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Topics 

• Background: SPARK and its proof tools 

• Examples of real verification conditions 

• Extensions to the power of the proof tools 

•  Further extension: user-defined proof rules 

• Current limitations: soundness and floating-point 

Slide 2 



Copyright © Altran Praxis  

SPARK 

• A high-integrity subset of Ada 
• Developed late 1980s/early 1990s onwards 
• Contracts enforced by annotations 

–  ‘Formal comments’ 
–  Ignored by a compiler, used by SPARK tools 

• Example: 
--# derives Temperature from Pressure, Volume; 
--# pre Pressure in Valid_Pressure_T and 
--#     Volume > 0.0; 
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SPARK’s Proof Tools 

• SPARK Proof Checker (interactive, short-rein) 
– Developed in Prolog (formerly SPADE Proof Checker) 
– Some ‘oracles’, e.g. 

• standardise a+2*(b-a)+3 = 1-a+2*(b+1) yields true. 
• element(update(a,[3],x),[2]) simplifies to element(a,

[2]). 

•  First industrial use of Checker to prove LUCOL 
assembly code modules for RB211-524G met 
their specification (1986/87) 

• Simplifier (non-interactive, ‘batch’ operation) 
• Simplifier ‘derived’ from Checker components 
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Soundness 

• Soundness of original Checker: 
– Components: standardiser, expression simplifier, 

rules engine, natural deduction strategies 
–  ‘Boot-strapping’ process: 

• Establish soundness of standardiser by induction 
• Use in proving soundness of expression simplifier 
• Then other components, and so on 

– Proofs only to establish soundness, not 
completeness or termination 

• Soundness of original Simplifier: 
– Stringing together of sound Checker components 
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Verification Conditions 

• Advent of SPARK and Examiner: 
– VCs generated for multiple units 
– Proofs of exception-freedom 

• Exception-freedom VCs tend to be simpler, but 
• Much more numerous 

•  Led to decision to create standalone Simplifier: 
– Most exception-freedom VCs discharge 

automatically 
– Remainder: can be discharged with Checker, with 

another trusted proof tool or by hand 
– But: with proof by hand, risk of misproof 
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Real Example VC: range 
constraint 
H1:    ... 
H68:   fld_value(s__cr) >= basictypes__rollt__first . 
H69:   fld_value(s__cr) <= basictypes__rollt__last . 
... 
H72:   ... 
        -> 
C1:    abs(fld_value(s__cr)) >= basictypes__rollt__base__first . 
C2:    abs(fld_value(s__cr)) <= basictypes__rollt__base__last . 

Larger, more complex subprograms yield more  
hypotheses, more VCs to show each subexpression 
 is within relevant range, etc. 
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Example VC: structured types 

• A (relatively) simple correctness VC from SPARK 
test set for an array of records: 

H1:    true . 
H2:     for_all (i___1: natbyte, ((i___1 >= it1__first) and (i___1 <= it1__last)) -> ((fld_g1(element(a, [ 
           i___1])) >= et2__first) and (fld_g1(element(a, [i___1])) <= et2__last))) . 
H3:     for_all (i___1: natbyte, ((i___1 >= it1__first) and (i___1 <= it1__last)) -> ((fld_f1(element(a, [ 
           i___1])) >= et1__first) and (fld_f1(element(a, [i___1])) <= et1__last))) . 
H4:    i >= it1__first . 
H5:    i <= it1__last . 
H6:    f >= et1__first . 
H7:    f <= et1__last . 
H8:    f >= et1__first . 
H9:    f <= et1__last . 
H10:   i >= it1__first . 
H11:   i <= it1__last . 
        -> 
C1:     for_all (n_: natbyte, ((n_ >= it1__first) and (n_ <= it1__last)) -> (true and (((fld_f1(element(update( 
           a, [i], upf_f1(element(a, [i]), f)), [n_])) >= et1__first) and (fld_f1(element(update(a, [i], upf_f1(element( 
           a, [i]), f)), [n_])) <= et1__last)) and ((fld_g1(element(update(a, [i], upf_f1(element(a, [i]), f)), [n_])) >=  
           et2__first) and (fld_g1(element(update(a, [i], upf_f1(element(a, [i]), f)), [n_])) <= et2__last))))) . 
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Example VC from Tokeneer 

