Trustworthy decompilation:
Extracting models of machine code inside an ITP

Magnus O. Myreen
University of Cambridge

TEITP 2010

The GCD program in ARM machine code:

E1510002 B0422001 C0411002 O1AFFFFFB

Problems with machine code

Formal verification of machine code:

machine code

code

Problems with machine code

Formal verification of machine code:

machine code correctness statement

{P} code {Q}

Problems with machine code

Formal verification of machine code:

machine code

code

ARM /x86/PowerPC model

(12100,/4500,/2100 lines)

correctness statement

{P} code {Q}

Problems with machine code

Formal verification of machine code:

machine code

code

ARM /x86/PowerPC model

(12100,/4500,/2100 lines)

Contribution: tools/methods which

correctness statement

{P} code {Q}

> expose as little as possible of the big models to the user;

» make non-automatic proofs independent of the models

Proposed solution

code ----- ->[decompiler } ----» (func,thm)

Decompiler:

» input: machine code

» output: function computed by code & certificate theorem

Trusted extension

My tools = ML programs which steer HOL4 to a proof

my tools

—_—_——_— e e —— <

standard HOL4 theories and tools:
SIMP, EVAL, METIS, SAT, Z3...

Every proof passes the LCF-style logical kernel of HOL4.

This talk:
» explaining decompilation || demo
» pros/cons of HOL4

Models of machine languages

Formal verification of machine code:

machine code

ARM /x86/PowerPC model

(12100/4500,/2100 lines)

correctness statement

{P} code {Q}

Models of machine languages

Machine models borrowed from work by others:

ARM model, by Fox [ITP’10]
» covers practically all ARM instructions, for old and new ARMs

> extensively tested against real hardware

x86 model, by Sarkar et al. [POPL’09]
» covers all addressing modes in 32-bit mode x86

» includes approximately 30 instructions

PowerPC model, originally from Leroy [POPL’06]
» manual translation (Coq — HOL4) of Leroy’s PowerPC model

» instruction decoder added

Hoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM_READ_MEM ((31 >< 2) (ARM_READ REG 15w state)) state =
0xE0800000w) A —state.undefined =
(NEXT_ARM_MMU cp state =
ARM WRITE REG 15w (ARM_READ REG 15w state + 4w)
(ARM_WRITE_REG Ow
(ARM_READ_REG Ow state + ARM_READ REG Ow state) state))

Hoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM_READ_MEM ((31 >< 2) (ARM_READ REG 15w state)) state =
0xE0800000w) A —state.undefined =
(NEXT_ARM_MMU cp state =
ARM_WRITE_REG 15w (ARM_READ_REG 15w state + 4w)
(ARM_WRITE_REG Ow
(ARM_READ_REG Ow state + ARM_READ REG Ow state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM_MODEL
(aR Ow x * aPC p)
{ (p,0xE0800000w) }
(aR Ow (x+x) * aPC (p+4w))

Hoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM_READ_MEM ((31 >< 2) (ARM_READ REG 15w state)) state =
0xE0800000w) A —state.undefined =
(NEXT_ARM_MMU cp state =
ARM_WRITE_REG 15w (ARM_READ REG 15w state + 4w)
(ARM_WRITE_REG Ow
(ARM_READ_REG Ow state + ARM_READ REG Ow state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM_MODEL Informal syntax for this talk:
(aR Ow x * aPC p) {ROx+PCp}
{(p,0xE0800000w) } p : E0800000

(aR Ow (x+x) * aPC (p+4w)) {RO (x+x) « PC (p+4) }

Demo.

Decompilation

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

E3A00000
E3510000
12800001
12: 15911000
16: 1AFFFFFB

o P O

Decompilation

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp rl, #0

8: 12800001 addne r0, r0, #1
12: 15911000 ldrne r1, [ri]

16: 1AFFFFFB bne L

Decompilation

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp rl, #0

8: 12800001 addne r0, r0, #1
12: 15911000 ldrne r1, [ri]
16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f(ro,ri,m) = let o =0in g(ro, r1, m)
g(ro,rn,m) = if =0 then (ro, r1, m) else
let rp = rg+1 in
let 1 = m(ry) in
g(fo, r, m)

Decompilation, correct?

Decompiler automatically proves a certificate theorem:

fore(ro, r1, m) =

{(RO,RL,M) is (rg, r1,m)*x PCpxS}

p : E3A00000 E3510000 12800001 15911000 1AFFFFFB
{(RO,RL,M) is f(rg, ri,m)* PC(p+20)*S}

which informally reads:

for any initially value (ro, r1, m) in reg 0, reg 1 and memory,
the code terminates with 7(rg, r1, m) in reg 0, reg 1 and memory.

Decompilation, verification example

To verify code: prove properties of function f,

Vxlam. list(l,a,m) = f(x,a, m)= (length(l),0,m)
Vxlam. list(l,a,m) = foe(x,a,m)

since properties of f carry over to machine code via the certificate.

Decompilation, verification example

To verify code: prove properties of function f,

Vxlam. list(l,a,m) = f(x,a, m)= (length(l),0,m)
Vxlam. list(l,a,m) = fye(x,a,m)

since properties of f carry over to machine code via the certificate.

Proof reuse: Given similar x86 and PowerPC code:
31C085F67405408B36EBF7

38A000002C140000408200107ES80A02E38A500014BFFFFFO

which decompiles into /' and ", respectively. Manual proofs
above can be reused if f = f' = f".

Demo.

