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| Today at AMD, page 1 |

e Traditional simulation-based methods:

— Block-level “whackers”

— Full-chip directed tests written by hand
— Full-chip test programs written by pseudo-random
test generators

— Various “checkers” monitoring simulation for poten-
tial bugs

e Boolean equivalence checking for comparing
RTL (Register-Transfer Logic) models with cus-
tom gate-level models

— Synthesis alone does not meet all our needs



| Today at AMD, page 2 |

e Formal verification using the ACL2 theorem-
proving system

— Proofs of correctness of RTL floating-point modules

o Specifically, proofs are done on the output from
translation tools applied to the RTL.

— Proofs of correctness of higher-level algorithms im-
plemented in RTL

— Ongoing improvement of ACL2 itself and libraries of
lemmas used to “program” ACL2

This talk focuses on theorem proving and the
consideration of more automatic formal meth-
ods.



| ACL2 |

o ACL2 [1] is “A Computational Logic for Ap-
plicative Common Lisp”
(descendant of Boyer-Moore theorem prover)

e Authors: Matt Kaufmann and J Moore

e Interactive prover with induction, conditional
rewriting, and decision procedures (arithmetic,
equality, Boolean logic)

— “Programmed” with theorems proved by the user,
usually stored as rewrite rules.

e Publicly available at:

http://www.cs.utexas.edu/users/moore/acl?2

— Includes numerous papers and proof scripts, and
links to ongoing work

o /Plug/ ACL2 Workshop immediately follows
this DCC Workshop.



| Some AMD Formal Verification History |

We have emphasized automated theorem prov-
ng.

e 1995-96: Division and square root algorithms
for AMD-K5 microcodel3, 5]

e 1997—present: Proofs of floating-point algo-
rithms and actual RTL that use ACL2 on the
AMD Athlon™ processor and its derivatives [6,
7, 8]

— We have a translator from our proprietary RTL to
ACIL2 [7] that enables RTL proofs.

e 2001: Completed some protocol-level proofs



| Floating-point Verification, page 1 |

A natural target for theorem provers |10, 4]

e Concise formal specifications relating outputs
to mputs

e The RTL is relatively tractable.

— While the size of an FPU may be substantial, the
logic tends to decompose by operation.

— The interfaces with other modules are smaller and
simpler.

e Complexity of floating-point designs causes
problems for other verification approaches.

— Testing alone may be inadequate.

— Decision procedures used in formal verification tradi-
tionally have capacity limitations, for example for mul-
tiplication and shifting.



| Floating-point Verification, page 2 |

We have addressed the verification of RT'L mod-
els with increasing levels of complexity:.

e Started with simple pipeline-based designs

e Conditional pipelines [2]| allowed more com-
plicated signal dependencies and the sharing of
hardware among operations of different laten-
cles.

e Current work involves RTL with feedback (es-
pecially state machines, which are used in the
implementation of iterative algorithms).



| Floating-point Verification, page 3 |

Various tools besides ACL2 are involved in this
verification effort.

e “Translator” (written in flex/bison/C++ and
ACL2) takes RTL as input and generates forms
in a Lisp-like target language for specitying state
machine transitions.

— We have also written high-level specs directly in this
target language.

e “Compiler” (written in ACL2) analyzes signal

dependencies and pipeline structures and pro-
duces ACL2 definitions.



| Floating-point Verification, page 4 |

e Tools (written in ACL2) automate repetitive

tasks by generating lemmas automatically from
the RTL:

— Lemmas about bit-vector widths

— Lemmas used in reasoning about conditional
pipelines |2]

— Lemmas connecting different models (combinational
and executable)

e ACL2 library of general reusable lemmas [9)]
has been designed to simplify terms built from
RTL operations, in many cases automatically.

— Development continues on the RTL library, with
users inside/outside of AMD [10].



| Protocol-level Verification, page 1 |

Formal verification of non-floating-point RTL
can be considerably more difficult.

e Unclear and incomplete (or nonexistent) specs

e Decomposition of verification task is far more

difficult.

— Sufficient invariants often involve every state vari-
able, and significant and complex environment assump-
tions are required.

e Fixperimental formal analysis of a bus inter-
face unit (many thousands of lines of RTL)

— instrumental in resolving a subtle liveness issue

— limited practical value

e Higher-level proof attempt on cache correct-
ness

— Partially completed, but appeared to have limited
payoft relative to the effort involved
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| Protocol-level Verification, page 2 |

We completed proofs when the effort seemed
justified.

e Proof of a write-ordering property with re-
spect to a fairly sophisticated mechanism

— Proof performed at algorithm level. Abstracted nu-
merous uninteresting details. Formal analysis more ef-
fectively focused at subtle cases.

— Informal statement: If processor P1 performs write
Wr(addrl) followed by write Wr(addr2), and processor
P2 performs reads at address addr2 and then addrl,
then if the read at addr2 gets the new value, so does
the write at addrl.

e Proof of progress for a routing module

— The proof was performed on a model which general-
ized the RTL (i.e., the RTL was functionally equivalent
to an instance of the model). The model was defined
with recursive functions and data structures, which pro-
vided a much more expressive “language” for defining
invariants, refinement maps, etc.
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| Attempts at Model Checking |

We have begun looking at model checking and
symbolic simulation, but initial results are lack-
luster.

e Our designs are in a proprietary language,

which is not an input language for existing Mo-
del Checkers.

— Translator output is often difficult for a human to
read.

o Attempts at using symbolic simulation were
ineffective due to incompleteness of search.

— In order to expose bugs, we need to simulate for
hundreds of cycles and simulation becomes inefficient
much sooner than this.

e Attempts at using Bounded Model Checking
have been more eftective, but the property det-
inition complexity is considerably higher.

— Must explicitly define strengthened invariants.

— Multiple modules expose expressiveness and capacity
1SSUeES.
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| Problems |

e Modules are large (many thousands of lines).
e RTL is not written in a standard language.

e It takes effort to develop meaningtul specifica-
tions, which are not always readily supplied by

the RT'L developers.

e Is formal verification cost-effective?

— RTL writers have told us that any value added would
appear to be in verification involving interfaces among
multiple large modules.

— Time to write specs is a real issue, but has some
support among the RTL designers.

— We developed a simple checker (written in ACL2)
for some sorts of typos that have been seen during pre-
silicon RTL.

e Capacity, Capacity, Capacity...
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