
Degrees of trustworthiness: observations
arising from the SPARK proof tools and
their use

Ian O’Neill

 Workshop on Trusted Extensions of
Interactive Theorem Provers

Copyright © Altran Praxis

Topics

• Background: SPARK and its proof tools

• Examples of real verification conditions

• Extensions to the power of the proof tools

•  Further extension: user-defined proof rules

• Current limitations: soundness and floating-point

Slide 2

Copyright © Altran Praxis

SPARK

• A high-integrity subset of Ada
• Developed late 1980s/early 1990s onwards
• Contracts enforced by annotations

–  ‘Formal comments’
–  Ignored by a compiler, used by SPARK tools

• Example:
--# derives Temperature from Pressure, Volume;
--# pre Pressure in Valid_Pressure_T and
--# Volume > 0.0;

Slide 3

Copyright © Altran Praxis

SPARK’s Proof Tools

• SPARK Proof Checker (interactive, short-rein)
– Developed in Prolog (formerly SPADE Proof Checker)
– Some ‘oracles’, e.g.

• standardise a+2*(b-a)+3 = 1-a+2*(b+1) yields true.
• element(update(a,[3],x),[2]) simplifies to element(a,

[2]).

•  First industrial use of Checker to prove LUCOL
assembly code modules for RB211-524G met
their specification (1986/87)

• Simplifier (non-interactive, ‘batch’ operation)
• Simplifier ‘derived’ from Checker components

Slide 4

Copyright © Altran Praxis

Soundness

• Soundness of original Checker:
– Components: standardiser, expression simplifier,

rules engine, natural deduction strategies
–  ‘Boot-strapping’ process:

• Establish soundness of standardiser by induction
• Use in proving soundness of expression simplifier
• Then other components, and so on

– Proofs only to establish soundness, not
completeness or termination

• Soundness of original Simplifier:
– Stringing together of sound Checker components

Slide 5

Copyright © Altran Praxis

Topics

• Background: SPARK and its proof tools

• Examples of real verification conditions

• Extensions to the power of the proof tools

•  Further extension: user-defined proof rules

• Current limitations: soundness and floating-point

Slide 6

Copyright © Altran Praxis

Verification Conditions

• Advent of SPARK and Examiner:
– VCs generated for multiple units
– Proofs of exception-freedom

• Exception-freedom VCs tend to be simpler, but
• Much more numerous

•  Led to decision to create standalone Simplifier:
– Most exception-freedom VCs discharge

automatically
– Remainder: can be discharged with Checker, with

another trusted proof tool or by hand
– But: with proof by hand, risk of misproof

Slide 7

Copyright © Altran Praxis

Real Example VC: range
constraint
H1: ...
H68: fld_value(s__cr) >= basictypes__rollt__first .
H69: fld_value(s__cr) <= basictypes__rollt__last .
...
H72: ...
 ->
C1: abs(fld_value(s__cr)) >= basictypes__rollt__base__first .
C2: abs(fld_value(s__cr)) <= basictypes__rollt__base__last .

Larger, more complex subprograms yield more
hypotheses, more VCs to show each subexpression
 is within relevant range, etc.

Slide 8

Copyright © Altran Praxis

Example VC: structured types

• A (relatively) simple correctness VC from SPARK
test set for an array of records:

H1: true .
H2: for_all (i___1: natbyte, ((i___1 >= it1__first) and (i___1 <= it1__last)) -> ((fld_g1(element(a, [
 i___1])) >= et2__first) and (fld_g1(element(a, [i___1])) <= et2__last))) .
H3: for_all (i___1: natbyte, ((i___1 >= it1__first) and (i___1 <= it1__last)) -> ((fld_f1(element(a, [
 i___1])) >= et1__first) and (fld_f1(element(a, [i___1])) <= et1__last))) .
H4: i >= it1__first .
H5: i <= it1__last .
H6: f >= et1__first .
H7: f <= et1__last .
H8: f >= et1__first .
H9: f <= et1__last .
H10: i >= it1__first .
H11: i <= it1__last .
 ->
C1: for_all (n_: natbyte, ((n_ >= it1__first) and (n_ <= it1__last)) -> (true and (((fld_f1(element(update(
 a, [i], upf_f1(element(a, [i]), f)), [n_])) >= et1__first) and (fld_f1(element(update(a, [i], upf_f1(element(
 a, [i]), f)), [n_])) <= et1__last)) and ((fld_g1(element(update(a, [i], upf_f1(element(a, [i]), f)), [n_])) >=
 et2__first) and (fld_g1(element(update(a, [i], upf_f1(element(a, [i]), f)), [n_])) <= et2__last))))) .

