
Rapid Parameterized Model Checking
of

Snoopy Cache Coherence Protocols

E. Allen Emerson and Vineet Kahlon

Department of Computer Sciences and Computer Engineering Research Center
�

The University of Texas, Austin TX78712, USA

Abstract. A new method is proposed for parameterized reasoning about snoopy
cache coherence protocols. The method is distinctive for being exact (sound and
complete), fully automatic (algorithmic), and tractably efficient. The states of
most cache coherence protocols can be organized into a hierarchy reflecting how
tightly a memory block in a given cache state is bound to the processor. A broad
framework encompassing snoopy cache coherence protocols is proposed where
the hierarchy implicit in the design of protocols is captured as a pre-order. This
yields a new solution technique that hinges on the construction of an abstract
history graph where a global concrete state is represented by an abstract state
reflecting the occupied local states. The abstract graph also takes into account the
history of local transitions of the protocol that were fired along the computation to
get to the global state. This permits the abstract history graph to exactly capture
the behaviour of systems with an arbitrary number of homogeneous processes.
Although the worst case size of the abstract history graph can be exponential in
the size of the transition diagram describing the protocol, the actual size of the
abstract history graph is small for standard cache protocols. The method is appli-
cable to all 8 of the most common snoopy cache protocols described in Handy’s
book [19] from Illinois-MESI to Dragon. The experimental results for parame-
terized verification of each of those 8 protocols document the efficiency of this
new method in practice, with each protocol being verified in just a fraction of a
second. It is emphasized that this is parameterized verification.

1 Introduction

Cache protocols provide a vital buffer between the ever growing performance of pro-
cessors and lagging memory speeds making them indispensable for applications such as
shared memory multi-processors. Unfortunately, cache protocols are behaviorally com-
plex. Ensuring their correct operation, in particular that they maintain the fundamental
safety property of coherence so that different processes agree on their view of shared
data items, can be subtle. The difficulty of the problem is often magnified as the number� of coordinating caches increases. Moreover, it is highly desirable that a cache proto-
col be correct independent of the magnitude of � . There is thus great practical as well

�
This work was supported in part by NSF grants CCR-009-8141 & CCR-
020-5483, and SRC contract 2002-TJ-1026. The authors’ email addresses are�
emerson,kahlon � @cs.utexas.edu.

as theoretical interest in uniform parameterized reasoning about systems comprised of� homogeneous cache protocols so as to ensure correctness for systems of all sizes � .
This general problem is known in the literature as the Parameterized Model Checking
Problem (PMCP). It is in general algorithmically undecidable. Prior attempts to address
the PMCP for cache protocols (cf. Section 5) have had a number of limitations, ranging
from incompleteness to the need for considerable human intervention and ingenuity to
potentially catastrophic inefficiency.

In this paper, we present a general method for solving the PMCP over snoopy cache
coherence protocols of the sort commonly used in shared memory multiprocessors.
Our framework includes all of the protocols in the book of Handy [19]. Our method
is specialized to dealing with safety properties, as is appropriate for reasoning about
coherence. We give a solution for this PMCP over our cache framework for safety that is
distinguished by being exact (sound and complete), fully automatic (algorithmic), and
having complexity bounds that are quite tractable. The worst case complexity of our
general algorithm is single exponential time in the size of the state diagram of a single
cache unit; however, our experimental results show that our algorithm performs very
efficiently in practice. We have applied our method to verify parameterized versions
of the MSI, MESI, MOESI, Illinois (MESI-type), Berkeley, N+1, Dragon, and Firefly
cache coherence protocols.

In our framework, we model cache coherence protocols using a specialized variant
of broadcast protocols [14] that we call pre-ordered broadcast protocols, where pro-
cesses coordinate using broadcast primitives plus boolean guards. A broadcast trans-
mission corresponds to a cache protocol putting a message on the bus; reception of
such a message corresponds to snooping the bus and taking appropriate action. Boolean
guards make it possible to model protocols (e.g., Illinois, Firefly, Dragon) that need to
determine the presence or absence of the required memory block in other caches. Our
approach exploits a key feature common to most snoopy cache coherence protocols [8]:
their states can be organized into a hierarchy based on how tightly a memory block in a
given state is bound to the processor. Consider, for example, the MSI cache coherence
protocol (cf. Figure 1). A memory block in the modified state is intended to be used
by at most one processor and can be written to by that processor locally without gen-
erating any memory transactions across the bus. So it is tightly bound to the processor.
However, a block in the shared state can potentially be shared by multiple processes
and cannot be modified locally. Hence it is less tightly bound to the processor. We make
precise this notion of tightness by capturing it as a pre-order1 on the state set of an
individual cache protocol. Intuitively, a state higher in the order is more tightly bound
to the processor than a state that is comparably lower in the order. For instance, in the
case of the MSI protocol, the pre-order, � , is given by ��������� .

Our technique involves the construction of an abstract history graph over nodes of
the form �
	��������������� , where � is the set of states of the given cache protocol.
The key idea is the following: We represent global state � of a system with � caches

1 A pre-order on finite set � is a reflexive and transitive binary relation � on � . There are several
associated relations. We say � is equivalent to � , written � ��� , iff ���!�#"$�%�&� ; � strictly
precedes � , written �(')� , iff �(���#"+*-,.�/���10 ; � is incomparable to � , written �&23 � , iff
-,.�+�4�506"+-,.�7�4�10 .

