facing end of Virtour and also introduces a tool for robot
status dissemination across the entire lab system. This paper also
explores other current issues in Virtour and possible future work.

I. INTRODUCTION

Virtour has proved to be a benefit to the University of
Texas as a platform for virtual tours and the Building Wide
Intelligence (BWI) lab as a research tool. However, there are
some areas in which Virtour can be improved. Virtour, despite
being a virtual tour, does not provide those on tours with
information about the things they are seeing or what the robot
is doing. Another area that Virtour could be improved in is
shared autonomy among users. Currently, one user acts as the
”tour leader” and provides the robot with high-level objectives.
As suggested in previous studies, it would be restrictive to the
majority of the users if only one controlled the experience.

CMASS was originally developed to replace the existing
DNS with a system that could keep track of more than
just an IP address. It was soon realized that this could also
prevent direct communication between the robot and Virtour
application, which could cause problems for both parties.

II. RELATED WORK

A. Virtual Tours
The concept of using robots to give virtual tours is not new;

much of the early research was done on robots giving tours of
museums. Some of the first work was done by the University
of Bonn in Bonn, Germany. A team of researchers built an
autonomous mobile robot called RHINO[3][4] that moved
around the museum and interacted with visitors in person and
on-line through a web interface.[2] The web interface[9] was
a Java applet like the one in fig. 1) that gave background
information about the robot along with photos from the robot’s
cameras obtained using the client-pull technique. The web
interface also gave users the ability to direct the robot through
high-level objective commands. The researchers experimented
with differing levels of shared autonomy and shared control
between on-line tourists and tourists physically on location.
They stressed the importance of low-bandwidth communica-
tion and placing all relevant robot information on one web
page. They also cautioned that giving a single user total control

may restrict access to the robot to a unacceptable degree. They
later revised the robot and web page (seen in Fig. 2)) and
deployed it at the Smithsonian museum.[10]

Fig. 1. The Java applet used to interface with RHINO.

Fig. 2. The update Java applet used to interface with Minerva.

These studies give tours of sites by visiting their location,
but it is important to not just visit a location but to prominently
display the object of focus for the on-line tourist to view.
Researchers at the National Chengchi University in Taiwan
developed a path-finding algorithm that takes what an agent
sees into account, which would be very useful for solving this
problem with tours.[6] Virtour, the project this one seeks to
improve upon, is also a system for virtual tours. It features



2

live video feed, a single tour leader, and high level directives
like ”visit room.” [5]

B. Multi-robot Communication and Security
Authors of an editorial on the state of multi-robot systems

outlined the seven principle topic areas as:
• Biological Inspirations;
• Communication;
• Architectures, task allocation, and control;
• Localization, mapping, and exploration;
• Object transport and manipulation;
• Motion coordination; and
• Reconfigurable robots [1]

CMASS would most likely fall under ”Communication,” as
it serves primarily as a method of communication between
robots and a server. A central concern of CMASS is security-
a broad field of research in itself. Robert Morris and Ken
Thompson provided a case history on passwords and using
them to secure a system.[8] A more niche element of CMASS
is key stretching, which is described in detail by Colin Percival
in his paper about key derivation. [7]

III. METHODOLOGY

A. Building a centralized multi-agent status server
Before the Virtour system could take advantage of CMASS,

it had to be implemented and integrated into the robot system.
As stated before, CMASS began as a replacement for the
DNS that mapped robot names to IP addresses. The DNS,
called smallDNS, was originally written in Python. It consisted
of two parts, a program running on the server that could
distribute information as a web server and also contact robots
to determine if they were running. The second part was a script
that ran on the robots that periodically pinged checked for an
IP address change and, if it found its IP had changed, it would
ping the server to update its entry. This method of direct-robot
communication isn’t scalable in either direction; Virtour with
many robots would be unusably slow while many simultaneous
Virtour connections to a single robot would essentially DDoS
it and prevent it from performing higher priority tasks like
navigation. Also, since the server was written in Python, it
lacked efficient concurrency. The server was rewritten in the
Go programming language to solve this problem. This rewrite
became the basis for CMASS, which is also written in Golang.
Once it was clear that useful information could be sent in
the ping to the server, we began to think of ways to send
it. It made sense to send them via HTTP requests because the
server can then be a single HTTP handling program and handle
robot traffic and web traffic from Virtour or other places. The
cURL C++ library was used to send the request from the robot.
Since the valuable information from the robot was available in
the form of ROS topics, it was reasonable to write the client
program as a ROS node that could subscribe to topics and
send their contents to the server via cURL. Since the ROS
node would only run when the BWI robot code was running,
there needed to be a way to kept the robot’s IP address up
to date when the robot is on but not running ROS nodes. An