Slide 9

Copyright © Altran Praxis

Example VC from Tokeneer

H12: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 17 ->
 0 <= element(logfileentries, [i___1]) and
 element(logfileentries, [i___1]) <= 1024) .
H13: currentlogfile >= 1 .
H14: currentlogfile <= 17 .
H16: fld_length(usedlogfiles) <= 17 .
H22: element(logfileentries, [currentlogfile]) <> 1024 or
 fld_length(usedlogfiles) <> 17 .
 ->
C1: element(logfileentries, [currentlogfile]) < 1024 or
 fld_length(usedlogfiles) < 17 .

Reasoning too tortuous for Simplifier
Slide 10

Copyright © Altran Praxis

Topics

• Background: SPARK and its proof tools

• Examples of real verification conditions

• Extensions to the power of the proof tools

•  Further extension: user-defined proof rules

• Current limitations: soundness and floating-point

Slide 11

Copyright © Altran Praxis

Trusted extensions to tools

• VCs from real projects (SHOLIS and Tokeneer)
which weren’t discharged automatically, but which
were provable, were reviewed for common
patterns.

•  These were used to identify potential
improvements:
– Arithmetic reasoning (abs, division, modulus,

exponentiation, special cases)
– Logic automation (e.g. better tactics for implication

and disjunction conclusions)
–  Improved handling of structured objects

Slide 12

Copyright © Altran Praxis

Trustworthiness of extensions
(1)
•  Identify new inference rules which will improve

Simplifier ‘hit rate’
– generalising, based on examples identified
– determine expected impact of changes (this is

approximate, based on nature of improvements
and ‘gut feel’ from categorising each VC)

• Prove that these rules are sound with the Checker
– manual process to generate VCs
–  review to check the VCs correspond to the rules
–  formal proof of the VCs with the Checker

• Add these proofs to the standard SPARK test set
Slide 13

Copyright © Altran Praxis

Trustworthiness of extensions
(2)
•  Incorporate the new rules into the Simplifier
• Add extra tests which are unprovable

– E.g. variants of provable VCs with each of the
necessary hypotheses omitted in turn

• Run through entire test set
• Confirm expected results achieved

–  Investigate mismatches:
• VCs unexpectedly not proved
• VCs unexpectedly proved
• Any other changes (e.g. partial proofs)

– Update test set in light of improved results
Slide 14

Copyright © Altran Praxis

Example of improvement
% Div(22): X - X div Y * Y <= N may_be_deduced_from [(1) X >= 0,
% (2) Y > 0,
% (3) {X <= N | Y - 1 <= N} one of].
try_new_deduction_strategies(X - XdivYtimesY <= N, integer, Hs) :-
 i_am_using_rule(div_22a),
 (
 XdivYtimesY = X div Y * Y ; XdivYtimesY = Y * (X div Y)
),
 safe_deduce(X >= 0, integer, H1), /* (1) */
 (/* (2) */
 safe_deduce(Y > 0, integer, H2) ; safe_deduce(Y >= 1, integer, H2)
),
 (/* (3) */
 safe_deduce(X <= N, integer, H3) ; safe_deduce(Y - 1 <= N, integer, H3)
),
 append(H2, H3, Hrest),
 append(H1, Hrest, HL),
 sort(HL, Hs).

Slide 15

Copyright © Altran Praxis

VC proved to establish
soundness
% Div(22): X - X div Y * Y <= N may_be_deduced_from
% [(1) X >= 0,
% (2) Y > 0,
% (3) {X <= N | Y - 1 <= N} one of].

H1: x >= 0.
H2: y > 0
H3: x <= n or y - 1 <= n.
->
 C1: x - x div y * y <= n.

Can be proved by cases with the Checker
Slide 16

Copyright © Altran Praxis

Extensions: results achieved

• Arithmetic reasoning improvements:
– 235 additional SHOLIS/Tokeneer VCs were

expected to be proved automatically
– 248 were actually proved
– other minor improvements; all were reviewed

• Structured objects improvements:
– 188 additional VCs were expected to be proved

when changes planned, but not all changes were
made

– 195 were actually proved; again any other
improvements or deviations were also reviewed

Slide 17

Copyright © Altran Praxis

Topics

• Background: SPARK and its proof tools

• Examples of real verification conditions

• Extensions to the power of the proof tools

•  Further extension: user-defined proof rules

• Current limitations: soundness and floating-point

Slide 18

Copyright © Altran Praxis

Extension to add user-defined
rules
• Allow users to define additional inference and

rewrite rules
– Advantages: Simplifier user-extendable; user can

write rules which capture reasoning and can be
replayed/reused

– Disadvantages: user can write unsound rules;
potential new problems, e.g. termination

• User can tackle risk of unsoundness by process
(formal proof of soundness of new rules), but
tools do not enforce this

• Can tackle other issues internally: e.g. depth limit
to prevent non-termination, etc.