2

by a tuple of the form � 	 ����$� � �!� � . Here 	 denotes the local state of the process
executing the most recent transition in the computation leading up to � that flushes
all the other processes into some unique fixed state. The set denotes the maximal
set of states of � that could potentially be filled given arbitrarily many processes by
firing (a stuttering of the) the sequence of local transitions that were fired in the system
with � caches to get to � . The standard abstract graph construction used in, e.g., [25]
just stores the set of local states occurring in a global state. Our new construction’s
extra historical information permits us to reason about an arbitrary number of caches
in an exact fashion with respect to safety properties. In the worst case, the size of the
abstract graph may be exponential in the size of the state diagram of the given cache
protocol. But in practice the abstract graph tends to be small as documented by our
empirical results. In our experiments, protocols with

�
states had abstract graphs with� � abstract states, for small ��� � . We believe this may be a reflection of the tendency

for broadcast transitions to drive recipients from a wider range of cache states to a
narrower (lower in the pre-order) range of cache states, thereby reducing the number of
degrees of freedom possible for abstract states. Finally, we discuss how our technique
enables us to generate error traces once an error is detected.

The rest of the paper is organized as follows. We begin by introducing the system
model in section 2. In section 3, we present a model checking algorithm for verifying
parameterized safety properties based on the construction of the abstract history graph.
Applications and experimental results are discussed in section 4, while a comparison
with related works and some concluding remarks are given in the final section 5.

2 Preliminaries

2.1 A Motivating Example

We use as an example the simple MSI cache coherence protocol. The state transition
diagram for the MSI protocol is shown in figure 1. The symbols � , � and � stand for�
	���������� , ��� 	�� ��� and ��� 	�� �� states, respectively. The states are organized so that the
closer the state is to the top, the more tightly is the memory block in that state bound to
the processor. In our system model we capture this notion of tightness as a pre-order,
� , on the states of the cache protocol. The notation ���� means that if the controller
observes the event from the processor side of the bus then in addition to the state
change it generates the bus transaction or action � . The null action is denoted by “-”.
Transitions due to observed bus transactions are shown as dashed arcs, while those due
to local processor actions are shown in bold arcs. The �! �#" � 	 � (�� �$" �) transaction
is generated by a process read (%���" �) request when the memory block is not in the
cache. The newly loaded block is promoted, viz., moved up in the state diagram, from
invalid to the shared state in the requesting cache. If any other cache has the block in the
modified state and it observes a �� �$" � transaction on the bus, then its copy is stale and
so it demotes its copy to the shared state. We call such a transition a low-push broadcast.
More generally broadcast transition 	'&)(is a low-push transition with respect to � iff
it forces every other process in a local that is strictly higher in the pre-order � than (to
a state that is at most as high as (. The �� �*" � 	 �,+!-.� �/ � ���� (�! �$" �10) transaction
is generated by a %��324� to a block that is either not in the cache or is in the cache

3

���������
	��
�� �����

�������������� �����

����������	����������������������������

���
���
�
����������	

���
�����
���������

�

�

�

�

����� ��! !

����� ��! !

�������"! !

���
����#�#

���
� ��#�#

���
���
#�#

�

�

�

����� �
���

���
���
�
����������	

����
�������

Fig. 1. The MSI Cache Coherence Protocol and its template

but not in the modified state. The cache controller puts the address on the bus and asks
for an exclusive copy that it intends to modify. All other caches are invalidated. Once
the cache obtains the exclusive copy, the write can be performed in the cache. This is
an example of a flush broadcast transition, that forces every process other than the one
firing the transition and in its non-initial state into a unique fixed state defined by the
transition.

The template
$

for a protocol, such as MSI, is obtained from its state transition dia-
gram through a simple abstraction, treating the behavior of the processors as purely non-
deterministic. The transformation is straightforward, syntactic, and mechanical: Each
transition generated by processor actions (represented by a bold line) and labeled by%'&)(

, where
(+*,.- , is labeled with the broadcast send label

%0/�/
while every transition

generated by bus actions (represented by dashed lines) and labeled with
(1&32

is labeled
with the matching broadcast receive label

%54)4
. In the original diagram the relationship

between a broadcast send
%0&)(

and its corresponding receive
(6&32

was established with
the common symbol

(
, while in the template it is established by the common symbol%

in the labels
%0/�/

and
%54)4

. Every bold transition labeled with
%'& - represents a local

action and is therefore labeled with the local transition label 7 . The natural 2 pre-order8
on

$
is 9;:=<>:@? . All transitions labeled with A'B3CED are low-pushes with respect

to
8

, while those labeled with A'BGF=B are flushes.

2.2 The System Model: Pre-Ordered Broadcast Protocols

In this paper we consider families of systems of the form
$0H

, such that a pre-order,
8

,
can be imposed on the states of template

$
such that each transition of

$
is either a local

transition or a flush broadcast or a low-push broadcast with respect to
8

. Furthermore

2 There is usually a natural and visually obvious pre-order, but there may be more than one
suitable pre-order. A suitable pre-order can be constructed as shown in the section 3.4.

4

the transition could also be labeled with the specialized disjunctive guard ��� ��� � or the
specialized conjunctive guard � ��� � . We call such systems pre-ordered broadcasts.

The process template � is formally defined by the 4-tuple � � �	��� " �
� � , where

– � is a finite, non-empty set of states.
– � is a finite set of labels including the local transition label � , broadcast labels ����

and receive labels ����� .
– The local transition relation " is such that each transition ��� is either local 	���� �� & (,

or a broadcast, 	 �	� ��� �� &)(, or a receive 	 �	� ������ & (.
We assume that receives are deterministic: for each label ����� appearing in some

broadcast send and for each state � in � , there is a unique corresponding receive transi-
tion on ����� out of � .

