Formal Proof of a Wave Equation Resolution Scheme: the Method Error

Sylvie Boldo,
François Clément, Jean-Christophe Filliâtre, Micaela Mayero,
Guillaume Melquiond and Pierre Weis

INRIA, LRI, CNRS, Université Paris 13

July 11th, 2010
Motivations

PDE (Partial Differential Equation) ⇒ weather forecast
⇒ nuclear simulation
⇒ optimal control
⇒ . . .
Motivations

PDE (Partial Differential Equation) \Rightarrow weather forecast
\Rightarrow nuclear simulation
\Rightarrow optimal control
\Rightarrow ...

Usually too complex to solve by an exact mathematical formula
\Rightarrow approximated by **numerical scheme over discrete grids**

\Rightarrow mathematical proofs of the convergence of the numerical scheme
(we compute something close to the PDE solution if the grids size decreases)
Motivations

\[
\text{PDE (Partial Differential Equation)} \Rightarrow \text{weather forecast} \\
\Rightarrow \text{nuclear simulation} \\
\Rightarrow \text{optimal control} \\
\Rightarrow \ldots \\
\]

Usually too complex to solve by an exact mathematical formula \\
⇒ approximated by \textbf{numerical scheme over discrete grids}

⇒ mathematical proofs of the convergence of the numerical scheme \\
(we compute something close to the PDE solution if the grids size decreases)

Let us machine-check this kind of proof! (in Coq)
Outline

1. Wave equation resolution scheme?

2. Formal proof: basic blocks
 - Dot product
 - Big O

3. Formal proof: convergence

4. Conclusion & perspectives
Outline

1. Wave equation resolution scheme?

2. Formal proof: basic blocks
 - Dot product
 - Big O

3. Formal proof: convergence

4. Conclusion & perspectives
Wave Equation?

Looking for $u : \mathbb{R}^2 \rightarrow \mathbb{R}$ regular enough such that:

$$\frac{\partial^2 u(x, t)}{\partial t^2} - c^2 \frac{\partial^2 u(x, t)}{\partial x^2} = s(x, t)$$

with given values for the initial position $u_0(x)$ and the initial velocity $u_1(x)$.

\Rightarrow rope oscillation, sound, radar, oil prospection...
We want $u_j^k \approx u(j \Delta x, k \Delta t)$.

\[
\frac{u_j^k - 2u_j^{k-1} + u_j^{k-2}}{\Delta t^2} - c^2 \frac{u_{j+1}^{k-1} - 2u_j^{k-1} + u_{j-1}^{k-1}}{\Delta x^2} = s_j^{k-1}
\]

And other horrible formulas to initialize u_j^0 and u_j^1.

Three-point scheme: u_j^k depends on $u_j^{k-1}, u_j^{k-2}, u_{j-1}^{k-1}$, u_{j+1}^{k-1}, and u_{j-2}^{k-2}.

Sylvie Boldo (INRIA)
We want $u_j^k \approx u(j \Delta x, k \Delta t)$.

$$
\frac{u_j^k - 2u_j^{k-1} + u_j^{k-2}}{\Delta t^2} - c^2 \frac{u_{j+1}^{k-1} - 2u_j^{k-1} + u_{j-1}^{k-1}}{\Delta x^2} = s_j^{k-1}
$$

And other horrible formulas to initialize u_j^0 and u_j^1.

Three-point scheme: u_j^k depends on u_j^{k-1}, u_j^{k-1}, u_{j+1}^{k-1} and u_j^{k-2}.
So what?

We measure that \(u \) and \(u_j^k \) are close when \((\Delta x, \Delta t) \to 0\).

We define \(e_j^k \overset{\text{def}}{=} \bar{u}_j^k - u_j^k \): convergence error
where \(\bar{u}_j^k \) is the value of \(u \) at the \((j, k)\) point of the grid.
So what?

We measure that u and u_j^k are close when $(\Delta x, \Delta t) \to 0$.

We define $e_j^k \overset{\text{def}}{=} \tilde{u}_j^k - u_j^k$: convergence error
where \tilde{u}_j^k is the value of u at the (j, k) point of the grid.

We want to bound $\| e_h^{k\Delta t}(t) \|_{\Delta x}$: the average of the convergence error on all points of the grid at a given time $k_{\Delta t}(t) = \left\lfloor \frac{t}{\Delta t} \right\rfloor \Delta t$.
So what?

