

Plugins for the
Isabelle Platform:
A Perspective for Logically Safe,

Extensible, Powerful and
Interactive Formal Method Tools

 Burkhart Wolff
Université Paris-Sud

(Technical Advice by: Makarius Wenzel, Université Paris-Sud)

What I am not Talking About

What I am not Talking About

Isabelle as:

“Proof - Assistent”
or

“Theorem Prover”

What I will Talk About

Isabelle as:

Formal Methods Tool
Framework

What I will Talk About

Isabelle as:

Formal Methods Tool
Framework

“The ECLIPSE of FM - Tools”

Overview
● Three Histories

Overview
● Three Histories

● Evolution of the ITP Programme and
Evolution of the Isabelle - Architecture

● Evolution of Isabelle - LCF - Kernels

● Evolution of Tools built upon Isabelle

The ITP Research Programme

and
The Evolution of the
Isabelle/Architecture

The “Interactive Proof”
Research Programme

● 1968 : Automath
● 1975 : Stanford LCF

 LISP based Goal-Stack, orientation vs.
 functional Programming, Invention:
 Parametric Polymorphism

● 1979 : Edinburgh LCF
● 1984/5 : Cambridge LCF: core LCF principles (1) an abstract

 type of theorems a (2) tactics that deliver a validation in the
 form of a function from a theorem list to a theorem.

Historic Overviews:
http://www.cambridge.org/catalogue/catalogue.asp?ISBN=9780521395601
http://www.cl.cam.ac.uk/~mjcg/papers/HolHistory.pdf

http://www.cambridge.org/catalogue/catalogue.asp?ISBN=9780521395601

The “Interactive Proof”
Research Programme

● 1986-88 : HOL88, Isabelle, Coq
 Further search to more foundational and
 logically safe systems lead to abandon
 of LCF; HOL became replacement.
 Invention: Basic Embedding Techniques

 Invention: Coq: Dependent types, proofobjects

 Invention: HOL: recursion embeddable,
 datatype packages,
 semantics & conservativity

 Invention: Isabelle: Meta-Logic,
 tactics as relations over thm's,
 Meta-Variables, HO Unification,
 explicit global context (thy's) in
 thm's and goal's ...

The “Interactive Proof”
Research Programme

● 1990-95 : HOL88, HOL4, Isabelle, Coq,
 Maturing of “classic style”,

 search for more auomation

 Invention: Coq: Powerful Module Systems

 Invention: HOL: executable “formulas”
 meson-tac,

 embedding CSP with FP

 Invention: Isabelle: LF, Cube, FOL, ZF, (HOL)
 higher-order rewriter,
 tableaux prover

The “Interactive Proof”
Research Programme

● 1995-00 : HOL4, Isabelle, Coq, HOL-light
 Back to more basics again ...
 and more power and framework, too

 Invention: Isabelle:
Class-type System,
proof objects (Isabelle 96

 Workshop !!!)
auto (combined reasoners)

 Invention: Isabelle:
embedding HOLCF, HOL definitively
superseded LCF. ProofGeneral.

The “Interactive Proof”
Research Programme

● 2000-05 : Isabelle, HOL-light
 Back to more basics again ...
 and more power and framework, too

 Invention: HOL-Light
Real-number theories & IEEE754,
Groebner Basis tactics, ...

 Invention: Isabelle:
ISAR-engine, Proof Documents
context (state) replaces “theory”
integration of ATP via
Proof Objects

The “Interactive Proof”
Research Programme

● 2005-10 : Isabelle, HOL-light
 Back to more basics again ...
 and more power and framework, too

 Invention: HOL-Light
Formal Verification of Kernel
(without Conservativity)

 Invention: Isabelle:
Tools: C0, Simpl,

 TestGen, HOL-Z, HOL-OCL,
 HOL-Boogie,

Evolving Isabelle Architecture
(86)

ML

“classic”-kernel

Evolving Isabelle Architecture
(89)

ML

“classic”-kernel

procedures
(simp, fast,
etc...)

components
datatype
record, ...

Evolving Isabelle Architecture
(98-05)

ML

extended-kernel PO

procedures
(simp, fast,
etc...)

blast,
auto ATP's

components
datatype
record, ...