The guard labeling each transition ��� of " is either the boolean expression true or
the specialized conjunctive guard � ��� � , or the specialized disjunctive guard ��� ��� � . We
assume that the guard is true for receive transitions. In practice, the above mentioned
guards suffice in modeling cache coherence protocols as each cache only needs to know
whether another cache has the memory block it requires, expressed using the specialized
disjunctive guard, or whether no other cache has it, expressed using the specialized
conjunctive guard.

We further stipulate a pre-ordering, � , on the state set � of � such that i is the
minimum element, i.e., for all local states 	"!# � , we have 	%$&� , and such that each
broadcast transition ��� is of either of the two forms

1. Flush: Given state 	 of � , transition (��� �& � � " , where � !# � , is called an 	 -flush

transition provided that there exists the matching receive transition � �'���� &(� in " and

for each state � !# � of � , there is a matching receive transition of the form � �'�)�& 	
in " ; a flush transition is an 	 -flush for some 	 . Intuitively, an 	 -flush transition
pushes every process in its non-initial state, other than the one firing the transition,
into local state 	 .

2. Low-push: Transition 	 ��� �&)(is a low-push transition provided that, (*!# � , � � (���	6� ,
and for each state � such that (�� � there is a matching receive transition of the

form � �'���& � such that � � (; and, for all other states � , there is a matching self-loop

receive transition � �����& � . Intuitively transition 	 ��� �& (is a low-push if it pushes
every process in a local state strictly higher than (in the pre-order � into a state at
most as high as (while leaving the rest of the processes untouched.

In practice, a natural pre-order � is normally supplied along with the diagram of
� as it drawn in appropriate levels. If not, there is given in the section 3.4 an efficient
algorithm (O(+ �,+ -)) to compute an appropriate pre-order if one exists.

To capture block replacement behavior, we also require that templates be initializ-
able 3. This means that from each state 	 of a protocol, there is a local transition of the
form 	 �&.� . Such initializations model block replacement behavior, where a cache is
non-deterministically pushed into its invalid state, irrespective of the current state of the

3 Initializability is not needed for the mathematical results of section 3.1; however, it is needed
for the results of section 3.2.

5

block. For simplicity, re-initialization transitions and self-loop receptions are not drawn
in state transition diagrams of cache protocols (cf. [8]).

Given � , the state transition digram for ��� # �
��� � ��� "�� �
� �1� , the system with �
copies of � , is based on interleaving semantics in the standard way.

A path - # -���-��	�
��� of � � is a sequence of states of � � starting at the initial state
� � of � � such that for every ��� � � -�� ��	�� -������ � �
" � for some 	/� � . For global state
� of � � , and ���
��� ��� , we use ��� �� to denote the local state of process � � in � and
for computation path � of � � , we use ��� �� to denote the local computation path of � �
in � , viz., the sequence � � � �� � � � ������
� . We write -�� �7� � � to mean that finite computation
path - of � � ends in global state � . In this paper we will focus on finite paths and
computations as they suffice for safety. Finally, given global state � of � � , and local
state 	 of � , we let � � �
	 ��� � denote the number of copies of 	 in � , viz., the number
of processes in local state 	 in global state � .

3 Safety Properties

Given a state 	 of � , we say that 	 is reachable iff there exists � such that there is a
finite computation of � � leading to a state with a process in local state 	 . For cache
coherence protocols, we are typically interested in pairwise reachability, viz., given a
pair � 	 � (� of local states 	 and (of template � , deciding whether for some � , there
exists a reachable global state of � � , with a process in each of the local states 	 and (.
For instance, in the case of the MSI protocol, we are interested in showing that none of
the pairs in the set �6�
��� � ��� � ��� � �! is pairwise reachable.

3.1 Systems without conjunctive guards

In this section, we assume that � is a template without conjunctive guards; guards of the
form true or � � ��� � are permitted. This allows us to handle the MSI, MOESI, MESI (not
the Illinois version which is handled in the next section), Berkeley and N+1 protocols.

A standard technique for reasoning about parameterized systems involves the con-
struction of an abstract graph to capture the behaviour of a system instance of arbitrary
size. Classically, the abstract graph is defined to be a transition diagram over the set �6�
with a given concrete global state � of a system instance � � being mapped via mapping"

, say, onto the set # � 	 � + � � � 	 � � � � � �	 . For �/�$# � � � , a transition is intro-
duced from � to # in the abstract graph iff there exists � and concrete states � and of
��% such that

" � � � # � ,
" � � # # and results from � by firing a concrete transition

of ��% . There is a loss of information in the mapping
"

which is reflected in the fact that
it might not be possible to identify a unique successor � of in the abstract graph that
results by firing a transition ��� # 	 &)(, where 	/�� . For instance if ��� is a local tran-
sition, then two different successors are possible: � � # '&�� 	(*)+�3(, and � -

')+�3(,
depending, respectively, on whether there is exactly one or at least 2 copies of 	 in the
concrete state that maps onto . To preserve soundness we cover for both cases and in-
troduce both � � and � - as possible successors. However this may generate bogus paths
in the abstract graph, viz., paths for which there do not exist matching concrete compu-
tations. Thus there might exist paths in the abstract graph that don’t “lift” to concrete
computations and hence the above technique though sound is not complete.

6

In this paper to check pairwise reachability, we use the abstract history graph of � ,
denoted by ��� , where we bypass the above problem by mapping each concrete state
� onto a tuple of the form � 	 � � , that denotes a formal state with at least one copy of
state 	 and finite but arbitrarily many copies of each state in . As we later show this
permits us to reason about safety properties in a sound and complete fashion.

