Trustworthy decompilation:
Extracting models of machine code inside an ITP

Magnus O. Myreen
University of Cambridge

TEITP 2010
The GCD program in ARM machine code:

```
E1510002 B0422001 C0411002 01AFFFFFFB
```
Problems with machine code

Formal verification of machine code:

machine code

\[code \]
Problems with machine code

Formal verification of machine code:

```
\text{machine code} \quad \text{correctness statement}
\begin{array}{l}
\{P\} \text{ code } \{Q\}
\end{array}
```
Problems with machine code

Formal verification of machine code:

ARM/x86/PowerPC model

machine code

code

(correctness statement)

\{ P \} code \{ Q \}
Problems with machine code

Formal verification of machine code:

ARM/x86/PowerPC model

machine code

\[
\begin{array}{c}
\text{code} \\
(12100/4500/2100 \text{ lines}) \\
\end{array}
\]

correctness statement
\[
\{ P \} \text{ code } \{ Q \}
\]

Contribution: tools/methods which

▶ expose as little as possible of the big models to the user;
▶ make non-automatic proofs independent of the models
Proposed solution

Decompiler:

- input: machine code
- output: function computed by code & certificate theorem
Trusted extension

My tools = ML programs which steer HOL4 to a proof

Every proof passes the LCF-style logical kernel of HOL4.
This talk:

- explaining decompilation || demo
- pros/cons of HOL4
Models of machine languages

Formal verification of machine code:

ARM/x86/PowerPC model

\[
\begin{array}{c}
\text{machine code} \\
\text{\hspace{1cm} code} \\
\text{(12100/4500/2100 lines)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{correctness statement} \\
\{P\} \text{ code } \{Q\}
\end{array}
\]
Models of machine languages

Machine models borrowed from work by others:

ARM model, by Fox [ITP’10]
- covers practically all ARM instructions, for old and new ARMs
- extensively tested against real hardware

x86 model, by Sarkar et al. [POPL’09]
- covers all addressing modes in 32-bit mode x86
- includes approximately 30 instructions

PowerPC model, originally from Leroy [POPL’06]
- manual translation (Coq → HOL4) of Leroy’s PowerPC model
- instruction decoder added
Hoare triple

Each model can be evaluated, e.g. ARM instruction
\texttt{add \textit{r0,r0,r0}} is described by theorem:

\begin{verbatim}
|- (ARM_READ_MEM ((31 >< 2) (ARM_READ_REG 15w state)) state = 0xE0800000w) ∧ ¬state.undefined ⇒
(NEXT_ARM_MMU cp state =
Arm_WRITE_REG 15w (ARM_READ_REG 15w state + 4w)
(Arm_WRITE_REG 0w
(Arm_READ_REG 0w state + Arm_READ_REG 0w state) state))
\end{verbatim}
Hoare triple

Each model can be evaluated, e.g. ARM instruction `add r0,r0,r0` is described by theorem:

$$|- (\text{ARM_READ_MEM (}(31 \gg 2) (\text{ARM_READ_REG 15w state})) \text{ state } = 0x\text{E0800000w}) \land \neg \text{state.undefined } \Rightarrow$$
$$\text{NEXT_ARM_MMU cp state } = \text{ARM_WRITE_REG 15w (ARM_READ_REG 15w state } + 4w)$$
$$\text{ARM_WRITE_REG 0w}$$
$$\text{ARM_WRITE_REG 0w state } + \text{ARM_READ_REG 0w state}) \text{ state})$$

As a total-correctness machine-code Hoare triple:

$$|- \text{SPEC ARM_MODEL}$$
$$\quad (\text{aR 0w x } \ast \text{ aPC p})$$
$$\{(p,0x\text{E0800000w})\}$$
$$\quad (\text{aR 0w (x+x) } \ast \text{ aPC (p+4w)})$$
Hoare triple

Each model can be evaluated, e.g. ARM instruction `add r0,r0,r0` is described by theorem:

\[- (\text{ARM_READ_MEM} ((31 >> 2) (\text{ARM_READ_REG} 15w \text{ state})) \text{ state} = 0xE0800000w) \land \neg\text{state. undefined} \Rightarrow \\
(\text{NEXT_ARM_MMU} \text{ cp state} = \\
\quad \text{ARM_WRITE_REG} 15w (\text{ARM_READ_REG} 15w \text{ state} + 4w) \\
\quad (\text{ARM_WRITE_REG} 0w \\
\quad \quad (\text{ARM_READ_REG} 0w \text{ state} + \text{ARM_READ_REG} 0w \text{ state}) \text{ state})) \]

As a total-correctness machine-code Hoare triple:

\[- \text{SPEC ARM_MODEL} \quad \text{Informal syntax for this talk:} \\
\quad (\text{aR} 0w x \ast \text{aPC} p) \quad \{ \text{R0} x \ast \text{PC} p \} \\
\quad \{(p,0xE08000000w)\} \quad p : E08000000 \\
\quad (\text{aR} 0w (x+x) \ast \text{aPC} (p+4w)) \quad \{ \text{R0} (x+x) \ast \text{PC} (p+4) \} \]
Demo.
Decompile