H12:   for_all(i___1 : integer, 1 <= i___1 and i___1 <= 17 -> 
              0 <= element(logfileentries, [i___1]) and 
              element(logfileentries, [i___1]) <= 1024) . 
H13:   currentlogfile >= 1 . 
H14:   currentlogfile <= 17 . 
H16:   fld_length(usedlogfiles) <= 17 . 
H22:   element(logfileentries, [currentlogfile]) <> 1024 or 
              fld_length(usedlogfiles) <> 17 . 
       -> 
C1:    element(logfileentries, [currentlogfile]) < 1024 or  
             fld_length(usedlogfiles) < 17 . 

Reasoning too tortuous for Simplifier 
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Trusted extensions to tools 

• VCs from real projects (SHOLIS and Tokeneer) 
which weren’t discharged automatically, but which 
were provable, were reviewed for common 
patterns. 

•  These were used to identify potential 
improvements: 
– Arithmetic reasoning (abs, division, modulus, 

exponentiation, special cases) 
– Logic automation (e.g. better tactics for implication 

and disjunction conclusions) 
–  Improved handling of structured objects 

Slide 12 



Copyright © Altran Praxis  

Trustworthiness of extensions 
(1) 
•  Identify new inference rules which will improve 

Simplifier ‘hit rate’ 
– generalising, based on examples identified 
– determine expected impact of changes (this is 

approximate, based on nature of improvements 
and ‘gut feel’ from categorising each VC) 

• Prove that these rules are sound with the Checker 
– manual process to generate VCs 
–  review to check the VCs correspond to the rules 
–  formal proof of the VCs with the Checker 

• Add these proofs to the standard SPARK test set 
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Trustworthiness of extensions 
(2) 
•  Incorporate the new rules into the Simplifier 
• Add extra tests which are unprovable 

– E.g. variants of provable VCs with each of the 
necessary hypotheses omitted in turn 

• Run through entire test set 
• Confirm expected results achieved 

–  Investigate mismatches: 
• VCs unexpectedly not proved 
• VCs unexpectedly proved 
• Any other changes (e.g. partial proofs) 

– Update test set in light of improved results 
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Example of improvement 
% Div(22): X - X div Y * Y <= N may_be_deduced_from [(1) X >= 0, 
%                                                                                          (2) Y > 0, 
%                                                                                          (3) {X <= N | Y - 1 <= N} one of]. 
try_new_deduction_strategies(X - XdivYtimesY <= N, integer, Hs) :- 
    i_am_using_rule(div_22a), 
    ( 
        XdivYtimesY = X div Y * Y          ;   XdivYtimesY = Y * (X div Y) 
    ), 
    safe_deduce(X >= 0, integer, H1),          /* (1) */ 
    (                                                                 /* (2) */ 
        safe_deduce(Y > 0, integer, H2)    ;   safe_deduce(Y >= 1, integer, H2) 
    ), 
    (                                                                /* (3) */ 
        safe_deduce(X <= N, integer, H3)   ;   safe_deduce(Y - 1 <= N, integer, H3) 
    ), 
    append(H2, H3, Hrest), 
    append(H1, Hrest, HL), 
    sort(HL, Hs). 
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VC proved to establish 
soundness 
% Div(22): X - X div Y * Y <= N may_be_deduced_from 
%                                                   [(1) X >= 0, 
%                                                    (2) Y > 0, 
%                                                    (3) {X <= N | Y - 1 <= N} one of]. 

H1:   x >= 0. 
H2:   y > 0 
H3:   x <= n or y - 1 <= n. 
-> 
   C1:   x - x div y * y <= n. 