Definition (representative) Given template � # �
� � ��� " �
� � , and a finite computation- � � of � � , we define rep � - � � � to be the tuple �
	 � ��4� ����� � , where, if no flush
transition was fired along - , then 	 # � and # � � � � � + �!��� ��� ��� ; and if � � is the
process to last fire a flush transition along - , then ��� �� # 	 and # � ��� � � + � � � � ������ � !# .

Given template � , the abstract history graph, ��� # ���	� ��
�� � ��� � � � � � , is a tran-
sition diagram defined over tuples of the form � 	 � � �����)� � . For - � �!� � � , for
some � , we will show how to map -�� � onto a tuple of the form � 	 ���� . This mapping
depends not only on the global state � but also on - , viz., the history of the computation
leading to � and thus the term abstract history graph. Essentially in tuple � 	 � � , state
	 records the local state in � of the process executing the last flush along - , whereas
is a superset of the set of the local states of the remaining processes. This dichotomy is
justified on the basis of the fact that we can pump up the multiplicity of each local state
in � to any desired value except possibly of the current local state in � of the process to
last execute a flush along - which could have multiplicity exactly one as we later show.

We now define the transition relation
� . Towards that end, given a tuple � 	 � � and
a local or a broadcast send transition ��� # � & � , we define the successor of � 	 ���� via
��� as either the state-successor, denoted by state-succ � �
	����� � ��� � or the set-successor
of �
	����� , denoted by set-succ � �
	����� � ��� � . As mentioned above, we think of �
	����� as a
state with finite but arbitrarily many copies of each state in plus one copy of 	 . The
case of the state-successor captures the scenario when a process in local state 	 that
possibly has multiplicity only one fires ��� while the case of the set-successor captures
the scenario when a process in local state � � with arbitrarily large multiplicity fires
enabled transition ��� .
Definition (state-successor) Let � 	 � �+� � �&� � and let transition ��� # 	 & (� "
labeled by guard , be enabled in � 	 ���� , viz., if # � � ��� � , then �6	��#� � 	�� !# � .
Then state-succ � � 	 � ��� ��� � # � (� � � , where if ��� is a local transition then � # and
if ��� is a broadcast send transition then � # �3(���+ �1	���� ���1	�� � & (���� " that is a
matching receive for tr .

As an example, since firing the transition ��� # ��������� � �� & � of the MSI protocol
affects only processes in state M by causing them to transit to state S, therefore state-
succ � � � � ��� � �� ��� ��� � # � � � ��� � �* � .
Definition (set-successor) Let � 	 � � � ���!� � and let transition ��� # (& � � " ,
where (��(, be such that if ��� is labeled by guard then it is enabled in � 	 � � , viz., if
 # � � ��� � , then for some 	�� � � 	()� : 	�� !# � . Then, set-succ � � 	 ������ ��� � , is defined
as the tuple

– � � � � � � �
� � if ��� is a � � -flush transition

7

��������� 	�

�����

������
�

������

������

������

�����

������
�

�����
��������� ����	�

��������� 	�

��� ����� ����	�

��� ����� 	�

�����
�

Fig. 2. The abstract history graph for the MSI Cache Coherence Protocol

– � 	 �) � � � if ��� is a local transition. Note that since we had arbitrarily many copies
of (to start with so even after firing local transition ��� we are guaranteed arbitrarily
many processes in local state (which is therefore not excluded from the second
component of the resulting tuple.

– � � � �%� if ��� is a low-push broadcast transition, where 	 � & � is the (unique) match-
ing receive for ��� from 	 and � # � �) �1(��+ �1	�� � � �6	�� � & (�� � " that is a
matching receive for tr . As in the previous case since we have arbitrarily many
copies of (so in � we include the local state that results from firing the matching
receive for ��� from (which by definition of a low push transition (and the fact that
(�� () is (itself.

As an example, since firing the transition ��� # � ���

� � �� & � of the MSI protocol

flushes every other process into state � , therefore set-succ � ��� � ��� � �* ��� ��� � # � �/� � � � .
We now formally define the abstract history graph of a template � .

Definition (Abstract History Graph) Given template � # �
� � ��� " �
� � , the abstract
history graph of � , is defined to be the tuple � � # � � � ��
 � � ��� � � � � � , where � � #
� �4��� and
 � # �6� � 	 � ��� � (� � � � + � (� �%� # state-succ � � 	 � ��� ��� � � or � (� � � # set-
succ � �
	 � �� � ��� � � for some local or broadcast send transition ��� of �� .

As an example, the abstract history graph for the MSI protocol is shown in figure 3.
Self loops are omitted for the sake of simplicity. For convenience, we have labeled each
transition of the graph by the label of the transition responsible for “firing” it.

Note that as opposed to the classical construction, given a tuple � 	 ���� and transition
��� both the set-successor and state-successor of � 	 � � via ��� are uniquely defined. This
is because as will be shown in proposition 3.3, we can have arbitrarily many copies of
each state in thereby alleviating the problem of considering the different successors
that may arise from concrete states with different counts of local states as was the case
with the classical abstract graph construction. This permits us to give exact path cor-
respondences between the parameterized family of concrete systems and the abstract

8

history graph as we now show. Since we are dealing with systems of a “disjunctive”
nature having (arbitrarily many) extra copies does not disable any transitions.

