
Support for “Trusted”

Extension in ACL2

J Strother Moore
(joint work with Matt Kaufmann)

Department of Computer Sciences
University of Texas at Austin

August, 2010

1



A Computational Logic for

Applicative Common Lisp = ACL2

• a functional programming language

• a first-order mathematical theory

• a mechanized theorem prover

• implemented primarily in ACL2

2



Primary Concerns

• soundness

• industrial-scale usability

Our primary “customers” are AMD,

Rockwell-Collins, Centaur Technology,

IBM, and various government agencies

3



We must adhere to Common Lisp

4



We must adhere to Common Lisp . . .

because efficient execution of ACL2 models

is a major (driving?) concern

5



Soundness is based on the care Kaufmann

and Moore have taken in the

implementation

ACL2 is not “foundational” – we strive for

good design and elegance in our coding,

but we are willing to add logically

“redundant” features as necessary

6



“Blessed” extension mechanisms are

primarily based on proof of appropriate

properties

Our “trust story” is that if users stick with

certain features, they preserve as much

soundness as we had in the first place

Users can always go “under the hood” and

do anything in Lisp

7



Keys to ACL2’s extensibility include

• expressions “are” objects

• user can access the state of the system

• system is coded in ACL2 so system

functions are available in many contexts

8



Two Senses of “Extension”

• Logical – changing the logical theory

• Behaviorial – changing the behavior of

the prover

9



Logical Extension Facilities

• Ground-zero theory (starting point)
• Theory Extension Events

◦ Simple axiomatic events
· DEFUN - intro new rec fns; conservative

· DEFCHOOSE (basis for DEFUN-SK) - witness fns; conservative

· DEFAXIOM - risky; rarely used

◦ Non-axiomatic events: DEFTHM - prove a theorem

◦ Compound
· PROGN - grouping

· LOCAL - scoping

· INCLUDE-BOOK - import pre-certified events

· ENCAPSULATE - intro constrained un-interp fns

• Syntax extensions

◦ DEFCONST - abbrev constants

◦ DEFMACRO - computed trans of new syntax

10



DEMO: Logical Extension Facilities

• Ground-zero theory (starting point)
• Theory Extension Events

◦ Simple axiomatic events
· DEFUN - intro new rec fns; conservative

· DEFCHOOSE (basis for DEFUN-SK) - witness fns; conservative

· DEFAXIOM - risky; rarely used

◦ Non-axiomatic events: DEFTHM - prove a theorem

◦ Compound
· PROGN - grouping

· LOCAL - scoping

· INCLUDE-BOOK - import pre-certified events

· ENCAPSULATE - intro constrained un-interp fns

• Syntax extensions

◦ DEFCONST - abbrev constants

◦ DEFMACRO - computed trans of new syntax

11



Two Senses of “Extension”

• Logical – changing the logical theory

• Behaviorial – changing the behavior of

the prover

12



Irrelevance

Equality

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

13



Irrelevance

User

Equality

Destructor Elimination

Generalization

Induction

Elimination of

congruence−based rewriting

evaluation
propositional calculus
BDDs
equality
uninterpreted function symbols
rational linear arithmetic
rewrite rules
recursive definitions
back− and forward−chaining
metafunctions

Simplification

14



key lemma

proof

axiom

theorem

rule of inference

main theorem

15



Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith
V

ectors

prover

proposed definitions
conjectures and
advice

theorem

16



Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith
V

ectors

prover

proposed definitions
conjectures and
advice

theorem

17



Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith
V

ectors

prover

proposed definitions
conjectures and
advice

theorem

18



Q.E.D.

theorems, and advice
of ‘‘books’’ of definitions,
database composed

User

proofs

M
em

ory
G

ates
A

rith
V

ectors

prover

proposed definitions
conjectures and
advice

theorem

19



Irrelevance

Equality

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

20



Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)
· Metafunctions and Verified Clause-Processors
· Pragmas -- syntaxp, bind-free, force, case-split, double-rewrite . . .

◦ Static (Goal Specific) Hints
• Programmatic (analogous to tactics)

◦ Computed Hints
◦ Make-event

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
· · ·

• Using ACL2 as a System-Building Shell

21



DEMO: Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
· Pragmas -- syntaxp, bind-free, force, case-split, double-rewrite . . .

◦ Static (Goal Specific) Hints
• Programmatic (analogous to tactics)

◦ Computed Hints
◦ Make-event

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
· · ·

• Using ACL2 as a System-Building Shell

22



Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
· Pragmas -- syntaxp, bind-free, force, case-split, double-rewrite . . .

◦ Static (Goal Specific) Hints
• Programmatic (analogous to tactics)

◦ Computed Hints
◦ Make-event

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
· · ·

• Using ACL2 as a System-Building Shell

23



Clause Processors

Irrelevance

Equality

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

24



Verified clause processors are like

metafunctions except operate at the goal

level rather than the subterm level

Unverified clause processors are external

tools (like SAT-solvers, IBM’s SixthSense,

etc.)

25



It is possible to introduce partially

constrained functions whose execution is

carried out by calls to external tools.

Matt Kaufmann, J S. Moore, Sandip Ray, and Erik Reeber. Integrating

External Deduction Tools with ACL2. Journal of Applied Logic (Special

Issue: Empirically Successful Computerized Reasoning), Volume 7, Issue 1,

March 2009, pp. 3–25. Also published online (DOI

10.1016/j.jal.2007.07.002).

26



DEMO: Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
· Pragmas -- syntaxp, bind-free, force, case-split, double-rewrite . . .

◦ Static (Goal Specific) Hints
• Programmatic (analogous to tactics)

◦ Computed Hints
◦ Make-event

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
· · ·

• Using ACL2 as a System-Building Shell

27



Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
· Pragmas -- syntaxp, bind-free, force, case-split, double-rewrite . . .

◦ Static (Goal Specific) Hints
• Programmatic (analogous to tactics)

◦ Computed Hints
◦ Make-event

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
· · ·

• Using ACL2 as a System-Building Shell

28



(defp run (s)

(if (haltedp s)

s

(run (step s))))

defp (“define partial function”) book:

establishes that generic (uninterpreted)

tail-recursive equation is satisfiable by an

admissible function and then functionally

instantiates that result for the user’s fns

29



Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
◦ Hints -- Static (Goal Specific) and/or Computed

• Programmatic (analogous to tactics)
◦ Macros to generate events -- e.g., support for partial functions

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
· · ·

• Using ACL2 as a System-Building Shell

30



Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
◦ Hints -- Static (Goal Specific) and/or Computed

• Programmatic (analogous to tactics)
◦ Macros to generate events -- e.g., support for partial functions

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
◦ Trust tags (used at Centaur and in ACL2s)
◦ Feature-based

· Hash-cons, memoization, applicative hash tables
· ACL2(r)
· Parallel ACL2

• Verified extensions

31



Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
◦ Hints -- Static (Goal Specific) and/or Computed

• Programmatic (analogous to tactics)
◦ Macros to generate events -- e.g., support for partial functions

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
· · ·

• Using ACL2 as a System-Building Shell

32



Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
◦ Hints -- Static (Goal Specific) and/or Computed

• Programmatic (analogous to tactics)
◦ Macros to generate events -- e.g., support for partial functions

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
◦ Defattach (also for testing) -- contributed talk
◦ Untranslate and untranslate-preprocess
◦ Verified clause-processors

33



Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
◦ Hints -- Static (Goal Specific) and/or Computed

• Programmatic (analogous to tactics)
◦ Macros to generate events -- e.g., support for partial functions

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
· · ·

• Using ACL2 as a System-Building Shell

34



Questions?

35


