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I. INTRODUCTION

Robot behaviors are often designed using a set of
states, with transition conditions among them, i.e. a
finite state machine. The transition conditions often
depend on uncertain inputs. Thus, transitions could fire
incorrectly or fail to fire. This necessitates complicating
the behavior design with additional transitions to “back
out” of states judged to be erroneous.

Current robotic systems maintain probabilistic mod-
els of their environment. Deterministic state transitions
are a mismatch for these models in that they require
a single datum to be extracted from the probabilistic
models to use as an input to the state transition decision.
For example, a particle filter would be processed to
produce a choice for “the” current robot pose to use as
a basis for action decisions. In some sense, this “throws
away” the advantages of tracking multiple hypotheses
in the particle filter.

In this work, we seek to carry the probabilistic
models into behavior decision making, insofar as it
is possible. Clearly, a robot cannot choose to, for
example, move to two different places at once, but not
all decisions are mutually exclusive. For example, a
robot could move its head to visually scan for objects
while walking to a target location.

II. PROBLEM STATEMENT

Given:
1) A robot in a sensed environment, with sensors

that are neither omniscient nor infallible.
2) Models for drawing probabilistic conclusions

from this sensor data.
3) A set of possible robot actions, along with models

of their probable effects.
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4) Goals for the robot, with an objective function
(which supplies values for the goals and costs
for actions).

Can one, in the robots’ operation:
1) Use the probabilistic sensor-based beliefs to make

probabilistic action planning/control decisions?
For example, choosing high-cost-of-failure ac-
tions based only on highly probable beliefs.

2) Use the lack of sensor data or uncertainty in
sensor data to make action planning/control de-
cisions? For example, choosing to take actions to
reduce uncertainty rather than greedily pursuing
the goal.

3) Automatically select action sequences to achieve
a goal in an appropriate manner?

Further, can the above be achieved with a simple
software interface for action implementers and main-
tainers; and without requiring burdensome types or
amounts of a priori data?

III. PROPOSED SOLUTION

We propose the following approach to these ques-
tions:

1) Reify action sequences previously embedded in
monolithic behavior code as activities.

2) Represent the belief state as Dempster-Shafer
belief functions.

3) Use a planning algorithm similar to partially-
observable Markov decision processes
(POMDPs), but simplified and modified for
Dempster-Shafer belief functions.

We have built a small framework implementing this
approach.

A. Activities

Since the problem is about actions, which are often
implemented implicitly as part of large codebases, a
necessary first step is to make actions addressable
by the framework. We do this by reifying them as
activities.
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The term activity is used instead of action, to em-
phasize that they are often an sequence of actions or
an ongoing repeated action – for example, scanning for
an object by moving the head back and forth. Actions
are often thought of as “one shot”, but activities in
our framework are activated and continue to run until
deactivated.

Activities, in addition to supplying their implementa-
tion, a responsible for supplying data about themselves,
such as the cost to perform them, and their precondi-
tions.

B. Dempster-Shafer Belief Functions

Conventionally, state machine transitions are condi-
tional upon logical propositions. To represent uncer-
tainty, we can assign a probability to propositions. The
predominant approach to probabilistic belief represen-
tation is Bayesian, where each proposition is assigned a
probability. A significant drawback of Bayesian belief
appears in the absence of information. The oft-cited
example is this: Suppose we have a coin that is being
flipped, and our propositions of interest are “heads”
h and “tails” t. In absence of other information, the
Bayesian approach would use a uniform distribution
to assign probabilities, P (h) = 0.5 and P (t) = 0.5.
Suppose we are told the coin is not necessarily fair.
The Bayesian P (h) = 0.5 and P (t) = 0.5 now seems
to represent an unfounded conclusion, but has no other
effective means to approach this problem.

Dempster-Shafer belief functions [1] approach
propositional questions as a frame of discernment,
which is a set of mutually-exclusive and collectively-
exhaustive propositions with respect to a question. It is
always the case that, in “reality”, exactly one proposi-
tion in a frame of discernment is true. Dempster-Shafer
belief functions then permit probabilities to be assigned
to any subset of propositions in the frame, with the
restrictions that all the assignments must add to one,
and that no probability is assigned to the empty set.

On this footing, we can now represent the coin
example above. The basic probability assignment for
that scenario is assign 1 to {h, t}, and 0 to {h} and
{t}. In other words, “It’ll certainly be either be heads
or tails, but I don’t know which”. If the coin is known
to be fair, the assignment is m({h, t}) = 0, m({h}) =
0.5, m({t}) = 0.5, where m is the basic probability
assignment function. Note that the assignment of 1
to the union of all propositions and 0 to all other
combinations represents total lack of information, or
total ignorance. This is called a vacuous belief function.