Given - � �!� � � , the precise mapping of - � � onto a tuple of ��� is given by the� -representative of - � � , denoted by � -rep � -�� � � .
Definition (� -representative) Let - # -*� ���
� -

� be a finite computation path of � � . Then
we define the � -representative of - � - � , denoted by � -rep � - � - � � , as the tuple � 	 � �$�
��� � � , defined as follows: If � # � , then � 	 � � # ��� � � � � , else suppose that transition-
� �
� & -

� is initiated by transition ��� of � , fired locally by process ��� and let ��� be
the process to last execute a flush transition in - � �
��� - � �

� . Then

� 	 � � #
� ��� 	 � � � � � � � � � � ��� � -(� �
��� - � �

�	� -
� �
� � � ��� � �� � # �

� � � � � � � � � � � ��� � -(� �
��� - � �
�	� -

� �
� � � ��� � 	 ��� � �
	 � �

The tuple rep � - � � � specifies the actual set of states present in the global state � ,
having followed path - through ��% . In contrast, the � -representative � -rep � - � � � incor-
porates not only the local states present in � but also the states that could potentially be
present, given sufficiently many processes � , in a global state of � � that results from
firing (a stuttering of) the same local transitions as were fired along - to get to � . Thus,� -rep � - � � � drags along some “history” of the computation - leading to � , and thereby
stores more information than rep � -�� � � . This is formalized as follows.

Proposition 3.1 (Containment Property) Given -�� � � � � , such that rep � -�� � � #
� 	 � � and � -rep � - � � � # � (� � � , we have 	 # (and �� � .

We now establish a “path correspondence” between finite computations of � � and be-
tween finite paths of � � starting at ��� � � � � .
Proposition 3.2 (Projection) For any finite path -�� � in � � , there exists a finite path � �
in � � starting at ��� � � � � such that � # � -rep � - � � � .
For the other direction, we have

Proposition 3.3 (Lifting) Let - be a path of ��� starting at ��� � � � � and leading to tu-
ple � 	 � � of � � . Then, given � � � , there exists � � � � � , for some � , such that
rep �� � � � # �
	 � �� and � has at least � copies of each state in plus a copy of 	 .

Combining the previous three results, we have

Theorem 3.4 (Decidability Result) Pair �
	 � (� � � � � is pairwise reachable iff there
exists a path in � � starting at ��� � � � � to a tuple of the form � � �$# � where either 	 # �
and (� # ; or (# � and 	/� # ; or 	/� # and (���# .

Thus we have reduced the problem of pairwise reachability for a pair of local states
of a given template � to the problem of reachability in � � , the abstract history graph
constructed from � . Since the size of the abstract graph is O(+ �,+ ��� � �), we have .

Corollary 3.5 The pairwise reachability problem for a pair of local states of a given
template � can be solved in time O(+ �,+ ��� � �), where + �,+ is the size of template � as
measured by the number of states and transitions in � .

9

Note that in the construction of ��� , it suffices to consider only the set of tuples
reachable from the initial tuple ��� � � � � � . In practice, the number of states of this graph
may be much smaller than the worst case scenario where it could be + � +6� ��� � � . This is
illustrated clearly by our experimental results in section 4.2.

3.2 Adding the Specialized Conjunctive Guard

To reason about systems wherein the templates are augmented with the specialized
conjunctive guard along with the assumption of initializability, we use a modification
of the abstract history graph. Broadly speaking, the intuition behind the modification is
that we can make the specialized conjunctive guard of a process evaluate to true starting
at any global state by driving all the other processes into their respective initial states
by making use of the local initializing transition mentioned above. Thus for every tuple
� 	 � � in the abstract history graph, we add a transition of the form � 	 ����*& � 	 �
� � � �
where either 	�� # 	 or 	�� �(to � � .

Definition (Modified Abstract History Graph) Given template � # � � �	��� "$��� � and
its abstract graph � � # � � � ��
 � � ��� � � � � � , define the modified abstract graph � � � to
be the tuple � �	� �
 � � � ��� � � � � � � , where
 � � is the set of all transitions � � 	 � ��� � (� �%� � ,
where

– � # � � and either (# 	 or (�) . This transition corresponds to the successive
firing of the local initializing transition that leaves one process in state (� � 	()
and the rest of the processes in their initial states, thereby enabling guard �(��� �
labeling its transitions.

– # � � # � and � ��� # 	 & (� " labeled by �(��� � . This corresponds to the firing
of a transition labeled with � ��� � .

– � ��� � " labeled either by ��� ��� � or by true such that either � (� �%� # state-
succ � � 	 � ��� ��� � or � (� � � # set-succ � �
	����� � ��� � � �! This correspond to the firing
of transitions labeled with ��� ��� � or true.

Then, as in section 3.1, we can show a “path correspondence” between concrete
finite computations of � � and finite paths in � � � starting at ��� � � � � . The proofs are
similar and are therefore omitted. Thus as in section 3.1, we have the following de-
cidability result from which it follows, as before, that for this model of computation,
pairwise reachability can be decided in time O(+ �,+ � � � �), where + �,+ is the size of the
template � .

Theorem 3.6 (Decidability Result) Pair �
	 � (� � � � � is pairwise reachable iff there
exists a path in � � � starting at ��� � � � � to a tuple of the form � � �$# � where either 	 # �
and (� # ; or (# � and 	/� # ; or 	/� # and (���# .

3.3 Generating Error Traces

A critical part of the verification process, once an error is detected, is the generation
of a concrete computation of the system at hand leading to an erroneous global state.