approach similar to the one taken by smallDNS was taken- a
python script that checks for an IP change and pings the server
if it finds one was written and runs periodically as a cron job.
The server is essentially a standard web server that takes HTTP
requests from two different groups and as such it has 2 types
of URLs. The first type serves to update entries and consists
of one path, /update. Robots pass data to the server as URL
parameters after the /update path. The server responds with
affirmation that the update was successful, unless there was
an error, in which case it returns an error message and does
not update the record of the robot. The other type of request is
from the web, usually Virtour. These paths provide access to
the server’s stored robot information. Below are the supported
paths and what they serve:
• /text all robot info in human-readable format
• /json all robot info in JSON
• /hosts all robot name:IP pairs in text*
• /hostsjson all robot name:IP pairs in JSON*
• /hostsalive active robot name:IP pairs in text*
• /hostsalivejson active robot name:IP pairs in JSON*

* - Indicates inclusion for legacy support. The system also
automatically saves a copy of the data to disk when a record
is updated. When the program is started, it looks for a local
copy of the previous run’s data so it can pick up where it left
off. If it doesn’t find one, a new one is made when the first
update is performed.

Fig. 3. The structure of CMASS.

B. Securing CMASS
Since the server that CMASS is running on is accessible

from outside the UT network, there needed to be some way
to secure the system. Ideally, we would like to be able to
confirm that the update request is coming from a robot within



3

Fig. 4. The flow of data within the CMASS security system.

the lab. The first solution that was proposed was to just leave
the system unsecured and trust that attackers just don’t find
the system or deem it worthy of being tampered with. Another
idea proposed was to use SSH to modify the local copy of the
robot’s statuses.

The solution that was implemented is a token based au-
thorization system. It depends on a key known by both the
client and server beforehand. When a client wants to prove
that a message is being sent by a trusted source, it hashes
the message using the key as salt. The hash function used was
SHA-256. It feeds the result back into the same function again,
again using the key as a salt in a effort to avoid reducing hash
space by repeated hashes on digest. This process is repeated
until the hash function has been performed 1,000 times; the
resulting digest is the token. It is repeated so many times
because of a technique called ”key stretching.” If you think
of the entire 1,000 hash process as a single process, it is
much more expensive to perform than a single hash. Because
all 1,000 are needed to compute a token, it is much more
expensive for an attacker to brute force a collision.

The token, along with the original diagnostic information,
is sent in the form of URL parameters to the /update path.
Upon receiving a request, the server removes the token from
the parameters and stores it for later. It then performs the same
token computing process as described above and compares its
result to the token it received from the robot. This process is
seen in Fig. 4. If they do not match, the request is disregarded;
if they do, the server moves to the next criterion. Since the
parameters contain a timestamp, they are time sensitive. If this
was not the case, an attacker could intercept a valid /update
request and continuously send it to the server, freeing the
robot’s state to the one the request described. To prevent this,
the server checks the timestamp sent in the parameters- if it
exceeds a certain timeout or happens in the future, the request
is disregarded. If not, it is a valid update and is applied to the
store records.

An unexpected complication was encountered when tokens
from a certain machine seemed to always time out. It was
determined that the cause of this was that the machine’s system
clock was substantially different from the server’s. To account
for this and to prevent similar issues in the future, the timeout
window’s size was drastically increased.

C. Live Robot Locations
Now that up-to-date robot information was readily available,

the next step in displaying live robot locations was to write
the JavaScript that was going to display them. A lot of time
was spent combing through the massive, single-file program
that performed almost all of Virtour’s functionality to find
what things to change. It was decided that the robot locations
should be displayed on the home page of the application and
replace the current page that just displays tiles of robots who
are alive, as seen in fig. 5. The robot locations are displayed
by positioning location markers over an image of a map of
the lab (fig. 6). When clicked, the a popover extends from the
pin and gives the user more information (fig. 7). If the robot
is available to stream be viewed for a tour, the ”view” option
is present (fig. 8).

Fig. 5. The old Virtour home page.

Other aesthetic and easy-of use changes we also made to
Virtour. A back button was added to the tour page to allow the
user to quickly navigate back to the home page. The shadow
on the text was also removed and a few colors were tweaked.

IV. CONCLUSIONS AND FUTURE WORK

Hopefully, this project was an important improvement to
Virtour and the addition of CMASS will prove to be a valuable
asset to the lab.

A. Future Applications of CMASS
CMASS could be used not only to communicate with other

applications, but also facilitate communication among robots.
The communication wouldn’t be direct, but robots could learn
about each other’s positions and directives and adjust their own



4

Fig. 6. The updated Virtour home page, with live robot locations.

Fig. 7. The information display when a pin is clicked.