Decompilation, algorithm

Algorithm:
1. derive a Hoare-triple for each instruction
2. find all paths through code
3. for each loop/sub-component:

a. compose Hoare triples along each path
b. merge resulting Hoare triples
c. apply a loop rule, if necessary

The loop rule introduces a tail-recursive function, an instance of

tailrec(x) = if G(x) then tailrec(F(x)) else D(x)

Decompiler, implementation

Implementation:
» ML program which fully-automatically performs forward proof,
» no heuristics and no dangling proof obligations,

» ‘smart’ tactics, e.g. SIMP, avoided to be robust.

Details in Myreen et al. [FMCAD'08].

Applications

code ----- ->[decompiler }————» (func,thm)

{ machine-code Hoare triple]

o | [0 | [rore]

Applications

code ----- ->[decompiler }————» (func,thm)

{ machine-code Hoare triple]

o | [0 | [rore]

Compiler

Synthesis often more practical. Given function f,
f(rn) = if n <10 then ry else let p = — 10 in f(ry)
our compiler generates ARM machine code:

E351000A L: cmp rl,#10
2241100A subcs r1,r1,#10
2AFFFFFC bcs L

Compiler

Synthesis often more practical. Given function f,
f(rn) = if n <10 then ry else let p = — 10 in f(ry)

our compiler generates ARM machine code:

E351000A L: cmp rl,#10
2241100A subcs r1,r1,#10
2AFFFFFC bcs L

and automatically proves a certificate HOL theorem:

F {Rln«PCpxs}
p : E351000A 2241100A 2AFFFFFC
{R1 f(r)*« PC (p+12) xs}

Compilation example, cont.

One can prove properties of f since it lives inside HOL:

F Vx. f(x) = x mod 10

Compilation example, cont.

One can prove properties of f since it lives inside HOL:

F Vx. f(x) = x mod 10

Properties proved of f translate to properties of the machine code:

F {Rlrn*PCp=xs}
p : E351000A 2241100A 2AFFFFFC
{R1 (r; mod 10) x PC (p+12) x s}

Compilation example, cont.

One can prove properties of f since it lives inside HOL:

F Vx. f(x) = x mod 10

Properties proved of f translate to properties of the machine code:

F {Rlrn*PCp=xs}
p : E351000A 2241100A 2AFFFFFC
{R1 (r; mod 10) x PC (p+12) x s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let = r; mod 10 in _

Additional feature: user-defined extensions

Using our theorem about mod, the compiler accepts:

g(r,rn,np) =letrn=n-+nrin
let 1 =n+nrin
let 1 = rn mod 10 in
(rl,rg, r3)

Previously proved theorems can be used as building blocks for
subsequent compilations.

Implementation

To compile function f:
1. generate, without proof, code from input f;
2. decompile, with proof, a function f’ from generated code;

3. prove f = f.

Implementation

To compile function f:
1. generate, without proof, code from input f;
2. decompile, with proof, a function f’ from generated code;

3. prove f = f.

Features:
» code generation completely separate from proof

» supports many light-weight optimisations without any
additional proof burden: instruction reordering, conditional

execution, dead-code elimination, duplicate-tail elimination, ...

» allows for significant user-defined extensions

Details in Myreen et al. [CC'09]

Demo.

LISP case study

Verified LISP implementations via compilation.

compiler

[decompiler]
[

{ machine-code Hoare triple J

Cone | [w0] Troeme)

LISP case study

Verified LISP implementations via compilation.

verified code for LISP primitives car, cdr, cons, etc.

v

[decompiler]
[

{ machine-code Hoare triple J

o | [0] Troemo)

LISP case study

Verified LISP implementations via compilation.

verified code for LISP primitives car, cdr, cons, etc.

v
HOL4 functions for _p compiler
LISP parse, eval, print P
[decompiler]
[

{ machine-code Hoare triple J

o | [0] Troemo)

LISP case study

Verified LISP implementations via compilation.

verified code for LISP primitives car, cdr, cons, etc.

v
HOL4 functions for ; __xa ARM, x86, PowerPC code
LISP parse, eval, print ’ > and certificate theorems
[decompiler]
[

{ machine-code Hoare triple J

Co | [0] Troeme)

Demo.

Restrictions of decompilation

(De)compilation applicable only to programs where:
1. jumps are to fixed offsets or procedure returns,
2. code and data are kept separate, and

3. its semantics is deterministic.

Restrictions of decompilation

(De)compilation applicable only to programs where:
1. jumps are to fixed offsets or procedure returns,
2. code and data are kept separate, and

3. its semantics is deterministic.

Decompiler extensively used in proof of JIT compiler with:
1. code pointers,
2. self-modifying code, and

3. a non-deterministic ISA model.

Decompiler applied to ‘well-behaved' sub-components.

This talk:
» explaining decompilation || demo
» pros/cons of HOL4

Pros/cons of HOL4

Pros:
» HOL4 is easily programmable
» lack of user interface — user at ML level
> easy to mix backwards/forwards reasoning

» conceptually simple

Cons:

> very space consuming, e.g. the term “[1,20, 3000]"
is represented by > 30 cons cells

» not automatic enough, not modular enough, ...

Talk summary

Decompilation:

» automates Hoare triple reasoning,
» extracts function computed by code,

» useful for verification and code synthesis.

code ----- ->[decompiler } ----» (func,thm)

Talk summary

Decompilation:

» automates Hoare triple reasoning,
» extracts function computed by code,

» useful for verification and code synthesis.

code ----- ->[decompiler } ----» (func,thm)

Questions?

(I can demo the verified Lisp or JIT on request.)

