
Using a First Order Logic to Verify That Some
Set of Reals Has No Lesbegue Measure

John Cowles Ruben Gamboa

University of Wyoming

July 11, 2010



Overview

Mathematical background
Vitali’s construction of a non (Lebesgue) measurable set
Key elements in the proof
Formalization in ACL2(r)



Measuring Sets of Reals

The measure (size) of a bounded interval of reals m([a, b]) is
defined as b− a.

How can the notion of measure be extended to sets other than
bounded intervals?



Lebesgue

Henri Lebesgue defined a measure for many sets of reals.

His key idea was to cover a set of reals by a (possibly infinite)
set of intervals.
But does Lebesgue’s measure work for all sets of reals?



Vitali

Guiseppe Vitali demonstrated that some sets cannot have a
Lebesgue measure.
In fact, no “reasonable” measure can be defined over all sets of
reals!



Reasonable Measures

For all a, b, c ∈ R and S, Si ⊂ R = R ∪ {+∞,−∞},
m(S) ∈ R
m(S) ≥ 0
m([a, b]) = b− a
m({x + c | x ∈ S}) = m(S)
m(

⋃∞
i=1 Si) =

∑∞
i=0 m(Si), for mutually disjoint Si

Vitali’s theorem shows no such measure can be defined over all
sets of reals!
His proof uses the Axiom of Choice (and led to some
controversy).



Sidebar: The Axiom of Choice

Axiom (of Choice)

Suppose {Sa | a ∈ A} is a family of nonempty sets. Then there is a
function c such that c(Sa) ∈ Sa.

The function c(Sa) “chooses” an element from Sa.

This axiom is obviously true for finite families of sets.

But how do you choose an element from each subset of the
reals?



Vitali’s Set V

Definition

Let ≈ be the equivalence relation defined by

x ≈ y⇔ x, y ∈ [0, 1) ∧ x− y ∈ Q.

By the Axiom of Choice, there is a set V that contains exactly
one element from each equivalence class.

That is, x ≈ y if and only if x− y is rational.

There are an uncountable number of equivalent classes.

The Axiom of Choice “chooses” one element from each class.



Vitali’s Proof (Outline)

The set V ⊆ [0, 1) is constructed so that for each x ∈ [0, 1) there
is a unique v ∈ V and a unique q ∈ Q such that x = v + q.

If m(V) = 0, then m([0, 1)) = 0,
because [0, 1) ⊆

⋃
q∈Q{v + q | v ∈ V}.

If m(V) > 0, then m([0, 2)) = +∞,
because

⋃
q∈Q∩[0,1){v + q | v ∈ V} ⊆ [0, 2).

So if V has a measure (no matter what it is), and if the measure
is countably additive and translation invariant, the measure
does not yield the correct result for intervals.



To Formalize the Proof

The proof is based on three pillars:

1 Properties of the real numbers
2 Properties of sets of real numbers, including countable

unions
3 The Axiom of Choice

ACL2 is a first-order logic with minimal support for quantifiers
and with only finite data structures.

The main contribution of this work was demonstrating that
Vitali’s theorem can be formalized in this logic.



The Real Numbers

ACL2 has support for the rationals, not the real numbers.

ACL2(r) is a variant of ACL2 that supports the reals using
nonstandard analysis.

In nonstandard analysis, there are real numbers that behave
like “infinitesimals” and “infinite” quantities.

This is exactly what Newton had in mind when he was
thinking about calculus!

Think of the ε or ∆x as infinitesimals. Then 1/ε and 1/∆x are
infinite “hyperreals”.



The Transfer Principle

This plays an important role in nonstandard analysis.

Any first-order, classical property that is true of all standard
reals must also be true of all reals (including the hyperreals).

We use this principle extensively to reason about infinite sums
and infinite unions.



Sets of Real Numbers

We need a finite representation of sets of real numbers.

We chose to represent sets by unary functions that recognize
their element. E.g., the set of even numbers is represented by
the function f (x) ≡ (∃y)(y ∈ Z ∧ 2y = x).