10

�

�����������

���	�
�����

��������� �

�������� �

�
�������
��� �

���	������

I

M

S
� ������� �	�

� � � ��� �	�

� ������� �	� � ������� �	� � ������� � ���	�

�
� � � ��� � � �!�"���

� � ����� � � �!�"���� � ����� � �����

� ������� � ���	� � ��� ��� � �����"���

Fig. 3. The template for the Broken MSI Protocol and its abstract history graph

Till now, we have shown how to reduce the verification process for safety properties
of the parameterized version of a given cache protocol to reachability analysis over
the corresponding abstract history graph. This only allows us to detect an erroneous
state in the abstract history graph and thereby construct a path in the abstract graph to
an erroneous state. To get back a concrete computation of an instance of an original
system leading to a concrete erroneous state, we make use of the construction used in
proving proposition 3.3. Given a path - starting at the initial tuple ��� � � � � leading to
an erroneous tuple �
	 � �� of the abstract history graph, this construction can be used
to give a fully automated procedure to construct a finite computation of a concrete
system � � , for some � , ending in a state � such that rep � � � � # �
	����� . In general, �
is of size linear in the length of - , viz., O(+ � + ��� � �) in the worst case. But, as mentioned
above, in practice, the number of states of the abstract history graph reachable from its
initial state tend to be small and consequently so does the length of . The ability to
automatically generate error traces distinguishes our work from [9], where no effective
way to generate error traces was given.

We now illustrate the construction with a broken version of the MSI protocol (fig-
ure 3). The MSI protocol is clobbered by replacing the flush transition labeled with
%���24� ��� from the shared state to the modified state by a low push transition labeled
with � 	 %��324� ��� . In the abstract history graph, self loops are omitted for simplicity
reasons and erroneous tuples are shaded. Note that the erroneous pair ��� � � � � � �$� �
can be reached via the path � � � ��� � & ��� � � � � �� � & ��� � ��� � � �$� � by firing a transi-
tion labeled with %���" � followed by a transition labeled with � 	 %��324� . From this
path we can get back a concrete computation of a system with 3 caches by firing tran-
sitions labeled with %���" � , %���" � and � 	 %��324� in the order listed, a stuttering of

the sequence %���" � , � 	 %��324� . The resulting concrete computation is: ��� � � � � � ������� # � �� &
� � �$� �$� � ��� ��� $ � �� & � � � � �$� �

%'&
���

�
# � �� & � �/� � � � � . Here symbol 	 � labeling a transition indi-

cates that process � � fires a transition of template � labeled with 	 .

11

3.4 Automatic Construction of Pre-order

In practice, one can usually obtain the natural pre-order by drawing the diagram in
levels, reflecting how tightly a memory block in a given cache state is bound to the pro-
cessor. Such levels are used in the textbook by Culler [8] et al. If not, we can efficiently
exhibit a feasible pre-order, � , that can be imposed, or determine that none exists.

We proceed by constructing the labeled, directed graph
� � # �
�-� � � � � � ��� 5� + � ,

where + � � � �6� � � �
��� /�&� is its edge set. For 	�� (/� � , an edge of the form
� 	 � � � (� represents 	4� (, � 	 � � � (� indicates 	 � (and � 	 � ��� � (� means � � 	4� (� .
We construct

� � as follows.
1. Initially, + # �1��� � � � 	6�	+ 	 !# � � 	 � � . This is because of the assumption we

made in the system model that for each 	 !# � , we have �6� 	 .
2. For each non-local transition or non-flush broadcast send transition4, ��� # �
	 � ���� � (� ,

we have � � (�� 	6� . Thus we augment + by adding the edge � (�
� � � 	6� . Furthermore
if � � � ����� � � � is a matching receive for ��� such that � !# � , then we have that � � ($� �
and so we add the edges � � � � � (� and � (� � � � � to + . On the other hand if � � � ����� � � � is a
matching receive for ��� , then we have that � � (�� � � and so we add the edge � (�
��� � � �
to + . If + already contains an edge of the form � � � � � � � , then in case we add the edge
� � � � � � � to + in the above step, we remove � � � � � � � to ensure that there is only one
edge from � to � labeled with � or � .

Let
� � � be the subgraph of

� � that we get by deleting all edges labeled with ��� .
Then we can impose a pre-order � on the states of � compatible with its transitions iff

(1) there does not exist a cycle in
� � � containing an edge labeled with � ; and

(2) for each edge � 	 �
��� � (� of
� � , there do not exist two distinct maximal strongly

connected components of
� � � , one containing state 	 and the other one containing state

(such that there is path from 	 to (in
� � � .

Since the maximal strongly connected components of
� � � can be constructed in time

linear in the size of
� � , viz., linear in + � + , therefore the above mentioned conditions 1

and 2 can be checked in time quadratic in the size of � . Thus we can decide in O(+ �,+ -)
time whether a desired pre-order can be imposed on � or not.

4 Applications

As applications, we consider model checking parameterized versions of all of the snoop
based cache protocols presented in [19]. The translation from the state transition dia-
gram of a given protocol to its template is straightforward and syntactic and can be
performed in the same mechanical fashion as was done for the MSI protocol in section
2.1: Firing a bold transition labeled with �� � and/or one that requires that no other
cache currently possesses the desired memory block does not affect the status of the
memory block in any other cache. Such a transition is therefore labeled with the lo-
cal transition label � and in the second case also guarded with the � ��� � . Otherwise, a
transition labeled by ��� , where � !# � , is labeled with the broadcast send label *���

4 Flush broadcast send transitions can be identified syntactically as all their matching receives
from every non-initial state transit to a unique state with the matching receive from i self-
looping on itself. Local transitions can be identified by the absence of matching receives.

12

M E

I

S

PrRd/
BusRd(S)

PrRd/

PrWr/
BusRdX

PrWr/−

BusRdX/
Flush

BusRd/
Flush

BusRd/
Flush

BusRdX/
Flush

PrRd/−
PrWr/− PrRd/−

PrRd/−
BusRd/Flush

I

S

M E

BusRd(S)

 PrWr!!

PrWr??

PrWr!!

PrRw??

PrRd??

PrRd??

PrWr/
BusRdX

PrRw??
Flush’
BusRdX/ ����� ��� : PrRd!!