ATP's

certify

ProofGeneral

Evolving Isabelle Architecture
(05-09)

ML

nano-kernel
+ kernel PO

procedures
(simp, fast,
etc...)

auto,
metis,
zchaff

ATP's

components
datatype
record, ...

integrators
sledge,

ATP's

ATP

certify

Tools
HOL-Z, HOL-TestGen,
Simpl, Sec Toolbox, HOL-OCL Boogie/VCC

Argo/UML

 CZT
ProofGeneral

c
o
d
e

Evolving Isabelle Architecture
(09)

nano-kernel
+ kernel PO

procedures
(simp, fast,
etc...)

auto,
metis,
Z3,zchaff

ATP's

components
datatype
record, ...

integrators
sledge, smt

ATP's

ATP

certify

Tools
HOL-Z, HOL-TestGen,
Simpl, Sec Toolbox, HOL-OCL Boogie/VCC

Argo/UML

 CZT
ProofGeneral / I3P / jEdit

c
o
d
e

Scala System Interface

integrators
sledge,

n
b
e

ML running on multi-core arch
C1 C2 C3 C4

The Evolution of

Isabelle - Kernels

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge

(Edinburg LCF, HOL88?, Isabelle 89 ... 94-4, ...)

Γ H
Θ
ϕ

Meaning: ϕ can be derived from Γ in the global context Θ

where:

Γ : local context, assumptions, premisses, ...
ϕ : conclusion
Θ: global context, the „theory“ (Σ,A)consisting
 of the „signature Σ“ and the „Axioms A“

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge

(Edinburgh LCF, HOL88?, Isabelle 89 ... 94-4, ...)

„Θ“ thy = { ancestors : thy list ,
 sign : Signature ,
 axms : thm list}

„Γ H
Θ
ϕ“ thm = {context : thy,

 hyps : term list,
 prop : term}

_ _⊆ subthy : thy thy => bool∗

Invariant: is a partial ordering (no cycles)⊆

The inclusion ordering ⊆ is critically used for the transfer of judgements („thm“s):

 Γ H
Θ1
ϕ implies Γ H

Θ 2
ϕ if T

1
 ⊆ T

2

The Classical LCF Kernel:

Typical Programming Interface

„ϕ H
Θ
ϕ“ trivial Θ „ϕ“ :: thm

„Γ H
Θ
ϕ ξ  åΕ“ instantiate:: ... => thm => thm

„forward- implies_elim :: thm => thm => thm
 chaining“

„backward- type tactic = thm => seq thm
chaining“

rtac , etac, dtac, ...

In Cambridge LCF: elementary rules of the HOL-logic as
 basic operators on thm's, in Isabelle the elementary
 rules of an intuitionistic fragment of HOL called „Pure“

prf prf

T
1 T

2

T
3

T
4

proof skripts using
lemmas valid in glo-
bal context T

1
 via

transfer

prf

prf
merge

T
0

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge

(Isabelle 89 ... 94-4, ...)

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge

(Isabelle 89 ... 94-4, ...)

Explicit proof contexts turn the Kernel into a “transaction
machine” where the proofs can be executed interleaved
(The following was essentially already possible in 98):

goal A.thy “<lemma1>”
by(rtac …) by(dtac …)
val P1 = push_proof ()

goal B.thy “<lemma1>”
by(dtac …)
val P2 = push_proof ()

pop_proof(P1)
by(simp_tac …)
val thm1 = result()

pop_proof(P2)
by(simp_tac …)
val thm2 = result()

prf prf

T
1

T
2 T

4

proof skripts using
lemmas valid in glo-
bal context T

1
 via

re-load of prf 1

T
0

Comparison: The “Minimal” LCF Kernel:
Fine grained global context transition without branch and merge

Global Contexts implicit in the top-level ML shell
no transfer - import by reproving (HOL-light, HOL-88, HOL4)

The Extended LCF Kernel:
Internalising again the Name-Management and the plug-in

Data into the Kernel
(ca. Isabelle 98, ...)

„Θ“ thy = {id:Id,
 ancestors : thy list ,
 sign: Signature,

 axms: thm list,
 ...}

„Γ H
Θ
ϕ“ thm = {context:thy,

 hyps:term list,
 prop:term}

„_ _“ ⊆ subthy: thy × thy bool→
The Global Context becomes an „Extensible Record“ where
Plugins can register their local state. (Used for configuration
data of automated provers (simpset, claset, etc.), but rapidly
for other stuff like a global Thm-Database, oracles, and proof-terms.
Consequence: Plugin-Infrastructure with merge, provided that
plugins were consequently parameterized wrt. Θ

T
1 T

2

T
3

T
4

proof skripts using
lemmas valid in glo-
bal context T

1
 via

transfer

merge

T
0

The Extended LCF Kernel:
fine-grained global context transition with branch and merge

proofs are global transitions, mixed with other extensions
(Isabelle 98, ..., but also Nano-Kernels Isabelle2005)

T
3 - 3

T
3 - 2T

3 - 1

...
...

