
Interactive Theorem Proving (ITP'10) Edinburgh, 2010/07/14

Arthur Charguéraud

The
Optimal Fixed Point

Combinator

INRIA



2

Example: filter function for streams

Step 1: write a functional, e.g. for filter on streams

Definition Filter filter s :=
let (x:::t) := s in 
if (P x) then (x ::: filter t) else (filter t).

// "filter" is a partial function mixing recursion and co-recursion

Step 3: prove a fixed point equation

Lemma filter_fix : forall s, infinitely_many P s ->
filter s ≈≈≈≈ Filter filter s. 

Step 2: construct its fixed point (non-constructively)

Definition filter := Fix Filter. // return type inhabited

Definition filter := FixModulo (≈≈≈≈) Filter. // actual

Step 3: prove a fixed point equation

Lemma filter_fix : forall s, infinitely_many P s ->
filter s ≈≈≈≈ Filter filter s. 

Step 4: used that equation to unfold the definition

filter (x:::t)  // rewrite filter_fix 

≈≈≈≈ Filter filter (x:::t) // unfold Filter

≈≈≈≈ if (P x) then (x:::filter t) else (filter t)
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Examples of recursive functions

Basic recursive function:

Definition Log log x := 
if x <= 1 then 0 else 1 + log (x/2).

Definition log := FixModulo (=) Log. 

Nested recursion, e.g. the nested zero function:

Definition F f x =
if x = 0 then 0 else f(f(x-1)).

// need to justify that f(x-1) is smaller than x

Higher-order recursion, e.g. a function modifying trees:

type tree = Leaf of nat | Node of list tree
Definition Incr incr x := match x with
| Leaf n => Leaf (n+1)
| Node xs => Node (List.map incr xs)

// need to justify that "incr" is applied to smaller trees

Definition log := Fix Log. // equivalent to the line above
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Examples of co-recursive values

Definition of co-recursive values:

Definition F s := 0 ::: map succ s.

Definition s := FixValModulo (≈≈≈≈) F. // 0:::1:::2:::3:::...

Lemma s_fix : s ≈≈≈≈ F s.

A trickier definition:

Definition F s := 2 ::: filter ( ≥ ≥ ≥ ≥ 1) s.

// F defines the stream "2:::2:::2:::...", because 2 ≥ 1.

An invalid definition:

Definition F s := 0 ::: filter ( ≥ ≥ ≥ ≥ 1) s. 

// This functional does not admit a fixed point

Definition s := FixValModulo (≈≈≈≈) F.

// The stream s is unspecified
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Program extraction is possible

The fixed point ombinators are not constructive. 

They rely on Hilbert's epsilon operator, which does not 
have any computational equivalent.

Extraction towards a "let-rec" is possible:

Extract Constant Fix =>
"(\bigf -> let x = bigf x in x)". // Haskell code

→ Partial correctness of the extracted code is to be 
expected (although I have not proved it formally)

→ Same trick used, e.g., by Bertot et al (2002)
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Main fixed point approaches

– Well-founded recursion: for partial functions, the 
domain needs to appear explicitly.

– Domain-predicate recursion (Dubois & Donzeau-
Gouge, Bove & Capretta) and inductive graph 
predicate (Krauss): works for recursion but does not 
seem to extend to co-recursion.

– Co-recursion with guard conditions: definitions 
need to be modified so as to satisfy guard conditions 
either syntactic or type-based (e.g., work by Bertot 
and others), but such tricks are not always possible.

– Contraction conditions: allow proving the 
existence of a unique fixed point on a given domain, 
but does not help in constructing partial fixed point.
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Ingredients and contribution

The combinator is built upon two ingredients:

1) Optimal fixed points

→ First formalization of optimal fixed point theory

→ First fixed point library using optimal fixed points

2) Contraction conditions 

→ Generalization of contr. conditions for co-recursion

→ Unification of the various contraction conditions
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Optimal fixed points

Positive answer [Manna and Shamir, 1975]:

Any functional admits an optimal fixed point.

Consider the combinator for total recursive function:

Definition Fix F := 
εεεεf. (forall x, f x = F f x).

It generalizes to partial functions with something like:

Definition Fix D F :=
εεεεf. (forall x, D x -> f x = F f x).

However, the domain must be provided explicitly.

Question: is there a best possible domain D that 
can be deduced from the functional F alone?
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Domains of fixed points

The union of the domains of all the fixed points 
might not be the domain of a fixed point:

→ This generally happens with inconsistent fixed points

f1

f2 f3

f4

f5

f2 x ≠≠≠≠ f3 x
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Domain of the optimal fixed point

The restriction to the set of arguments for which 
all fixed points return the same results:

→ This domain admits exactly one fixed point, which 
captures the maximal amount of non-ambiguous 
information contained in the functional.

f1

f2 f3

f4

f5

f2 x ≠≠≠≠ f3 x

f2 x = f3 x
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Optimal fixed point combinator

The optimal fixed point of a functional F is the 
largest generally-consistent fixed point of F.

(A fixed point of F is generally-consistent if it does not 
disagree with any other fixed point of F).