We measure that u and u_j^k are close when $(\Delta x, \Delta t) \to 0$.

We define $e_j^k \overset{\text{def}}{=} \bar{u}_j^k - u_j^k$: convergence error where \bar{u}_j^k is the value of u at the (j, k) point of the grid.

We want to bound $\left\| e_h^{k\Delta t(t)} \right\|_{\Delta x}$: the average of the convergence error on all points of the grid at a given time $k\Delta t(t) = \left\lfloor \frac{t}{\Delta t} \right\rfloor \Delta t$.

We want to prove:

$$\left\| e_h^{k\Delta t(t)} \right\|_{\Delta x} = O_{[0, t_{\text{max}}]}(\Delta x^2 + \Delta t^2)$$
Outline

1. Wave equation resolution scheme?

2. Formal proof: basic blocks
 - Dot product
 - Big O

3. Formal proof: convergence

4. Conclusion & perspectives
Dot product and finite support

We only consider functions having a finite support:

\[\{ f : \mathbb{Z} \rightarrow \mathbb{R} \mid \exists a, b \in \mathbb{Z}, \forall i \in \mathbb{Z}, f(i) \neq 0 \Rightarrow a \leq i \leq b \}. \]
Dot product and finite support

We only consider functions having a finite support:

\[\{ f : \mathbb{Z} \to \mathbb{R} \mid \exists a, b \in \mathbb{Z}, \forall i \in \mathbb{Z}, f(i) \neq 0 \Rightarrow a \leq i \leq b \}. \]

We have an uninterpreted \(\langle ., . \rangle \) such that

\[\forall f \ g \ a \ b, (\forall i, (f(i) \neq 0 \lor g(i) \neq 0) \Rightarrow a \leq i \leq b) \Rightarrow \langle f, g \rangle = \sum_{i=a}^{b} f(i)g(i) \]
Dot product and finite support

We only consider functions having a finite support:

\[\{ f : \mathbb{Z} \to \mathbb{R} \mid \exists a, b \in \mathbb{Z}, \forall i \in \mathbb{Z}, f(i) \neq 0 \Rightarrow a \leq i \leq b \}. \]

We have an uninterpreted \(\langle \cdot, \cdot \rangle \) such that

\[\forall f, g, a, b, (\forall i, (f(i) \neq 0 \lor g(i) \neq 0) \Rightarrow a \leq i \leq b) \Rightarrow \langle f, g \rangle = \sum_{i=a}^{b} f(i)g(i) \]

(or an Hilbert \(\varepsilon \))
Dot product and finite support

We only consider functions having a finite support:

\[\{ f : \mathbb{Z} \to \mathbb{R} \mid \exists a, b \in \mathbb{Z}, \forall i \in \mathbb{Z}, f(i) \neq 0 \Rightarrow a \leq i \leq b \} . \]

We have an uninterpreted \(\langle ., . \rangle \) such that

\[\forall f, g, a, b, (\forall i, (f(i) \neq 0 \vee g(i) \neq 0) \Rightarrow a \leq i \leq b) \Rightarrow \langle f, g \rangle = \sum_{i=a}^{b} f(i)g(i) \]

(or an Hilbert \(\varepsilon \))

Hence \(\| f \| \overset{\text{def}}{=} \sqrt{\langle f, f \rangle} \).

Hence a predicate \(FS \) (finite support) with lemmas and a dedicated tactic.
Outline

1. Wave equation resolution scheme?

2. Formal proof: basic blocks
 - Dot product
 - Big O

3. Formal proof: convergence

4. Conclusion & perspectives
Big O = big pain

Usually, the big O uses one variable and \(f(x) = O_{\|x\| \to 0}(g(x)) \) means

\[
\exists \alpha, C > 0, \quad \forall x \in \mathbb{R}^n, \quad \|x\| \leq \alpha \implies |f(x)| \leq C \cdot |g(x)|.
\]
Big O = big pain

Usually, the big O uses one variable and $f(x) = O_{\|x\| \to 0}(g(x))$ means

$$\exists \alpha, C > 0, \forall x \in \mathbb{R}^n, \|x\| \leq \alpha \Rightarrow |f(x)| \leq C \cdot |g(x)|.$$

