
A Mechanically Verified AIG-to-BDD Conversion
Algorithm

Sol Swords and Warren A. Hunt, Jr.
{sswords,hunt}@cs.utexas.edu

The University of Texas at Austin

Centaur Technology, Inc.

July 12, 2010

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 1 / 16



Overview

We have implemented and verified in ACL2 an algorithm AIG-TO-BDD that
computes a BDD representation from an And/Inverter graph (AIG).

Part of a hardware verification flow
used at Centaur Technology.

I Uses automated Boolean
reasoning to check hardware
designs against ACL2 specs.

I Produces ACL2 theorems as the
end result.

I Successful application on many
operations including floating point
addition, multiplication.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 2 / 16



Context

Toolflow

Hardware 
Output 
BDDs

Spec 
Output 
BDDs

=?

Verilog 
Files

E HDL
modules

EMOD

c=a+b

Symbolic 
Simulator

Unit-level 
AIGs

Specialize

Instruction 
Spec

Symbolic
Execution

Case-splitting,
Parametrization

Per-instruction
AIGs

AIG-TO-BDD

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 3 / 16



Context

Sample theorem

(implies (and (32-bitsp a)
(32-bitsp b))

(equal (fp+-hardware a b)
(fp+-spec a b)))

I This theorem has nothing to do with BDDs or AIGs.

I Proof by reflective procedures — little “conventional theorem
proving.”

I Conventional theorem proving used to show soundness of these proof
procedures.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 4 / 16



Context

Sample theorem: Method

(implies (and (32-bitsp a)
(32-bitsp b))

(equal (fp+-hardware a b)
(fp+-spec a b)))

Strategy for proving the theorem:

1. Assign independent BDD variables to each input bit of a, b.

2. Symbolically execute fp+-hardware and fp+-spec on these
symbolic inputs, obtaining BDDs representing the bits of the results.

3. Compare results for equality to finish the proof.

(Symbolic execution framework described elsewhere.)

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 5 / 16



Motivation

Problematic Situation

Suppose datapaths 1 and 2 require different BDD variable orderings.

Datapath
Select Datapath 1 Datapath 2

OperandsOpcode

Result Mux

I BDDs blow up if we build
both using a single
variable ordering.

I Case-splitting strategy:
restrict inputs so that
select signal is constant.

I But naive symbolic
simulation still constructs
BDDs for both datapaths.

I AIG to BDD conversion
prunes away irrelevant
pieces of the hardware.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 6 / 16



Motivation

AIGs as intermediate representation

Could compute BDDs directly from E HDL representation, but using AIGs
as an intermediate representation has several advantages:

I Easy to build from HDL

I Compact (linear in circuit size)

I Relatively simple data structure – constant, variable, negation, or
conjunction

I No names for internal nodes

I Much simpler to manipulate algorithmically than E!

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 7 / 16



Motivation

Example AIG to BDD Conversion

V

AB
V

I Assign BDDs to variables

I Negate on INV nodes

I AND on AND nodes

I Etc.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 8 / 16



Motivation

Example AIG to BDD Conversion

V

AB
V

T NIL

A

T NIL

A

B

I Assign BDDs to variables

I Negate on INV nodes

I AND on AND nodes

I Etc.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 8 / 16



Motivation

Example AIG to BDD Conversion

V

AB
V

T NIL

A

TNIL

A

T NIL

A

B

I Assign BDDs to variables

I Negate on INV nodes

I AND on AND nodes

I Etc.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 8 / 16



Motivation

Example AIG to BDD Conversion

V

AB
V

T NIL

A

TNIL

A

T NIL

A

B

NIL

A

T NIL

B

I Assign BDDs to variables

I Negate on INV nodes

I AND on AND nodes

I Etc.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 8 / 16



Motivation

Example AIG to BDD Conversion

V

AB
V

T NIL

A

TNIL

A

T NIL

A

B

NIL

A

T NIL

B

T

A

NIL T

B
I Assign BDDs to variables

I Negate on INV nodes

I AND on AND nodes

I Etc.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 8 / 16



Motivation

Example AIG to BDD Conversion

V

AB
V

T NIL

A

TNIL

A

T NIL

A

B

NIL

A

T NIL

B

T

A

NIL T

B

NIL

A

T NIL

B

I Assign BDDs to variables

I Negate on INV nodes

I AND on AND nodes

I Etc.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 8 / 16



Specification

Naive Algorithm

Simple algorithm that satisfies our specification is (A2B x avt), defined as:

I If x is a constant, return x

I If x is a variable, return (CDR (ASSOC x avt))

I If x is an AND node with children a, b, return
(BDD-AND (A2B a avt) (A2B b avt))

I If x is an INV node with child y , return (BDD-NOT (A2B y avt)).

Easy to verify. Inefficient in same cases as before. Blindly builds a fully
accurate BDD for every node in x .

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 9 / 16



Algorithm

Improved Strategy

Suppose we select datapath 2, choose appropriate BDD ordering.