Slide 19

Copyright © Altran Praxis

User-defined proof rules:
pragmatics
• Used as a ‘last resort’:

– Simplification proceeds in a number of phases
– User-defined rule application is tried last, only if a

VC has not been fully discharged by other means
– Use of rule(s) is documented in tool output

• Strict constraints on application:
– Pattern matching
– Discharge of ground / non-ground side-conditions
– Driven primarily by structure of goal formula(e)

Slide 20

Copyright © Altran Praxis

Real example: user-defined rule

• Unsound example (found by review):
 X <> 0 may_be_deduced_from
 [abs(X) >= Z, Z <> 0].
– Written to discharge a specific VC
– Not sound: let X = 0, Z = -1
– Resolve by strengthening side-condition to Z > 0
– Alternative to finding by review: try to construct

proof with Proof Checker of formula
 (abs(x) >= z and z <> 0) -> x <> 0
–  (Can’t be done: user spots defect.)

Slide 21

Copyright © Altran Praxis

Topics

• Background: SPARK and its proof tools

• Examples of real verification conditions

• Extensions to the power of the proof tools

•  Further extension: user-defined proof rules

• Current limitations: soundness and floating-point

Slide 22

Copyright © Altran Praxis

Current limitations

• Proofs are only as sound as the user-defined
proof rules that they use

•  Floating-point numbers and proof:
– We do not explicitly model Ada’s real types
– We use an abstraction: the mathematical reals
– SPARK floating-point literals are represented as

rational literals in VCs, e.g. 3.5 is modelled as 7/2.
–  It is possible to prove the code fragment
 X := 1.0 / 3.0;
 satisfies the postcondition
 --# post 3.0 * X = 1.0;

Slide 23

Copyright © Altran Praxis

Floating-point limitations
example
• Altitudes are input and displayed in (integer) feet
• Calculations use (floating-point) metres

 Firm_Lower_Bound : constant := 0.0; -- metres
 Firm_Upper_Bound : constant := Altitudes.Max_Altitude_T *
 Units.Foot_As_Metres; -- metres

 type Metres_T is digits 6 range
 Firm_Lower_Bound .. Firm_Upper_Bound;

Slide 24

Copyright © Altran Praxis

Floating-point limitations
example
• Problem: maximum input altitude is 67,000 feet,

giving Firm_Upper_Bound of 20,421.6 metres.
•  This is not a model number.
• Conversion from feet to metres can yield a

constraint error at the boundary.
• Solution: add a small, type-dependent Epsilon:

 type Metres_T is digits 6 range
 Firm_Lower_Bound ..
 (Firm_Upper_Bound + Epsilon.Digits_6_Range_1_E_4);

Slide 25

Copyright © Altran Praxis

Floating-point limitations
example
• New problem: with a non-zero Epsilon, we cannot

prove VCs involving the conversions from the
larger range to the smaller, typically. But if
Epsilon is zero, we can’t guarantee a constraint
error won’t be raised.

• Solution:
–  ‘Pretend’ Epsilon is zero for proof purposes (this

can be done by using a SPARK ‘shadow’ package)
– Use proper, non-zero value for compilation
– Use Ada pragma to demonstrate there is no

problem at compile-time...

Slide 26

Copyright © Altran Praxis

Floating-point limitations
example
 pragma Compile_Time_Error (
 Metres_T'Model (Metres_T'First) > Firm_Lower_Bound or
 Metres_T'Model (Metres_T'Last) < Firm_Upper_Bound,
 "Constraint_Error could be raised for this type.");

•  Now, type Metres_T is slightly larger, including the model
number after 20,421.6 metres, so a calculation that yields
a value equivalent to exactly 20,421.6m (67,000ft) will
not raise an exception. The Epsilon is chosen based on
the type range, and will not accommodate a value
equivalent to 67,001ft.

Slide 27

Copyright © Altran Praxis

Conclusion

• Original work on establishing soundness of
Checker still intact

• Reused components to generate Simplifier
• Extensions introduced in a controlled way, with

proofs of soundness of new rules, peer review,
additional testing and regression testing

• User-defined proof rules: a mixed blessing, in that
unsound rules may in principle be used; need to
put process in place to avoid this

•  Limitations, e.g. in floating-point reasoning, can
sometimes be addressed outside formal proof

Slide 28

Copyright © Altran Praxis

Document Control

Change History
0.1 30/07/2010 First draft for comments

Originator: Ian O’Neill

Approver : Rod Chapman

Slide 29

Copyright © Altran Praxis

Altran Praxis Limited
20 Manvers Street
Bath BA1 1PX
United Kingdom
Telephone: +44 (0) 1225 466991
Facsimile: +44 (0) 1225 469006
Website: www.altran-praxis.com

Email: ian.o’neill@altran-praxis.com

Slide 30