Definition Fix A B (F:(A->B)->(A->B)) : A->B :=

εεεεf. (optimal_fixed_point_of F f).

// Remark: the type B is required to be inhabited.

// Partial functions are represented in the logic as pairs of type 
(A→Prop)*(A->B). The optimal fixed point returned by the 
combinator Fix is undefined outside of the optimal domain.

Another construction (Gonthier, 2005)

Definition Fix A B F := fun x =>

let f := εεεεf.(∃∃∃∃D. fixed_point_on D F f ∧∧∧∧ x∈∈∈∈D) in (f x).
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Contraction conditions

A contraction condition is a sufficient condition for a 
functional to admit a unique fixed point, expressing 
the fact that the functional brings its arguments closer.

– Guarantees unique fixed point in Banach spaces.

|| F(x) - F(y) ||  ≤  α · || x - y ||     with α < 1

– Paulson (1992): implement the theory of inductive 
definitions in Isabelle/HOL.

– Matthews (1999): formalize non-guarded co-
recursive definitions.

– Matthews & Krstić (2003): formalize partial 
recursive functions with nested calls. 
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Fixed point theorems

How to use contraction conditions to reason on 
results of the optimal fixed point combinator:

Theorem Fix_spec : forall F D f,
f = Fix F -> contractive_on D F ->   
forall x, D x -> f x = F f x.

D

optimal domain of F

1) Given a functional F, 
build f := Fix F. 

2) Prove that F satisfies 

a contraction condition 
on some domain D.

3) Deduce that f
satisfies the fixed point 
equation on D.
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What's next

Application of the optimal fixed point combinator

using existing contraction conditions:

– Total recursion – Co-recursive values

– Partial function – Co-recursive functions

– Nested recursion – Mixed rec./co-recursive

(Supported but not presented: higher-order recursion)

Generalization and unification of the various 
contraction conditions:

– Generalization of the contraction condition

– Presentation of the unifying fixed point theorem 
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Treatment of total functions

Fixed point theorem for total recursive functions:

Lemma Fix_spec : forall f F R, well_founded R ->
f = Fix F ->
(forall f1 f2 x, 

(forall y, R y x -> f1 y = f2 y) ->
F f1 x = F f2 x) ->

(forall x, f x = F f x).

Illustration with the functional Log:

Hypothesis: forall y, y < x -> f1 y = f2 y

Goal: Log f1 x = Log f2 x

Goal: (if x <= 1 then 0 else 1 + f1(x/2))
= (if x <= 1 then 0 else 1 + f2(x/2))

Subgoal: x <= 1  |- 0 = 0
Subgoal: x > 1   |- 1 + f1(x/2) = 1 + f2(x/2)

Apply the hypothesis to y = x/2, and check (x/2) < x
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Treatment of partial functions

Restriction to arguments from a domain D:

Lemma Fix_spec : forall f F R D, well_founded R ->
f = Fix F ->
(forall f1 f2 x, D x ->

(forall y, D y -> R y x -> f1 y = f2 y) ->
F f1 x = F f2 x) ->

(forall x, D x -> f x = F f x).

→ The argument x is assumed to be in the domain D.

→ Recursive calls must be made to values y inside D.

→ The fixed point equation is available only on D.
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Treatment of nested recursion

The basic contraction condition does not suffice. 
Consider for example the nested zero function:

Definition F f x =
if x = 0 then 0 else f(f(x-1)).

→ For the outer recursive call f(f(x-1)), we need to 
know that the argument f(x-1) is smaller than x.

→ We need to know that the function f returns zero.

Adding an invariant [Matthews & Krstić, 2003]:

Lemma Fix_spec : forall f F R Q, well_founded R ->
f = Fix F ->
(forall f1 f2 x, 
(forall y, y < x -> f1 y = f2 y /\ Q y (f1 y)) ->
F f1 x = F f2 x /\ Q x (F f1 x)) ->

(forall x, f x = F f x /\ Q x (f x)).
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Treatment of co-recursive values

Example:

Definition F s := 0 ::: map succ s. // 0:::1:::2:::3:::...

Definition s := FixValModulo (≈≈≈≈) F.

Lemma s_fix : s ≈≈≈≈ F s.

Fixed point combinator for values:

→ FixValModulo (≈≈≈≈) F picks a fixed point of F modulo (≈≈≈≈)

The insufficient, naive definition:

Definition FixValModulo (≈≈≈≈) F :=  
εεεεx.(x ≈≈≈≈ F x). 

The appropriate, standard definition:

Definition FixValModulo (≈≈≈≈) F :=  
εεεεx.(forall y, y ≈≈≈≈ x -> y ≈≈≈≈ F y). 
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Contraction condition for streams

The contraction condition [Matthews, 1999]:

forall i s1 s2, s1  ≈ ≈ ≈ ≈i s2 -> F x1  ≈ ≈ ≈ ≈i+1 F s2

implies the existence of a unique fixed point s modulo 
bisimilarity, where  (≈≈≈≈i) relates two streams that are 

identical up to their i-th element.