�
��

�

	 � �
����

Fig. 4. The Illinois MESI Cache Coherence Protocol and its template

while every transition generated by bus actions (represented by dashed lines) and la-
beled with ����� is labeled with the matching broadcast receive label ����� . If to fire the
transition additionally requires some other cache to possess the desired memory block
then it is also guarded by ������� � . Below we consider only the Illinois MESI protocol in
detail, with some others being handled in the full report [10].

4.1 The Illinois MESI Cache Coherence Protocol

The transition digram and the template for the Illinois MESI cache coherence protocol
is shown in figure 4. Formally the template is defined as �! "��#%$'&($*)+$-,.�0/�� where,
#! 1,324$-56$876$�9+/ with the pre-order being given by 2;:<5=:>7(?@9 . The set &A
,�B3$8CEDGFIHKJLJM$8CEDGFIHN���O$'CPDLQRD�JMJL$'CPDMQ�D���O/ . The transitions are as defined below.

Empty Broadcasts (Local Transitions): �S9T$UB3$82 � , �S76$*B3$'20� , ��56$*B3$'20� , �V2M$UB3$�7K� , �W56UBK�5K� ,
�S76UBK87K� , �S9TUBK89�� . Note that the first three transitions are included because of the
assumption of initializability and are for simplicity reasons not shown in figure 4 nor
are broadcast receive transitions that are self loops.

Low-push sends: �S24$8CEDGFIHKJLJL$�5K� .
Low-push receives: �S9T$'CPDGF6HX���O$�5K� , �S76$8CEDGFIHN���O$�5;� .
Flush sends: �V2M$'CPDMQRD�JLJM$�9Y� , �W56$'CPDLQRD�JMJL$89�� .
Flush receives: �U9Z$8CEDLQRD
���O$'20� , �U76$'CPDMQ�D���O$'20� , ��5I$'CPDMQRD
���O$'20� .
The transitions �S24$8CEDGFIHKJLJM$-5K� and �S24$*B3$87K� are labeled with � ���W� � and [=�W� � respec-

tively, with the rest of the transitions being labeled with the true guard.
We need to decide whether the following pairs are pairwise reachable: �U9Z$�9Y� ,

�S9T$87K� , �S9T$�5K� , �S76$�7K��$3�S76$�5;� .

13

4.2 Experimental Results

Here we summarize the results for a wide range of examples of cache coherence proto-
cols. For detailed descriptions of these protocols refer to [19]. The column under # of
Abstract States refers to the number of reachable states in the abstract history graph for
protocols that don’t use conjunctive guards, viz., MSI, MESI, MOESI, Berkeley and
N+1; and in the modified abstract history graph for ones that use conjunctive guards,
viz., Illinois-MESI, Firefly and Dragon. It is worth noting that although in the worst
case the number of reachable abstract states in the modified abstract history graph cor-
responding to the template � # � � � " � ���
� � could be as large as + � + ��� � � , in practice it
typically turns out to be much smaller. For instance in the MESI protocol, the number
of reachable abstract states were 6, against a worst case possibility of � ����� #�� �
states. A similar scenario holds for the other protocols. Thus, in conclusion, the abstract
history graph construction seems to work well in practice. The experiments were car-
ried out on a machine with a 797MHz Intel Pentium III processor and 256 Mb RAM.
Below, we tabulate the results for a variety of cache coherence protocols. The user time
for verifying each of the cache coherence protocols was less than � � � � seconds.

Protocol Pre-Order # of Abstract States

MSI Invalid � Shared � Modified 5
MESI Invalid � Shared � Exclusive � Modified 6
Illinois Invalid � Shared � Exclusive � Modified 6
MOESI Invalid � Owned � Shared � Exclusive � Modified 7
N+1 Invalid � Valid � Dirty 5

Invalid � Owned Non-exclusively � Unowned;Berkeley
Unowned � Owned Exclusively

5

Firefly Invalid � Shared � Dirty � Valid Exclusive 6
Invalid � Shared Clean � Shared Modified � Exclusive;Dragon
Exclusive � Modified 8

5 Concluding Remarks

The generally undecidable PMCP has received a good deal of attention in the literature.
A number of interesting proposals have been put forth, and successfully applied to cer-
tain examples ([7, 6, 26, 20, 2, 3, 27, 21]). Most of these works, however, suffer from the
drawbacks of being either only partially automated or being sound but not guaranteed
complete. Much human ingenuity may be required to develop, e.g., network invariants;
the method may not terminate; the complexity may be intractably high; and the under-
lying abstraction may only be conservative, rather than exact. 5

Similar limitations apply to prior work on PMCP for cache protocols. Pong and
Dubois [25] described methods that were sound but not complete, as they were based on

5 However for frameworks that handle specialized applications domains decisions procedures
can be given that are both sound and complete and fully automatic and in some cases efficient
([13, 15, 11, 12, 5, 24]).

14

conservative, inexact abstractions. In [14] a general framework of parameterized broad-
cast protocols was introduced and it was shown how certain simple cache protocols
could be modeled. That framework, however, did not admit guarded transitions, neces-
sary to model many cache protocols such as Illinois (MESI). In [16], it was shown that
showed that PMCP for safety over such broadcast protocols of [14] is decidable using
the general backward reachability procedure of [1]. However, the backward reachabil-
ity algorithm of [1] that [16], makes use of, although general, suffers from the handicap
that the best known bound for its running time is not known to be primitive recursive
[23]. In [22], Maidl, using a proof tree based construction, shows decidability of the
PMCP for a broad class of systems including broadcast protocols, but again the de-
cision procedure is not known to be primitive recursive. Moreover [22, 16, 14] do not
report experimental results for cache protocols.