Vacuous belief functions are an appropriate initializa-
tion value for belief functions before evidence begins
arriving for or against propositions.

Belief function theory provides the belief Bel and
plausibility Pl functions, which, for a given set of
propositions, provide the committed belief to that set,
and the maximum possible belief for that set, re-
spectively. Belief function theory also provides Demp-
ster’s rule of combination, which combines two belief
functions of the same frame. Belief functions and
Dempster’s rule of combination form a commutative
monoid, with the vacuous belief function as the identity
element. This means use of the combination rule is
simple and flexible: there are no order dependencies,
and combining with “no information” data is safe.
These properties are relied upon in the state prediction
step of the policy function described later.

Belief functions are a useful representation of the
belief state, from which our framework can make
decisions about selecting activities to execute.

C. POMDP-like Planning Algorithm

Uncertainty in action selection in probabilistic
robotics is handled by partially observable Markov
decision processes (POMDPs) [2]. A POMDP provides
a policy, which maps a belief state to a set of rec-
ommended activities, based on outcomes expected of
executing the activities. Actions and states are assigned
costs and values, leading to an objective function (also
known as a payoff function). The goal of the policy
is to find a feasible set of activities that maximizes
the objective function. Markov decision processes and
POMDPs find the policy by simulating various actions
in the current state and computing the expected objec-
tive function values. This is performed recursively, for
a number of steps determined by the planning horizon.
This yields the expected cumulative payoff of selecting
each action.

Our framework uses a process similar to Markov de-
cision process value iteration, modified to both simplify
the information required, and to use Dempster-Shafer
belief functions in place of Bayesian probabilities.
Importantly, a low degree of belief of a relevant fact
may indicate the need to take actions to gather more
sensor data, rather than proceed to the overall goal
based on the most likely (but very uncertain) world
state. The framework’s use belief of functions enables
this.

Some simplifying assumptions include:
• Value is inherent in states, not actions. This is
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not a strong assumption because, like the Markov
assumption, it can be bypassed by expanding the
state. If an action itself has value, then add a vari-
able to the state recording “action just executed”.
This assumption does simplify the interface and
implementation of the objective function.

• Predicted state changes by actions are indepen-
dent. This assumption is made when the policy
function combines multiple actions’ predicted ef-
fects by using Dempster’s rule. Often in prac-
tice, the assumption of independence can be an
acceptable approximation. Also, this problem can
be partially mitigated by state expansion again, in
limited circumstances.1

• Instead of integrating across the entire belief
space, the policy function can simply sum over the
available action combinations. This assumption
was inspired by QMDPs, but it needs rigorous
validaition.

The policy making procedure is detailed in algo-
rithms 1 and 2.

IV. RELATED WORK

A. Probabilistic Controllers

Work under the moniker “probabilistic control”, for
example [3], is generally part of the control theory field.
This work assumes a classical control problem such as
temperature control, where there is a stable goal for a
single (or small number of) controlled variables. The
problem we address here is how to switch among states
with various goals, perhaps using classical control
engineering within each state.

B. Fuzzy Logic

Fuzzy logic is one approach to probabilistic control
that is common in industrial controllers. It may appear
at first glance that fuzzy logic might be adapted to the
problem at hand; however, despite its heuristic useful-
ness in industrial controllers, fuzzy logic is unsuited
for more complex reasoning about the environment in
systems such as robots. For a convincing argument, see
Elkan [4].

C. Partially-Observable Markov Decision Processes

Kaelbling, Littman, and Cassandra [5] intro-
duced partially-observable Markov decision processes
(POMDPs) to the AI community from the operations
research community. Pineau et al. [6] demonstrate a

1For example, if the non-independent effects can be noted in one
simulation step and corrected in the next.

robotics application of POMDPs. Thrun, Burgard, and
Fox [2] contains a well-presented development of MDP
and POMDP principals and algorithms, as well as
presenting QMDP and other alternative MDPs.

D. Belief Function (Dempster-Shafer) Theory

Dempster-Shafer belief function theory has already
been described. A very readable and comprehensive
foundation is in [1]. Further detail, and excellent dis-
cussions on probabilistic reasoning in general, is found
in [7], [8], [9].