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000
4: E3510000
8: 12800001
12: 15911000
16: 1AFFFFFFB
Decompile

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

<table>
<thead>
<tr>
<th>Address</th>
<th>Machine Code</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>E3A00000</td>
<td>mov r0, #0</td>
</tr>
<tr>
<td>4:</td>
<td>E3510000</td>
<td>L: cmp r1, #0</td>
</tr>
<tr>
<td>8:</td>
<td>12800001</td>
<td>addne r0, r0, #1</td>
</tr>
<tr>
<td>12:</td>
<td>15911000</td>
<td>ldrne r1, [r1]</td>
</tr>
<tr>
<td>16:</td>
<td>1AFFFFFFFB</td>
<td>bne L</td>
</tr>
</tbody>
</table>
Decomposition

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

\[
\begin{align*}
0: & \text{E3A00000 mov r0, #0} \\
4: & \text{E3510000 L: cmp r1, #0} \\
8: & \text{12800001 addne r0, r0, #1} \\
12: & \text{15911000 ldrne r1, [r1]} \\
16: & \text{1AFFFFFFF bne L}
\end{align*}
\]

the decompiler automatically extracts a readable function:

\[
\begin{align*}
f(r_0, r_1, m) &= \text{let } r_0 = 0 \text{ in } g(r_0, r_1, m) \\
g(r_0, r_1, m) &= \text{if } r_1 = 0 \text{ then } (r_0, r_1, m) \text{ else } \\
&\quad \text{let } r_0 = r_0 + 1 \text{ in } \\
&\quad \text{let } r_1 = m(r_1) \text{ in } \\
&\quad g(r_0, r_1, m)
\end{align*}
\]
Decompiler automatically proves a certificate theorem:

\[f_{\text{pre}}(r_0, r_1, m) \Rightarrow \]
\[\{ (R0, R1, M) \text{ is } (r_0, r_1, m) \ast \text{PC } p \ast S \} \]
\[p : \text{E3A00000 E3510000 12800001 15911000 1AFFFFFFB} \]
\[\{ (R0, R1, M) \text{ is } f(r_0, r_1, m) \ast \text{PC } (p + 20) \ast S \} \]

which informally reads:

for any initially value \((r_0, r_1, m)\) in reg 0, reg 1 and memory, the code terminates with \(f(r_0, r_1, m)\) in reg 0, reg 1 and memory.
Decompilation, verification example

To verify code: prove properties of function f,

$$\forall x \ l \ a \ m. \ list(l, a, m) \Rightarrow f(x, a, m) = (length(l), 0, m)$$
$$\forall x \ l \ a \ m. \ list(l, a, m) \Rightarrow f_{pre}(x, a, m)$$

since properties of f carry over to machine code via the certificate.
Decomposition, verification example

To verify code: prove properties of function f,

$$\forall x \text{l a m. list}(l, a, m) \Rightarrow f(x, a, m) = (\text{length}(l), 0, m)$$
$$\forall x \text{l a m. list}(l, a, m) \Rightarrow f_{pre}(x, a, m)$$

since properties of f carry over to machine code via the certificate.

Proof reuse: Given similar x86 and PowerPC code:

31C085F67405408B36EBF7
38A000002C140000408200107E80A02E38A500014BFF0

which decompiles into f' and f'', respectively. Manual proofs above can be reused if $f = f' = f''$.
Demo.
Decompilation, algorithm

Algorithm:
1. derive a Hoare-triple for each instruction
2. find all paths through code
3. for each loop/sub-component:
 a. compose Hoare triples along each path
 b. merge resulting Hoare triples
 c. apply a loop rule, if necessary

The loop rule introduces a tail-recursive function, an instance of

\[\text{tailrec}(x) = \text{if } G(x) \text{ then } \text{tailrec}(F(x)) \text{ else } D(x) \]
Decompiler, implementation

Implementation:
- ML program which fully-automatically performs forward proof,
- no heuristics and no dangling proof obligations,
- ‘smart’ tactics, e.g. SIMP, avoided to be robust.

Details in Myreen et al. [FMCAD’08].
Applications

- compiler
- decompiler
- machine-code Hoare triple

- func
- code
- (code, thm)
- (func, thm)
- ARM
- x86
- PowerPC
Synthesis often more practical. Given function f,

$$f(r_1) = \text{if } r_1 < 10 \text{ then } r_1 \text{ else let } r_1 = r_1 - 10 \text{ in } f(r_1)$$

our compiler generates ARM machine code:

```
E351000A    L:    cmp r1,#10
2241100A    subcs r1,r1,#10
2AFFFFFFFC  bcs L
```
Compiler

Synthesis often more practical. Given function f,

$$f(r_1) = \text{if } r_1 < 10 \text{ then } r_1 \text{ else let } r_1 = r_1 - 10 \text{ in } f(r_1)$$

our compiler generates ARM machine code:

```
E351000A L: cmp r1,#10
2241100A subcs r1,r1,#10
2AFFFFFFC bcs L
```

and automatically proves a certificate HOL theorem:

$$\vdash \{ R1 \ r_1 \ast PC \ p \ast s \}$$

$$p : E351000A \ 2241100A \ 2AFFFFFFC$$

$$\{ R1 \ f(r_1) \ast PC \ (p+12) \ast s \}$$
One can prove properties of \(f \) since it lives inside HOL:

\[\forall x. f(x) = x \mod 10 \]
Compilation example, cont.