...

...

Name-Management done inside proofscripts by
Global Context-Management, NOT by SML.
Requires get_thm(the_context(), „add_commute“) ,
later antiquotation „{@thm add_commute}“ in proof scripts.
Mixture between Signature extensions and proofs
facilitated programming of packages and automated provers.

The Extended LCF Kernel:
An Example at the Isar level:

theory AVL_def
imports Testing Main
begin

datatype 'a tree = ET | MKT 'a "'a tree" "'a tree"

fun height :: "'a tree ⇒ nat"
where
 "height ET = 0"
| "height (MKT n l r) = 1 + max (height l) (height r)"

fun is_in :: " 'a ⇒ 'a tree ⇒ bool"
where
 "is_in k ET = False"
| "is_in k (MKT n l r) = (k=n ∨ is_in k l ∨ is_in k r)"

T
3 - 3

T
3 - 2

T
3 - 1

T
3 - 0

The Nano-Kernel LCF - Architecture:
Putting the Classical Kernel actually into Plugins ...

(used since Isabelle2005)

Classical Kernel: Naming (and therefore referencing to
thm's) left to the SML-toplevel, Kernel
talks of logic-specific items (terms, hyps,...)

Nano-Kernel: Naming and Referencing is at the heart
of the design; keeping _ _ acyclic is the⊆
key invariant. From the perspective of
the Nano-Kernel, thm's and sign's are just
“data”.

The Nano-Kernel LCF - Architecture:

Putting the Classical Kernel actually into Plugins ...
(used since Isabelle2005)

context = {id : Id,
 ancestors : Id list,

 ...}
„Θ“ thycontext = context + {

 sign : Signature,
 thm_db : name ß thm,

 ...}
„Γ H

Θ
ϕ“ thm = {certificate : CertId,

 hyps : term,
 prop : term}

CertificateTable : CertId ß thycontext

„_ _“ ⊆ subthy: thycontext × thycontext bool→

The Nano-Kernel LCF - Architecture:
Putting the Classical Kernel actually into Plugins ...

(used since Isabelle2005)

proofcontext = context + {
 theory_of_proof : CertId,
 fixes : string list,
 assumes : term list,
 ...}

Proof-Contexts are data-structures to capture
local information like fixes, assumptions, abbreviations
etc., their names and their prover-configuration ...

In particular all local data relevant for the interfacing
between sub-proofcontexts to their supercontexts...

T
1 T

2

T
3

T
4

merge

T
0

Nano-Kernel LCF-Architecture:
fine-grained global context transition with branch and merge

proofs are global transitions, mixed with other extensions
grouping of context transitions via Kernel re-certication

(but also Nano-Kernels Isabelle2005)

T
3 - 3

T
3 - 2T

3 - 1

...
...

...

...

T
1 T

2

T
3

T
4

merge

T
0

T
3

T
3 T

3

...
...

...

...

T
1 T

2

T
3

T
4

merge

T
0

Parallel Nano-Kernel LCF-Architecture:
coarse-grained parallelism

(Isabelle2008 in batch-mode, Isabelle2010 also in interactive mode)

T
3 - 3

T
3 - 2T

3 - 1

...
...

...

...

Parallel Nano-Kernel LCF - Architecture:
Putting the Classical Kernel actually into Plugins ...

Isabelle2009 - 10 (!)
...

„Θ“ thycontexts = contexts + {
 sign : Signature,

 thm_db : name ß thm,
 ...}

„Γ H
Θ
ϕ“ thm = {context : CertId,

 promises: name ß thm future,
 hyps : term,

 prop : term}

status :: thm => { failed : bool,
 oracle: bool,
 unfinished: bool}

 ...

T
3

T
0

Parallel Nano-Kernel LCF-Architecture:
fine-grained, asynchronous parallelism

(Isabelle2009)

T
3 - 3

T
3 - 2

T
3 - 1

T#
3 - 1

T#
3 - 2 T#

3 - 3
T#

3

⊒ ⊒ ⊒ ⊒

All thm's may contain sub-thm's (promises) used in their proof whose validation is
actually left to an asynchronous thread managed in a data-stucture future. Successful
validation leads to a fulfil-ment of a promise. Merges were postponed till fulfillment
of all promises in a thm_db of a global context.