E. Dempster-Shafer Theory in Robotics

Dempster-Shafer belief functions are not widely used
yet in robotics, however there are a few precedents.
Safranek, Gottschlich, and Kak [10] used belief func-
tions and computer vision to verify object placement.
Hughes and Murphy [11] used belief functions to build
an occupancy map from ultrasonic range sensor data.
Murphy [12], Wu et al. [13], and Yu et al. [14] applied
belief functions to sensor fusion.

V. IMPLEMENTATION DETAILS

The framework is implemented to work as part of
the Tekkotsu [15], [16] robotics platform. However, the
coupling to Tekkotsu is not very extensive, so the code
could be easily ported to other platforms.

A. Behavior

The primary framework class is
ProbabilisticBehavior, which subclasses
Tekkotsu’s BehaviorBase. Framework users should
subclass ProbabilisticBehavior to declare their
behavior classes.

B. Activities

Each activity is implemented with three principal
methods: start, run, and stop. When an activity
is activated by the framework, start is called once.
Then, on receipt of events, each event is dispatched
all started activities’ run method. When conditions
indicate the deactivation of an activity, its stop method
is invoked. 2

2As a convenience, activities may be declared simply by
placing ACTIVITY DECL(BehaviorClassName,
activityName); in the behavior class declaration. This
declares the activity class and defines three required housekeeping
methods.



4 J. THYWISSEN

C. Preconditions

Activities declare when they are available for exe-
cution by supplying two precondition-related methods.
The preconditionsMet method uses the supplied be-
lief state to compute the probability that the activities’
preconditions are met. Depending on the activity, this
may be based on Bel or Pl functions on propositions
in the belief state. The preconditionThreshold

method supplies the threshold probability value that
the preconditionsMet must exceed in order for
the activity to be considered available for possible
activation.

D. Activity compatibility

Multiple activities may be selected by the
ProbabilisticBehavior class to be active
simultaneously. However, not all activities can be
run with each other. For example, the “walk to a
point” and the “kick ball into the goal” activities
may not be possible to execute at the same time.
These types of constraints are expressed by the
isFeasibleActivitySet method of the behavior
class. Given a set of proposed active activities, this
method should return a boolean value indicating
whether the activities are mutually compatible.

E. Planning

The ProbabilisticBehavior class selects
activities for activation and deactivation every
planPeriod ms milliseconds (a constructor
parameter). Based on the policy detailed below,
ProbabilisticBehavior selects a feasible set of
activities to be active until the next planning time.
Activities newly added to this set are activated, and
activities removed from the set since the last planning
time are deactivated.

F. Policy

A policy maps a belief state to a set of recommended
activities, based on outcomes expected of executing
the activities. The goal of the policy is to find a
feasible set of activities that maximizes value minus
cost. ProbabilisticBehavior does this by a pro-
cess similar to a Markov decision process, modified
to both simplify the information required, and to use
Dempster-Shafer belief functions in place of Bayesian
probabilities. The procedure is detailed in algorithms 1
and 2.

To support this policy computation,
implementing behavior classes need to supply an

Algorithm 1 POLICY(b : belief state)
1: A← empty list
2: for each activity a in the list of defined activities

do
3: if a.preconditionsMet ≥

a.preconditionThreshold in b then
4: h← combine(b, a.predictStateChange(b))
5: v̂ ← −a.cost(b) + VALUESTATE(h)
6: Store 〈s, v̂〉 in list A
7: end if
8: end for
9: v̂max ← −∞

10: for each combination C of activities in list A do
11: if isFeasibleActivitySet(C) then
12: v̂C ←

∑
i∈C Ai,v̂

13: if v̂C > v̂max then
14: v̂max ← v̂C

15: Cmax ← C
16: end if
17: end if
18: end for
19: return Cmax

Algorithm 2 VALUESTATE(b : belief state)
1: if recursion depth limit (planning horizon) not

exceeded then
2: A← POLICY(b)
3: b̂′ ← predictState(A, b)
4: return inherentStateV alue(b)−

costActivity(A, b) + VALUESTATE(b̂′)
5: else
6: return inherentStateV alue(b)
7: end if

inherentStateValue method implementation that
maps belief states to a value of being in that state.
For example, states with high “ball in goal” beliefs
are assigned a high value. Similarly, activities need to
supply a cost method implementation that maps an
action in a belief state to a cost to perform that action.

Finally, activities need to supply a
predictStateChange method implementation
that maps actions in a belief state to beliefs about the
changes that will occur to the state.

When combining multiple actions, the policy com-
bines predicted state changes using Dempster’s rule of
combination. It also assumes the values simply add
linearly.