Illustration with the stream of natural numbers:

Hypothesis: s1  ≈ ≈ ≈ ≈i s2

Goal: F s1  ≈ ≈ ≈ ≈i+1 F s2

Goal: 0 ::: map succ s1  ≈ ≈ ≈ ≈i+1 0 ::: map succ s2

Goal: map succ s1  ≈ ≈ ≈ ≈i map succ s2

Exploit the fact that an application of map preserves 
the degree of similarity between two streams.
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General presentation of c.o.f.e.'s

Fixed point theorem from Matthews (1999) 
polished by di Gianantonio & Miculan (2003):

The contraction condition

forall i x1 x2,
(forall j<i, x1  ≈ ≈ ≈ ≈j x2) ->
F x1  ≈ ≈ ≈ ≈i F x2

ensures the existence of a unique fixed point x of F 
modulo (≈≈≈≈), where:

– F has type A→→→→A

– I is a type with a transitive well-founded relation <

–  ≈≈≈≈ is the intersection of the equivalence relations ≈≈≈≈i
– (≈≈≈≈i)i:I needs to be a complete family of relations 
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Treatment of co-recursive functions

The contraction condition for co-recursive functions 
given by Matthews (1999) leads to the following 

fixed point theorem for co-recursive functions:

Lemma FixModulo_spec : forall F f (≈≈≈≈i)i∈∈∈∈I, 

f = FixModulo (≈≈≈≈) F -> cofe (≈≈≈≈i)i∈∈∈∈I -> 

(forall f1 f2 x i, 

(forall j<i, forall y, f1 y  ≈ ≈ ≈ ≈j f2 y) -> 

F f1 x  ≈ ≈ ≈ ≈i F f2 x) ->

forall x, f x ≈≈≈≈ F f x.
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Contraction condition for filter

Matthews (1999) also showed how to derive the fixed 
point theorem for mixed rec/corec functions:

Lemma FixModuloLexico_spec : forall (≈≈≈≈i)i∈∈∈∈I F f D,  

f = FixModulo (≈≈≈≈) F -> cofe (≈≈≈≈i)i∈∈∈∈I -> 

(forall f1 f2 x i, D x ->
(forall y j, (j,y)<(i,x) -> D y -> f1 y  ≈ ≈ ≈ ≈j f2 y) ->
F f1 x  ≈ ≈ ≈ ≈i F f2 x) ->

forall x, D x -> f x ≈≈≈≈ F f x. 

Illustration with the filter function:

→(j,y)<(i,x) is a lexicographical comparison.

→ i decreases when the head value satisfies P.

→ x decreases when the next element satisfying P gets 

closer.
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Co-recursion with an invariant

The tricky co-recursive definition: 

Definition F s := 2 ::: filter ( ≥ ≥ ≥ ≥ 1) s.

New generalized form of contraction conditions:

forall x1 x2 i, 
x1  ≈ ≈ ≈ ≈i x2 ∧∧∧∧ Q i x1 ∧∧∧∧ Q i x2 ->
F x1  ≈ ≈ ≈ ≈i+1 F x2 ∧∧∧∧ Q (i+1) (F x1)

Illustration: it suffices to consider an invariant stating 
that the elements before index i are greater than 1:

Definition Q i s := (∀∀∀∀j<i, nth j s  ≥ ≥ ≥ ≥ 1).

Side-condition: the invariant Q has to be continuous. 

Here, we need to show that if Q i s holds for any i, 
then s contains only values greater than 1. 
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Key idea about invariants

Recursive definition →→→→ specify results 

post-condition Q x (f x)

Co-recursive definition →→→→ specify prefixes 

invariant Q i s



25

The unifying fixed point theorem

If the following hypotheses hold

– F is a functional of type A->A (where A is inhabited)

– (A,I,<,≈≈≈≈i) is a c.o.f.e.

– Q is a continuous property of type I->A->Prop

– The following contraction condition holds

∀∀∀∀ i x1 x2,
(∀∀∀∀j<i, x1  ≈ ≈ ≈ ≈j x2 ∧∧∧∧ Q j x1 ∧∧∧∧ Q j x2) →→→→
F x1  ≈ ≈ ≈ ≈i F x2 ∧∧∧∧ Q i (F x1)

Then we can deduce that

– F admits a unique fixed point x modulo ≈≈≈≈

– Moreover x satisfies the invariant:  ∀∀∀∀i, Q i x
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Several examples formalized

Recursion: Lines of proofs

– log function 2

– gcd function 3

– div function 3

– nested zero function 3

– trees with lists of subtrees 4

– Ackermann's function 3

– McCarthy's function 8

Co-recursion: (≈ 100 lines to establish a new c.o.f.e.)

– constant stream 3

– mutually-defined streams 9

– filter on streams 13

– "product" of infinite trees 24
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Conclusion

1) Optimal fixed points:

– for long, a curiosity about circular program definitions

– the tool of choice to justify circular logical definitions 

– allows to separate definitions from their justification

2) Contraction conditions:

– well-foundedness and productivity inside the logic 

– support for a very large scope of circular definitions

– all contraction conditions derivable from a single one

(1) + (2)  =  Fix F



Thanks!

Extended version of the paper available from:

http://arthur.chargueraud.org/research/2010/fix