One can prove properties of f since it lives inside HOL:

$$\vdash \forall x. \ f(x) = x \mod 10$$

Properties proved of f translate to properties of the machine code:

$$\vdash \{ R1 \ r_1 \times \text{PC} \ p \times s \}$$

\[p : \text{E351000A 2241100A 2AFFFFFFC} \]

$$\{ R1 \ (r_1 \mod 10) \times \text{PC} \ (p+12) \times s \}$$
Compilation example, cont.

One can prove properties of \(f \) since it lives inside HOL:

\[\forall x. \ f(x) = x \mod 10 \]

Properties proved of \(f \) translate to properties of the machine code:

\[\{ R1 \ r_1 \times PC \ p \times s \} \]

\[p : \text{E351000A 2241100A 2AFFFFFFC} \]

\[\{ R1 (r_1 \mod 10) \times PC (p+12) \times s \} \]

Additional feature: the compiler can use the above theorem to extend its input language with: let \(r_1 = r_1 \mod 10 \) in
Using our theorem about mod, the compiler accepts:

$$g(r_1, r_2, r_3) = \text{let } r_1 = r_1 + r_2 \text{ in}$$
$$\quad \text{let } r_1 = r_1 + r_3 \text{ in}$$
$$\quad \text{let } r_1 = r_1 \text{ mod } 10 \text{ in}$$
$$\quad (r_1, r_2, r_3)$$

Previously proved theorems can be used as building blocks for subsequent compilations.
Implementation

To compile function f:

1. generate, without proof, code from input f;
2. decompile, with proof, a function f' from generated code;
3. prove $f = f'$.

Features:

▶ code generation completely separate from proof
▶ supports many light-weight optimisations without any additional proof burden: instruction reordering, conditional execution, dead-code elimination, duplicate-tail elimination, ...
▶ allows for significant user-defined extensions

Details in Myreen et al. [CC'09]
Implementation

To compile function f:
1. generate, without proof, code from input f;
2. decompile, with proof, a function f' from generated code;
3. prove $f = f'$.

Features:
- code generation completely separate from proof
- supports many light-weight optimisations without any additional proof burden: instruction reordering, conditional execution, dead-code elimination, duplicate-tail elimination, ...
- allows for significant user-defined extensions

Details in Myreen et al. [CC’09]
Demo.
LISP case study

Verified LISP implementations via compilation.

![Diagram](attachment://diagram.png)
LISP case study

Verified LISP implementations via compilation.

verified code for LISP primitives car, cdr, cons, etc.

compiler

decompiler

machine-code Hoare triple

ARM x86 PowerPC
LISP case study

Verified LISP implementations via compilation.

verified code for LISP primitives car, cdr, cons, etc.

HOL4 functions for LISP parse, eval, print

compiler

decompiler

machine-code Hoare triple

ARM x86 PowerPC
LISP case study

Verified LISP implementations via compilation.

HOL4 functions for LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc.

compiler

decompiler

machine-code Hoare triple

ARM, x86, PowerPC code and certificate theorems

ARM, x86, PowerPC
Demo.
Restrictions of decompilation

(De)compilation applicable only to programs where:

1. jumps are to fixed offsets or procedure returns,
2. code and data are kept separate, and
3. its semantics is deterministic.
Restrictions of decompilation

(De)compilation applicable only to programs where:
1. jumps are to fixed offsets or procedure returns,
2. code and data are kept separate, and
3. its semantics is deterministic.

Decompiler extensively used in proof of JIT compiler with:
1. code pointers,
2. self-modifying code, and
3. a non-deterministic ISA model.

Decompiler applied to ‘well-behaved’ sub-components.
This talk:

► explaining decompilation || demo
► pros/cons of HOL4
Pros/cons of HOL4

Pros:
- HOL4 is easily programmable
- lack of user interface — user at ML level
- easy to mix backwards/forwards reasoning
- conceptually simple

Cons:
- very space consuming, e.g. the term “[1, 20, 3000]” is represented by > 30 cons cells
- not automatic enough, not modular enough, ...
Talk summary

Decompilation:

- automates Hoare triple reasoning,
- extracts function computed by code,
- useful for verification and code synthesis.

\[
\text{code} \xrightarrow{\text{decompiler}} (\text{func, thm})
\]
Talk summary

Decompilation:

- automatizes Hoare triple reasoning,
- extracts function computed by code,
- useful for verification and code synthesis.

Questions?

(I can demo the verified Lisp or JIT on request.)