Datapath
Select Datapath 1 Datapath 2

OperandsOpcode

Result Mux
I Incrementally produce

BDDs, starting with small
size limit

I Increase size limit on each
iteration

I Prune AIG using
intermediate results

I Iterate until exact answer
is produced.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 10 / 16



Algorithm

Improved Strategy

Suppose we select datapath 2, choose appropriate BDD ordering.

Datapath
Select Datapath 1

OperandsOpcode

Result Mux

Datapath 2

I Incrementally produce
BDDs, starting with small
size limit

I Increase size limit on each
iteration

I Prune AIG using
intermediate results

I Iterate until exact answer
is produced.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 10 / 16



Algorithm

Improved Strategy

Suppose we select datapath 2, choose appropriate BDD ordering.

Datapath
Select

OperandsOpcode

Result Mux

Datapath 1 Datapath 2

I Incrementally produce
BDDs, starting with small
size limit

I Increase size limit on each
iteration

I Prune AIG using
intermediate results

I Iterate until exact answer
is produced.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 10 / 16



Algorithm

Improved Strategy

Suppose we select datapath 2, choose appropriate BDD ordering.

Datapath
Select

OperandsOpcode

Result Mux

Datapath 1 Datapath 2

I Incrementally produce
BDDs, starting with small
size limit

I Increase size limit on each
iteration

I Prune AIG using
intermediate results

I Iterate until exact answer
is produced.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 10 / 16



Algorithm

Improved Strategy

Suppose we select datapath 2, choose appropriate BDD ordering.

Datapath
Select

OperandsOpcode

Result Mux

Datapath 1 Datapath 2

I Incrementally produce
BDDs, starting with small
size limit

I Increase size limit on each
iteration

I Prune AIG using
intermediate results

I Iterate until exact answer
is produced.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 10 / 16



Algorithm

When Size Limit Is Reached

Don’t have to give up completely when BDD size limit is reached.

Bounding method. Track upper/lower bound BDDs, and replace oversized
bound with TRUE if upper/FALSE if lower.

I Cheaper, loses a lot of information
I Example: a ∨ (b ∧ a) reduces to a even if b is expensive

to compute

Variable substitution method. Replace oversized BDDs with fresh
variables.

I More expensive, loses less information.
I Example: b ∧ . . . ∧ ¬b reduces to FALSE even if b is

expensive to compute.

Each iteration involves a choice of BDD size limit and one of these two
methods.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 11 / 16



Algorithm

Top-level Algorithm

(AIG-TO-BDD x avt steps) → (success bdd aig)

x : AIG to be converted

avt: table mapping AIG variables to BDDs

steps: list of pairs (method , limit) giving the sequence of iterations

success: true if the sequence of iterations yielded an exact result

bdd : the BDD result, equal to (A2B x avt) if successful

aig : simplified AIG equivalent to x under composition with avt,
even if not successful.

Loop over steps building BDDs with the given method , limit. Update x as
it gets pruned. Stop when an exact BDD result is obtained or steps runs
out.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 12 / 16



Algorithm

Memoization & Bookkeeping

I Memoize between and within iterations. Three memo tables:

bmemo: inexact results for bounding method, discarded after
each iteration

smemo: inexact results for substitution method, discarded after
each iteration

fmemo: exact results for both methods, preserved between
iterations.

I Additional bookkeeping:

bvt: mapping from oversize BDDs to new variables for
substitution method, discarded after each iteration.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 13 / 16



Verification

Invariants

Memoization tables must contain accurate entries:

I fmemo maps AIGs x to exact BDDs (A2B x avt)

I bmemo maps AIGs x to upper/lower bound BDDs

I smemo maps AIGs x to BDDs that are equivalent under the
substitutions in bvt to the exact BDD (A2B x avt)

Must be proven within one induction:

I fmemo, bmemo invariants and correctness of bounding method

I fmemo, smemo invariants, well-formedness of bvt, and correctness of
substitution method

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 14 / 16



Verification

Verification Result

Final correctness theorem: If

(success bdd aig) = (AIG-TO-BDD x avt steps),

then

I If success, then bdd = (A2B x avt),

I (A2B aig avt) = (A2B x avt) regardless of success.

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 15 / 16



Verification

Conclusions

I AIG-TO-BDD statistics:
I Implementation: 20 definitions, 450 lines.
I Verification: 24 additional definitions, 160 lemmas, 2350 lines.

I Part of effective verification strategy. Example: extended-precision FP
addition verified in ˜1 CPU hour

I Verified BDD and AIG operations, AIG-TO-BDD algorithm, symbolic
execution engine, . . .

I Flow results in full-fledged ACL2 theorems ensuring that we really
prove what was intended.

Questions?

Swords and Hunt (UT Austin/Centaur) AIG to BDD Algorithm Verification July 12, 2010 16 / 16


	Context
	Motivation
	Specification
	Algorithm
	Verification