More recently, Delzanno [9] uses arithmetical constraints to model global states of
systems with many identical caches. This method uses invariant checking via backward
reachability analysis of [1] and provides a broad framework for reasoning about cache
coherence protocols but the procedure does not terminate on some examples. Further-
more, this technique does not provide a way to generate error traces when a bug is
detected. In [17], it was shown that for a sub class of broadcast protocols called en-
tropic broadcast protocols, a generalization of the Karp-Miller procedure for Petri nets
terminates. While mathematically elegant, the model does not allow for boolean guards
necessary for modeling protocols like Illinois-MESI, Firefly and Dragon. Also, no ex-
plicit bounds were provided on the size of the resulting coverability tree (cf. [23]).

In this paper we have exploited the hierarchical organization inherent in the design
of snoopy cache protocols, representing and generalizing this organization using pre-
orders. We then present a specialized variant of the broadcast protocols model called
pre-ordered protocols tailored to capture snoopy cache coherence protocols. This has
allowed us to provide a unified, fully automated and efficient method to reason about
parameterized snoopy cache coherence protocols. Our method is unique in meeting all
these important criteria: (a) it is sound and complete; (b) it is algorithmic; (c) it is rapid
meaning reasonably efficient in principle: worst case complexity single exponential. (d)
it has broad modeling power: handles all 8 examples from Handy’s book; (e) it is rapid
also meaning demonstrably efficient in experimental practice; each example protocol
was verified — for parameterized correctness — in a fraction of a second; and (f) it
caters for error trace recovery.

References

1. P. Abdulla, K. Cerans, B. Jonsson, Y. K. Tsay. General Decidability Theorems for Infinite
State Systems. LICS. 1996.

2. P. Abdulla, A. Boujjani, B. Jonsson and M. Nilsson. Handling global conditions in parame-
terized systems verification. CAV 1999.

3. P. Abdulla and B. Jonsson. On the existence of network invariants for verifying parameter-
ized systems. In Correct System Design - Recent Insights and Advances, 1710, LNCS, pp
180-197, 1999.

4. K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems.
Information Processing Letters, 15, pages 307-309, 1986.

15

5. T. Arons, A. Pnueli, S. Ruah, J, Xu and L. Zuck. Parameterized Verification with Automati-
cally Computed Inductive Assertions. CAV 2001, LNCS 2102, 2001.

6. M.C. Browne, E.M. Clarke and O. Grumberg. Reasoning about Networks with Many Iden-
tical Finite State Processes. Information and Control, 81(1), pages 13-31, April 1989.

7. E.M. Clarke, O. Grumberg and S. Jha. Verifying Parameterized Networks using Abstraction
and Regular Languages. CONCUR. LNCS 962, pages 395-407, Springer-Verlag, 1995.

8. D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware/Software Ap-
proach. Morgan Kaufmann Publishers, 1998.

9. G. Delzanno. Automatic Verification of Parameterized Cache Coherence Protocols. CAV
2000, 51-68.

10. E.A. Emerson and V. Kahlon. This paper, full version. Available at
http://www.cs.utexas.edu/users/

�
emerson,kahlon � /tacas03/

11. E.A. Emerson and V. Kahlon. Reducing Model Checking of the Many to the Few. CADE-17.
LNCS , Springer-Verlag, 2000.

12. E.A. Emerson and V. Kahlon. Model Checking Large-Scale and Parameterized Resource
Allocation Systems. TACAS, 2002.

13. E.A. Emerson and K.S. Namjoshi. Reasoning about Rings. POPL. pages 85-94, 1995.
14. E.A. Emerson and K.S. Namjoshi. On Model Checking for Non-Deterministic Infinite-State

Systems. LICS 1998.
15. E.A. Emerson and K.S. Namjoshi. Automatic Verification of Parameterized Synchronous

Systems. CAV. LNCS , Springer-Verlag, 1996.
16. J. Esparza, A Finkel and R. Mayr, On the Verification of Broadcast Protocols. LICS 1999.
17. A. Finkel and J. Leroux. A finite covering tree for analyzing entropic broadcast protocols.

Proc. VCL 2000. Report DSSE-TR-2000-6, Univ. Southampton, GB.
18. S.M. German and A.P. Sistla. Reasoning about Systems with Many Processes. J. ACM, 39(3),

July 1992.
19. J. Handy. The Cache Memory Book. Academic Press, 1993.
20. R. P. Kurshan and K. L. McMillan. A Structural Induction Theorem for Processes. PODC.

pages 239-247, 1989.
21. D. Lesens, N. Halbwachs and P. Raymond. Automatic Verification of Parameterized Linear

Network of Processes. POPL 1997. pp 346-357, 1997.
Parallel Coordination Programs I.Acta Informatica 21, 1984.

22. M. Maidl. A Unifying Model Checking Approach for Safety Properties of Parameterized
Systems. CAV 2001.

23. K. McAloon. Petri Nets and Large Finite Sets. Theoretical Computer Science 32, pp. 173-
183, 1984.

24. A. Pnueli, S. Ruah and L. Zuck. Automatic Deductive Verification with Invisible Invariants.
TACAS 2001, LNCS, 2001.

25. F. Pong and M. Dubois. A New Approach for the Verification of Cache Coherence Protocols.
IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No. 8, August 1995.

26. A. P. Sistla, Parameterized Verification of Linear Networks Using Automata as Invariants,
CAV, 1997.

27. P. Wolper and V. Lovinfosse. Verifying Properties of Large Sets of Processes with Net-
work Invariants. In J. Sifakis(ed) Automatic Verification Methods for Finite State Systems,
Springer-Verlag, LNCS 407, 1989.

16