Since ACL2 is first-order, it cannot reason about functions!
Rather, we reason about the term (∃y)(y ∈ Z∧ 2y = x). The term
is really just a collection of symbols.

To reason about terms, we implemented an interpreter over
terms (to determine set membership), as well as functions that
manipulate terms (for the other set operations).



Just Enough Sets

The sets we can construct in our theory are not (nearly)
exhaustive.

They do not, for example, form a σ-algebra.

Moreover, the interpreter needs to know a priori all functions
that may be used to define sets.

Among these functions we include the equivalence function
defined by Vitali.



x ∈ S?

Suppose S is a set in our formalization.

That is, S is a term that corresponds to a unary function. (It’s a
λ-expression.)

Then x ∈ S if and only if eval(S, x) is true.

Here, eval is our evaluator over terms.



S1 ∪ S2

Suppose S1 and S2 are sets in our formalization.

That is, S1 and S2 are terms that corresponds to unary
functions.

Then their union S is a term that corresponds to the unary
function “S1 or S2”.

This can be computed mechanically, without any
understanding of the sets S1 and S2.



S1 ∪ S2 ∪ S3 ∪ . . .

First of all, ACL2 only allows finite terms, so it cannot represent
the infinite family S1, S2, S3, . . . .

We represent this family with a function F such that F(i) = Si.

Note that F is really a term, not a function because ACL2 is first
order. The interpreter provides the semantics, so we really
mean eval(F, i) instead of F(i)!

Note also that F(i) is not a set. It, too, is a term!



S1 ∪ S2 ∪ S3 ∪ . . .

Recall that F is a term and that eval(F, i) is a term that represents
Si.

Define U(F, n) to be the term that represents
S1 ∪ S2 ∪ S3 ∪ · · · ∪ Sn.

U(F, n) is a simple recursive function.

Consider S = U(F, N) where N is a fixed (but arbitrary)
“infinite” hyperreal.

Using the Transfer Principle, we can show that x ∈ S if and only
if x ∈ S1 ∪ S2 ∪ S3 ∪ . . . , for any real (but not necessarily
hyperreal) number x.



The Axiom of Choice

ACL2 does not have a direct equivalent of the Axiom of Choice.

It does support the introduction of Skolem functions, which are
similar.

This defines a “square root” function, for example:

(defchoose sqrt (y) (x)
(equal (∗ y y) x))

The defining axiom states that if there is a y such that x = y2,
then (sqrt x) also has this property.



Choice and Equivalent Classes

An equivalence relation automatically defines a set of
equivalence classes.

We are often interested in choosing a canonical element from
each class.

For example, if the equivalence relation is “equal, mod 3”, we
have three equivalence classes: {0, 3, 6, . . . }, {1, 4, 7, . . . }, and
{2, 5, 8, . . . }

The canonical elements may be [0] = 0, [1] = 1, [2] = 2.

The important fact is that [0] = [3] = [6] = · · · = 0.



Defchoose and Equivalent Classes

Using defchoose does not guarantee that the element chosen
from each equivalent class is canonical.

(defchoose elem (y) (x)
(and (integerp y)

(≥ y 0)
(= (remainder (− y x) 3)

0)))

The problem is that (elem 0) is not necessarily equal to (elem 3).
They are just guaranteed to be equivalent.

This chooses an equivalent element for each element, not for
the whole class! So it is not a choice function.



Strong Defchoose and Equivalent Classes

Recently, ACL2 introduced the idea of “strong defchoose”
which does guarantee that it picks a canonical element from
each equivalence class.

(defchoose elem (y) (x)
(and (integerp y)

(≥ y 0)
(= (remainder (− y x) 3)

0))
:strengthen t)

With the :strengthen option, defchoose will select the same y for
each x in an equivalence class.



Future Work

There are many wonderful consequences of the Axiom of
Choice. Here’s a similar result:

Theorem (Banach-Tarski Paradox)

A ball can be decomposed into a finite number of point sets and
reassembled (using only rigid, geometrical transformations, such as
translations and rotations) into two balls identical to the original.

All images courtesy of Wikipedia.