PROBABILISTIC ROBOT ACTION PLANNING/CONTROL 5

G. Belief Functions

Dempster-Shafer belief functions are represented by
instances of the BeliefFunction class. This class
maintains the state for a single frame of discernment.
The current implementation assumes a small number
(� 32) of propositions. For applications with a large
number of propositions, such as a localization particle
filter, this class will need an alternate implementation,
though the interface will remain unchanged. Recall that
belief functions operate on sets of propositions, not just
single propositions. BeliefFunction supplies meth-
ods that generate proposition sets, and map a proposi-
tion set P to the basic probability assignment m(P ),
belief value Bel(P ), and plausibility value Bel(P ). The
basic probability assignments are changed using the
setProb method. Dempster’s rule of combination is
provided by the combine method, which overwrites
the receiving object’s state with the combination of the
two belief functions supplied as arguments.

Several BeliefFunction methods check the invari-
ant of basic probability assignments:∑

P∈℘(Θ)

m(P ) = 1,

where Θ is the frame of discernment. If this precon-
dition should not be met, these methods will throw
std::logic error.

Two subclasses of BeliefFunction are provided,
each which specializes belief functions for a type of
proposition set. The base BeliefFunction class’s
propositions are identified simply by an integral in-
dex. EnumFrameBeliefFunction takes an enumer-
ation as identifying all the propositions in a frame.
BinaryFrameBeliefFunction represents a frame of
a single proposition and its negation.

H. Galleries

Collections of frames of discernment are called
galleries. Instances of galleries are represented by in-
stances of the GalleryState class. This class pro-
vides an indexed collection of belief functions and a
convenience method to combine each belief function
of a gallery with the corresponding belief function
of another gallery. ProbabilisticBehavior’s belief
states are represented as GalleryStates.

VI. EVALUATION

Returning to the problem statement, we have demon-
strated a framework that does provide the three require-
ments. The framework provides a means to:

1) Use probabilistic sensor-based beliefs to make
probabilistic action planning/control decisions.

2) Use a lack of sensor data or uncertainty in sensor
data to make action planning/control decisions.

3) Automatically select action sequences to achieve
a goal.

The intent for the evaluation was to demonstrate this
on a robot using vision-based action recognition. A
soccer goal-keeper robot would be attempting to sense
opponents’ actions. The action recognizer may produce
a Bayesian belief state, but it may have situations
where actions are completely ambiguous. For example,
as a opponent begins to kick the ball, it may be
unclear initially whether the opponent is preparing to
walk or to kick. Belief functions can represent this
type of uncertainty. The goal-keeper’s planner could
select activities based on the action recognizer output.
Unfortunately, the action recognizer was not completed
in time for this report.

In the interim, we have evaluated the framework
using a simple test harness that runs a static scenario.
The belief state consists of one frame of discernment,
the location of the ball, which has possible values of
inGoal, inFrontOfUs, or otherPlaceA. The ac-
tions are lookForBall, walkToBall, and kickBall.
The scenario is that the lookForBall action keeps
reporting that the ball may be in front of the robot, but
also fairly probably may be somewhere else, even after
the robot has walked to the last reported position.

When the test is run, the resulting activities are
the robot looks, walks while looking, and kicks. The
ball appears to miss the goal, so the robot looks,
walks while looking, looks some more, and finally has
confidence enough to walk while looking, then kick
again.

The test demonstrates that the planner can construct
a usable policy, including steps that are simply “gather
more information”, and make progress towards a goal
indicated by an the objective function.

This test was not designed as a generalizable valid
experiment, but as a development integration test. So,
the results are anecdotal. More robust evaluation re-
mains as future work. However, it does provide evi-
dence that the project’s goals have been met,

VII. CONCLUSION AND FUTURE WORK

A. Conclusion

“It’s a stochastic world”, and robots must handle that.
This work is a start down the road of removing much
of the complexity of handling uncertainty in action
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planning/control. Ideally, this road will take us to the
point where it’s easier to develop probabilistic actions
than deterministic actions.

B. Future Work

Future work includes:
• Further validation of the policy algorithm: The

algorithm needs to be checked much more exten-
sively for stability and reasonableness of results,
particularly with respect to the assumptions made.

• Performance improvements: There are many opti-
mization opportunities that need to be taken. Cur-
rently, the performance would not be acceptable
on the robot.

• Framework interface improvements: The interface
for Activity has been engineered to be quite
simple for framework users. The same needs to
be accomplished for BeliefFunction by using
an amalgamation of C++ templates and macros.
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