Here 2 variables: Δx (grid sizes, tends to 0), and x (time and space). (Think about Taylor expansions)
Big O = big pain

Usually, the big O uses one variable and \(f(x) = O_{\|x\| \to 0}(g(x)) \) means

\[\exists \alpha, C > 0, \forall x \in \mathbb{R}^n, \|x\| \leq \alpha \Rightarrow |f(x)| \leq C \cdot |g(x)|. \]

Here 2 variables: \(\Delta x \) (grid sizes, tends to 0), and \(x \) (time and space). (Think about Taylor expansions)

\[\forall x, \exists \alpha, C > 0, \forall \Delta x \in \mathbb{R}^2, \|\Delta x\| \leq \alpha \Rightarrow |f(x, \Delta x)| \leq C \cdot |g(\Delta x)| \]

does not work.
Uniform big O

We used a uniform big O:

$$\exists \alpha, C > 0, \quad \forall x, \Delta x, \quad \| \Delta x \| \leq \alpha \Rightarrow |f(x, \Delta x)| \leq C \cdot |g(\Delta x)|.$$

where variables x and Δx are restricted to subsets of \mathbb{R}^2. (for example such that $\Delta t > 0$)
\Rightarrow Taylor expansions
Outline

1. Wave equation resolution scheme?

2. Formal proof: basic blocks
 - Dot product
 - Big O

3. Formal proof: convergence

4. Conclusion & perspectives
Finite support

u_0 and u_1 may be nonzero.
Finite support

\[f(x, t) \text{ may be nonzero.} \]

slope: \(c^{-1} \)

\[u_0 \text{ and } u_1 \text{ may be nonzero.} \]

\[f \text{ may be nonzero.} \]
Finite support

One axiom about the exact solution of the PDE:

$$x \notin [A - c \cdot t, B + c \cdot t] \implies u(x, t) = 0$$

(mathematically proved using d’Alembert’s formula)
Finite support

slope: c^{-1}

slope: $\frac{\Delta t}{\Delta x} \cdot \left[c \cdot \frac{\Delta t}{\Delta x} \right]^{-1}$ (equals $\frac{\Delta t}{\Delta x}$ under CFL conds)

u_0 and u_1 may be nonzero.

f and thus u may be nonzero.

u_h may be nonzero.

One axiom about the exact solution of the PDE:

$x \notin [A - c \cdot t, B + c \cdot t] \implies u(x, t) = 0$

(mathematically proved using d’Alembert’s formula)
Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the numerical scheme:

\[
\varepsilon_{j}^{k-1} = \frac{\bar{u}_{j}^{k} - 2\bar{u}_{j}^{k-1} + \bar{u}_{j}^{k-2}}{\Delta t^2} - c^2 \frac{\bar{u}_{j+1}^{k-1} - 2\bar{u}_{j}^{k-1} + \bar{u}_{j-1}^{k-1}}{\Delta x^2} - s_{j}^{k-1}
\]
Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the numerical scheme:

$$
\varepsilon_j^{k-1} = \frac{\bar{u}_j^k - 2\bar{u}_j^{k-1} + \bar{u}_j^{k-2}}{\Delta t^2} - c^2 \frac{\bar{u}_{j+1}^{k-1} - 2\bar{u}_j^{k-1} + \bar{u}_{j-1}^{k-1}}{\Delta x^2} - s_j^{k-1}
$$

The consistency is the boundedness of the truncation error:

$$
\left\| \varepsilon_h^{k_{\Delta t}(t)} \right\|_{\Delta x} = O_{[0,t_{\text{max}}]}(\Delta x^2 + \Delta t^2)
$$

By Taylor series and many computations.
Proof idea 2/3: stability

We define a discrete energy by

\[E_h(c)(u_h)^{k+\frac{1}{2}} \overset{\text{def}}{=} \frac{1}{2} \left\| \frac{u_h^{k+1} - u_h^k}{\Delta t} \right\|^2_{\Delta x} + \frac{1}{2} \left\langle u_h^k, u_h^{k+1} \right\rangle_{A_h(c)} \]

kinetic energy potential energy

\[\left\langle v_h, w_h \right\rangle_{A_h(c)} \overset{\text{def}}{=} \left\langle A_h(c) v_h, w_h \right\rangle_{\Delta x} \text{ and } (A_h(c) v_h)_j \overset{\text{def}}{=} -c^2 \frac{v_{j+1} - 2v_j + v_{j-1}}{\Delta x^2}. \]
Proof idea 2/3: stability