Fig. 8. The view option present when a robot is active.

plans accordingly. CMASS is also highly expandable- almost
any ROS topic that can be subscribed to can be sent and stored
on the server. The only exception are media files like photos
and video streams, which would be inefficient to send in a
request like CMASS does.

B. Current problems with Virtour
Virtour has a few problems that aren’t exactly features to

be added, but more like behind-the-scenes things that could

really be improved.
The first is the structure of the code. The code that handles

almost all of what Virtour does is all piled into one 1,000 line
JavaScript file. It’s hard to work with an steepens the learning
curve, which may prevent people from working on this project.
It should be commented more and there are areas that need to
be refactored (my code included).

Another issue is how the video streaming is done. A package
called web video server is used to stream video from the
robot. It’s accessible via a direct connection to port 8080. There
are two problems with this:

1) This direct connection limits users of Virtour to people
within the UT network because access to the robots is
restricted.

2) A direct connection with the robot means that every
instance of Virtour requires video to be streamed to it.
In other words, a robot must stream to every client that’s
watching it, and that stacks up quickly.

This could be solved by streaming to nixons-head, the server
which runs CMASS and is accessible outside the network,
which could somehow temporarily store the video and send it
to Virtour users who request it.

C. Improvements to Virtour
One of the things I addressed in my proposal but didn’t

implement in this project is ”more tour-like tours,” which
basically means providing relevant information through pop-
ups throughout the tour. For instance, fig. 9 shows the current
view a user sees all the time when participating in a tour. Fig.
10 shows a crude example of a information pop-up that could
display more information about what the tourist is seeing. This
would require some manual labor- someone has to write the
information and determine the location at which the robot
would display it.

Another major improvement to Virtour would be multi-floor
capabilities. This would allow tours to span floors and users to
see much more of what the GDC is like. The mapping system
implemented in this project would have to be expanded the
accommodate more maps. Perhaps there could be arrows that
allow the user to traverse the different floors. Something that
would help with this objective is dynamic map fetching from
the robot. The maps would constantly be up to date.

Virtour could also be improved by adjusting the control
scheme from a dictatorship-like system where one person
determines all actions to a more democratic one in which
people vote and the robot goes to the most popular location.
Something to consider with this implementation is the possible
domination of one or a few destinations. There could be less
of a chance to see things that have been recently seen. This
seems like it would be a conflict between users of different
lengths. Short-term users would just vote for what they want
to see immediately while longer-term tourists would get bored
of visiting the same couple places over and over.



5

Fig. 9. The current Virtour user’s view.

Fig. 10. An example of a pop-up that shows relevant tour information.



6

REFERENCES

[1] T. Arai, E. Pagello, and L.E. Parker. Editorial: Advances
in multi-robot systems. IEEE Transactions on Robotics
and Automation, 18(5):655–661, 2002.

[2] W. Burgard, A.B. Cremers, D. Fox, D Hhnel, G. Lake-
meyer, D. Schulz, W. Steiner, and S. Thrun. Experiences
with an interactive museum tour-guide robot. Elsevier,
15.

[3] W. Burgard, A.B. Cremers, D. Fox, D Hhnel, G. Lake-
meyer, D. Schulz, W. Steiner, and S. Thrun. The inter-
active museum tour-guide robot. AAAI-98 Proceedings.

[4] W. Burgard, A.B. Cremers, D. Fox, D Hhnel, G. Lake-
meyer, D. Schulz, W. Steiner, and S. Thrun. The museum
tour-guide robot rhino. Autonome Mobile Systeme 1998,
15.

[5] Patricio Lankenau. Virtour: Telepresence system for
remotely operated building tours.

[6] Tsai-Yen Li, Jyh-Ming Lien, Shih-Yen Chiu, and Tzong-
Hann Yu. Automatically generating virtual guided tours.
Computer Animation.

[7] Colin Percival. Stronger key derivation via sequential
memory-hard functions. BDSCan.

[8] Morris R. and Thompson K. Password security: A case
history. Bell Laboratories.

[9] D. Schulz, W. Burgard, D. Fox, S. Thrun, and A.B.
Cremers. Web interfaces for mobile robotics in public
places. IEEE Robotics and Automation Magazine, 49.

[10] S. Thrun, M Bennewitz, W Burgard, A.B. Cremers,
F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy,
J. Schulte, and D. Schulz. Minerva: a second-generation
museum tour-guide robot. Robotics and Automation, 4.


	Introduction
	Related Work
	Virtual Tours
	Multi-robot Communication and Security

	Methodology
	Building a centralized multi-agent status server
	Securing CMASS
	Live Robot Locations

	Conclusions and Future Work
	Future Applications of CMASS
	Current problems with Virtour
	Improvements to Virtour


