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A Computational Logic for

Applicative Common Lisp = ACL2

• a functional programming language

• a first-order mathematical theory

• a mechanized theorem prover

• implemented primarily in ACL2
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Primary Concerns

• soundness

• industrial-scale usability

Our primary “customers” are AMD,

Rockwell-Collins, Centaur Technology,

IBM, and various government agencies
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We must adhere to Common Lisp
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We must adhere to Common Lisp . . .

because efficient execution of ACL2 models

is a major (driving?) concern
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Soundness is based on the care Kaufmann

and Moore have taken in the

implementation

ACL2 is not “foundational” – we strive for

good design and elegance in our coding,

but we are willing to add logically

“redundant” features as necessary
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“Blessed” extension mechanisms are

primarily based on proof of appropriate

properties

Our “trust story” is that if users stick with

certain features, they preserve as much

soundness as we had in the first place

Users can always go “under the hood” and

do anything in Lisp
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Keys to ACL2’s extensibility include

• expressions “are” objects

• user can access the state of the system

• system is coded in ACL2 so system

functions are available in many contexts
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Two Senses of “Extension”

• Logical – changing the logical theory

• Behaviorial – changing the behavior of

the prover
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Logical Extension Facilities

• Ground-zero theory (starting point)
• Theory Extension Events

◦ Simple axiomatic events
· DEFUN - intro new rec fns; conservative

· DEFCHOOSE (basis for DEFUN-SK) - witness fns; conservative

· DEFAXIOM - risky; rarely used

◦ Non-axiomatic events: DEFTHM - prove a theorem

◦ Compound
· PROGN - grouping

· LOCAL - scoping

· INCLUDE-BOOK - import pre-certified events

· ENCAPSULATE - intro constrained un-interp fns

• Syntax extensions

◦ DEFCONST - abbrev constants

◦ DEFMACRO - computed trans of new syntax
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Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)
· Metafunctions and Verified Clause-Processors
· Pragmas -- syntaxp, bind-free, force, case-split, double-rewrite . . .

◦ Static (Goal Specific) Hints
• Programmatic (analogous to tactics)

◦ Computed Hints
◦ Make-event

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
· · ·

• Using ACL2 as a System-Building Shell
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Verified clause processors are like

metafunctions except operate at the goal

level rather than the subterm level

Unverified clause processors are external

tools (like SAT-solvers, IBM’s SixthSense,

etc.)
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It is possible to introduce partially

constrained functions whose execution is

carried out by calls to external tools.

Matt Kaufmann, J S. Moore, Sandip Ray, and Erik Reeber. Integrating

External Deduction Tools with ACL2. Journal of Applied Logic (Special

Issue: Empirically Successful Computerized Reasoning), Volume 7, Issue 1,

March 2009, pp. 3–25. Also published online (DOI

10.1016/j.jal.2007.07.002).
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(defp run (s)

(if (haltedp s)

s

(run (step s))))

defp (“define partial function”) book:

establishes that generic (uninterpreted)

tail-recursive equation is satisfiable by an

admissible function and then functionally

instantiates that result for the user’s fns
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· Hash-cons, memoization, applicative hash tables
· ACL2(r)
· Parallel ACL2

• Verified extensions

31



Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
◦ Hints -- Static (Goal Specific) and/or Computed

• Programmatic (analogous to tactics)
◦ Macros to generate events -- e.g., support for partial functions

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
· · ·

• Using ACL2 as a System-Building Shell

32



Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
◦ Hints -- Static (Goal Specific) and/or Computed

• Programmatic (analogous to tactics)
◦ Macros to generate events -- e.g., support for partial functions

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
◦ Defattach (also for testing) -- contributed talk
◦ Untranslate and untranslate-preprocess
◦ Verified clause-processors

33



Behavorial Extension Facilities

• Customization of Built-in Features
◦ Extending automation through rule-classes

· Rewriting (conditional, contextual, congruence-based)

· Metafunctions and Verified Clause-Processors
◦ Hints -- Static (Goal Specific) and/or Computed

• Programmatic (analogous to tactics)
◦ Macros to generate events -- e.g., support for partial functions

• Extending evaluation capabilities:
◦ Prototype without proof -- e.g., program mode, skip-proofs
◦ Optimizing Evaluation -- guard, mbe

• Unverified (but useful) extensions
· · ·

• Verified extensions
· · ·

• Using ACL2 as a System-Building Shell

34



Questions?
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