Can be proved by cases with the Checker 
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Extensions: results achieved 

• Arithmetic reasoning improvements: 
– 235 additional SHOLIS/Tokeneer VCs were 

expected to be proved automatically 
– 248 were actually proved 
– other minor improvements; all were reviewed 

• Structured objects improvements: 
– 188 additional VCs were expected to be proved 

when changes planned, but not all changes were 
made 

– 195 were actually proved; again any other 
improvements or deviations were also reviewed 
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Extension to add user-defined 
rules 
• Allow users to define additional inference and 

rewrite rules 
– Advantages: Simplifier user-extendable; user can 

write rules which capture reasoning and can be 
replayed/reused 

– Disadvantages: user can write unsound rules; 
potential new problems, e.g. termination 

• User can tackle risk of unsoundness by process 
(formal proof of soundness of new rules), but 
tools do not enforce this 

• Can tackle other issues internally: e.g. depth limit 
to prevent non-termination, etc. 
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User-defined proof rules: 
pragmatics 
• Used as a ‘last resort’: 

– Simplification proceeds in a number of phases 
– User-defined rule application is tried last, only if a 

VC has not been fully discharged by other means 
– Use of rule(s) is documented in tool output 

• Strict constraints on application: 
– Pattern matching 
– Discharge of ground / non-ground side-conditions 
– Driven primarily by structure of goal formula(e) 
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Real example: user-defined rule 

• Unsound example (found by review): 
   X <> 0 may_be_deduced_from 
        [abs(X) >= Z, Z <> 0]. 
– Written to discharge a specific VC 
– Not sound: let X = 0, Z = -1 
– Resolve by strengthening side-condition to Z > 0 
– Alternative to finding by review: try to construct 

proof with Proof Checker of formula 
        (abs(x) >= z and z <> 0) -> x <> 0 
–  (Can’t be done: user spots defect.) 
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Current limitations 

• Proofs are only as sound as the user-defined 
proof rules that they use 

•  Floating-point numbers and proof: 
– We do not explicitly model Ada’s real types 
– We use an abstraction: the mathematical reals 
– SPARK floating-point literals are represented as 

rational literals in VCs, e.g. 3.5 is modelled as 7/2. 
–  It is possible to prove the code fragment 
        X := 1.0 / 3.0; 
    satisfies the postcondition 
        --# post 3.0 * X = 1.0; 
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Floating-point limitations 
example 
• Altitudes are input and displayed in (integer) feet 
• Calculations use (floating-point) metres 

      Firm_Lower_Bound : constant := 0.0;     --  metres 
      Firm_Upper_Bound : constant := Altitudes.Max_Altitude_T *  
            Units.Foot_As_Metres;                         --  metres 

      type Metres_T is digits 6 range 
            Firm_Lower_Bound .. Firm_Upper_Bound; 
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Floating-point limitations 
example 
• Problem: maximum input altitude is 67,000 feet, 

giving Firm_Upper_Bound of 20,421.6 metres. 
•  This is not a model number. 
• Conversion from feet to metres can yield a 

constraint error at the boundary. 
• Solution: add a small, type-dependent Epsilon: 

      type Metres_T is digits 6 range 
            Firm_Lower_Bound .. 
            (Firm_Upper_Bound + Epsilon.Digits_6_Range_1_E_4); 
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Floating-point limitations 
example 
• New problem: with a non-zero Epsilon, we cannot 

prove VCs involving the conversions from the 
larger range to the smaller, typically.  But if 
Epsilon is zero, we can’t guarantee a constraint 
error won’t be raised. 

• Solution: 
–  ‘Pretend’ Epsilon is zero for proof purposes (this 

can be done by using a SPARK ‘shadow’ package) 
– Use proper, non-zero value for compilation 
– Use Ada pragma to demonstrate there is no 

problem at compile-time... 
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Floating-point limitations 
example 
      pragma Compile_Time_Error ( 
                  Metres_T'Model (Metres_T'First) > Firm_Lower_Bound or 
                  Metres_T'Model (Metres_T'Last)  < Firm_Upper_Bound, 
                  "Constraint_Error could be raised for this type."); 

•  Now, type Metres_T is slightly larger, including the model 
number after 20,421.6 metres, so a calculation that yields 
a value equivalent to exactly 20,421.6m (67,000ft) will 
not raise an exception.  The Epsilon is chosen based on 
the type range, and will not accommodate a value 
equivalent to 67,001ft. 
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Conclusion 

• Original work on establishing soundness of 
Checker still intact 

• Reused components to generate Simplifier 
• Extensions introduced in a controlled way, with 

proofs of soundness of new rules, peer review, 
additional testing and regression testing 

• User-defined proof rules: a mixed blessing, in that 
unsound rules may in principle be used; need to 
put process in place to avoid this 

•  Limitations, e.g. in floating-point reasoning, can 
sometimes be addressed outside formal proof 
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