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Overview

We have implemented and verified in ACL2 an algorithm AIG-TO-BDD that
computes a BDD representation from an And/Inverter graph (AIG).

Part of a hardware verification flow
used at Centaur Technology.

I Uses automated Boolean
reasoning to check hardware
designs against ACL2 specs.

I Produces ACL2 theorems as the
end result.

I Successful application on many
operations including floating point
addition, multiplication.
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Context

Sample theorem

(implies (and (32-bitsp a)
(32-bitsp b))

(equal (fp+-hardware a b)
(fp+-spec a b)))

I This theorem has nothing to do with BDDs or AIGs.

I Proof by reflective procedures — little “conventional theorem
proving.”

I Conventional theorem proving used to show soundness of these proof
procedures.
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Context

Sample theorem: Method

(implies (and (32-bitsp a)
(32-bitsp b))

(equal (fp+-hardware a b)
(fp+-spec a b)))

Strategy for proving the theorem:

1. Assign independent BDD variables to each input bit of a, b.

2. Symbolically execute fp+-hardware and fp+-spec on these
symbolic inputs, obtaining BDDs representing the bits of the results.

3. Compare results for equality to finish the proof.

(Symbolic execution framework described elsewhere.)
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Motivation

Problematic Situation

Suppose datapaths 1 and 2 require different BDD variable orderings.

Datapath
Select Datapath 1 Datapath 2

OperandsOpcode

Result Mux

I BDDs blow up if we build
both using a single
variable ordering.

I Case-splitting strategy:
restrict inputs so that
select signal is constant.

I But naive symbolic
simulation still constructs
BDDs for both datapaths.

I AIG to BDD conversion
prunes away irrelevant
pieces of the hardware.
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Motivation

AIGs as intermediate representation

Could compute BDDs directly from E HDL representation, but using AIGs
as an intermediate representation has several advantages:

I Easy to build from HDL

I Compact (linear in circuit size)

I Relatively simple data structure – constant, variable, negation, or
conjunction

I No names for internal nodes

I Much simpler to manipulate algorithmically than E!
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Motivation

Example AIG to BDD Conversion
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I Assign BDDs to variables

I Negate on INV nodes

I AND on AND nodes

I Etc.
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Specification

Naive Algorithm

Simple algorithm that satisfies our specification is (A2B x avt), defined as:

I If x is a constant, return x

I If x is a variable, return (CDR (ASSOC x avt))

I If x is an AND node with children a, b, return
(BDD-AND (A2B a avt) (A2B b avt))

I If x is an INV node with child y , return (BDD-NOT (A2B y avt)).

Easy to verify. Inefficient in same cases as before. Blindly builds a fully
accurate BDD for every node in x .
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Algorithm

Improved Strategy

Suppose we select datapath 2, choose appropriate BDD ordering.

Datapath
Select Datapath 1 Datapath 2

OperandsOpcode

Result Mux
I Incrementally produce

BDDs, starting with small
size limit

I Increase size limit on each
iteration

I Prune AIG using
intermediate results

I Iterate until exact answer
is produced.
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Algorithm

When Size Limit Is Reached

Don’t have to give up completely when BDD size limit is reached.

Bounding method. Track upper/lower bound BDDs, and replace oversized
bound with TRUE if upper/FALSE if lower.

I Cheaper, loses a lot of information
I Example: a ∨ (b ∧ a) reduces to a even if b is expensive

to compute

Variable substitution method. Replace oversized BDDs with fresh
variables.

I More expensive, loses less information.
I Example: b ∧ . . . ∧ ¬b reduces to FALSE even if b is

expensive to compute.

Each iteration involves a choice of BDD size limit and one of these two
methods.
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Algorithm

Top-level Algorithm

(AIG-TO-BDD x avt steps) → (success bdd aig)

x : AIG to be converted

avt: table mapping AIG variables to BDDs

steps: list of pairs (method , limit) giving the sequence of iterations

success: true if the sequence of iterations yielded an exact result

bdd : the BDD result, equal to (A2B x avt) if successful

aig : simplified AIG equivalent to x under composition with avt,
even if not successful.

Loop over steps building BDDs with the given method , limit. Update x as
it gets pruned. Stop when an exact BDD result is obtained or steps runs
out.
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Algorithm

Memoization & Bookkeeping

I Memoize between and within iterations. Three memo tables:

bmemo: inexact results for bounding method, discarded after
each iteration

smemo: inexact results for substitution method, discarded after
each iteration

fmemo: exact results for both methods, preserved between
iterations.

I Additional bookkeeping:

bvt: mapping from oversize BDDs to new variables for
substitution method, discarded after each iteration.
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Verification

Invariants

Memoization tables must contain accurate entries:

I fmemo maps AIGs x to exact BDDs (A2B x avt)

I bmemo maps AIGs x to upper/lower bound BDDs

I smemo maps AIGs x to BDDs that are equivalent under the
substitutions in bvt to the exact BDD (A2B x avt)

Must be proven within one induction:

I fmemo, bmemo invariants and correctness of bounding method

I fmemo, smemo invariants, well-formedness of bvt, and correctness of
substitution method
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Verification

Verification Result

Final correctness theorem: If

(success bdd aig) = (AIG-TO-BDD x avt steps),

then

I If success, then bdd = (A2B x avt),

I (A2B aig avt) = (A2B x avt) regardless of success.
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Verification

Conclusions

I AIG-TO-BDD statistics:
I Implementation: 20 definitions, 450 lines.
I Verification: 24 additional definitions, 160 lemmas, 2350 lines.

I Part of effective verification strategy. Example: extended-precision FP
addition verified in ˜1 CPU hour

I Verified BDD and AIG operations, AIG-TO-BDD algorithm, symbolic
execution engine, . . .

I Flow results in full-fledged ACL2 theorems ensuring that we really
prove what was intended.

Questions?
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