We define a discrete energy by

\[
E_h(c)(u_h)^{k+\frac{1}{2}} \overset{\text{def}}{=} \frac{1}{2} \left\| \frac{u_{h}^{k+1} - u_{h}^{k}}{\Delta t} \right\|_{\Delta x}^2 + \frac{1}{2} \left\langle u_{h}^{k}, u_{h}^{k+1} \right\rangle_{A_h(c)}
\]

kinetic energy potential energy

\[
\left\langle v_h, w_h \right\rangle_{A_h(c)} \overset{\text{def}}{=} \left\langle A_h(c) v_h, w_h \right\rangle_{\Delta x} \quad \text{and} \quad (A_h(c) v_h)_j \overset{\text{def}}{=} - c^2 \frac{v_{j+1} - 2v_j + v_{j-1}}{\Delta x^2}.
\]

Note that this energy is constant if \(f = 0 \).
We prove an overestimation and an underestimation of this energy.
\[\Rightarrow u_h \text{ does not diverge.} \]
Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

\[u_{0,j} = 0, \quad u_{1,j} = \frac{e_j^1}{\Delta t}, \quad \text{and} \quad s_j^k = \varepsilon_j^{k+1}. \]

+ proofs about the initializations.
Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

\[u_{0,j} = 0, \quad u_{1,j} = \frac{e_j^1}{\Delta t}, \quad \text{and} \quad s_j^k = \varepsilon_j^{k+1}. \]

+ proofs about the initializations.

All these proofs require the existence of \(\zeta \) and \(\xi \) in \(]0, 1[\) with \(\zeta \leq 1 - \xi \) and we require that \(\zeta \leq \frac{c \Delta t}{\Delta x} \leq 1 - \xi \) (CFL conditions).
Convergence

We proved that:

\[
\left\| e_h^{k\Delta t(t)} \right\|_{\Delta x} = O(t) \quad t \in [0, t_{\text{max}}]
\]

\[(\Delta x, \Delta t) \to 0 \]
\[0 < \Delta x \land 0 < \Delta t \land \]
\[\zeta \leq c \frac{\Delta t}{\Delta x} \leq 1 - \xi \]

(\Delta x^2 + \Delta t^2).
Outline

1 Wave equation resolution scheme?

2 Formal proof: basic blocks
 - Dot product
 - Big O

3 Formal proof: convergence

4 Conclusion & perspectives
Conclusion

4500 lines of Coq (half dedicated, half re-usable)
≈ as long as a detailed paper proof
Conclusion

- synergy applied mathematicians / logicians
Conclusion

- synergy applied mathematicians / logicians
- filling the gaps of pen&paper proofs
Conclusion

- **synergy** applied mathematicians / logicians

- **filling the gaps** of pen&paper proofs

- **1 axiom**: finite support of the exact solution
 \((+1 \varepsilon \text{ operator})\)
Perspectives

- re-use the proofs with reflections (the rope has two ends).

![Diagram of a wave equation with reflections at the ends.]
Perspectives

- re-use the proofs with reflections (the rope has two ends).

- link this to the C program

 ⇒ full proof of the program (with already done floating-point proof)
Perspectives

- re-use the proofs with reflections (the rope has two ends).

- link this to the C program
 \[\Rightarrow \] full proof of the program (with already done floating-point proof)

- extract the C and α of the big O (done)
Perspectives

- re-use the proofs with reflections (the rope has two ends).

- link this to the C program
 ⇒ full proof of the program (with already done floating-point proof)

- extract the C and α of the big O (done)

- prove Lax equivalence for as many schemes as possible:
 consistency \Rightarrow (stability \Leftrightarrow convergence)
Perspectives

- re-use the proofs with **reflections** (the rope has two ends).

- link this to the **C program**
 \[\Rightarrow \text{full proof of the program (with already done floating-point proof)} \]

- **extract** the **C** and **\(\alpha \)** of the big **O** (done)

- prove **Lax equivalence** for as many schemes as possible:
 consistency \(\Rightarrow \) (stability \(\Leftrightarrow \) convergence)

- **other schemes** for the same PDE

- **other PDEs**

- **ODEs**
Thank you for your attention

Fšt

http://fost.saclay.inria.fr