(Futures are actually grouped, can emit/receive events and can be killed).

Parallel
Nano-Kernel
LCF-Archi-
tecture

in the

jEdit - GUI

fine-grained,
asynchronous
parallelism
(Isabelle2009-2)

PIDE - GUI - Architecture
(see PIDE - Project: http://bitbucket.org/pide/pide/wiki/Manifesto)

π d.e

prover

SML/
Scala
inter
face

π d.e (Java / Scala)

inte-
gration
layer

installation
manager

src
distribution

server

e.g. Isabelle (SML)

domain edit
plugin

domain view
plugin

Swing
library

. . .

u
s
e
r

JVM/
Scala
inter
face

Context-Management
and Document Model

● Document Model (following the Notepad-
Metaphor [Lüth, Wolff 97])

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

Notepad /
Node

semantic
branch

syntactic
merge

Context-Management
and Document Model

● Document Model (following the Notepad-
Metaphor [Lüth, Wolff 97])

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom
T

3

T
0

T
3 - 2

T
3 - 1

“semantic”
evaluation
by the
kernel

Web -
Apps

Architecture in the Future

π d.e Isabelle
SML/
Scala
inter
face

JVM/
Scala
inter
face

e.g. Isabelle (SML)

JVM/
Scala
inter
face

SML/
Scala
inter
face

ATP's
(Z3, E, Spass)

FM Tool-Development
built

upon the Isabelle Framework

Tools as Plug-Ins (I)
● Simpl [Schirmer]

– conservatively derived PO-generator for
an imperative core-language

– front-ends: C0 (Leinenbach), C0-VAMOS (Daum)
C?? (Norrish, NICTA)

– classical library development
● Security Toolbox [Sprenger]

– conservatively derived PO-generator for
an interleaved transition systems

– classical library development for Crypt-Engines

Tools as Plug-Ins (II)
● HOL-Z [Brucker, Rittinger, Wenzel, Wolff]

– conservative, shallow Embedding for Z and Schema-Calculus,
– integrated in a TOOL-chain

(loader for external TC ZETA and format .holz)
– Plug-In with
● own state (ZEnv capturing “schema signatures”

and proof-obligations)
● own Isar commands

– for loading “load_holz”,
– for support of refinement methodology “refine A B [functional]”
– for proving “zallintro, zexelim” …

● reuse of: GUI, Prover, Libraries, ...

Tools as Plug-Ins (II')
● HOL-Z (cont)

Tools as Plug-Ins (III)
● HOL-Boogie [Böhme, Wolff]

– Proof-Environment for non-conservative PO-generator
Boogie and the VCC - FrontEnd (Concurrent, X86 C)

– Intended to Debug Z3 - Proofs (Z3 integrated)
– Plug-In Managed State: PO-Management
– Integration of Z3 + Proof-Reconstruction [Böhme]
– own integrative (SMT) Proof-Methods
– own (native) Proof-tactics for Decomposition and

Memory-Model-Handling for VCC1 and VCC2
– Tracking of Assertions

Tools as Plug-Ins (III')
● HOL-Boogie [Böhme, Wolff]

HOL-Boogie

.thyVCC

Boogie

.bpl

.bpl

axiomatization of the
“c virtual machine” (cvm)

.b2i

C
com
piler

Z3

Tools as Plug-Ins (IV)
● HOL-OCL [Brucker, Wolff]

– conservative, shallow Embedding for UML/OCL class
diagrams and object-oriented specifications

– Support for Refinement-Methodology
– Plug-In in Tool-Chain (Loader for Argo/UML …)
– Plug-in State: PO-Management, OO-DM Management
– Own Proof-Commands
– Own Proof Methods

Tools as Plug-Ins (IV')
● HOL-OCL [Brucker, Wolff]

Tools as Plug-Ins (III)
● HOL-TestGen [Brucker, Brügger, Krieger, Wolff]

– Proof-Environ
ment for Con
servative
Test-Data-
Generation
and Test-Dri
ver Genera
tion

– Used for
Security
Test
Scenarios ...

Conclusion

Conclusion
● The ITP Programme (and Isabelle in

particular) allowed:
– reconciliation of foundational with pragmatic

technology issues
– reconciliation specification & programming
– reconciliation with ATP (via Oracles, Proof-Object

certification, Tactic Proof Reconstruction)
– parallel evaluation of proofs &
– parallel (distributed) documents

Conclusion
● Reusing Isabelle as FM tool foundation

offers:
– substantial conservative libraries
– standardized interfaces to tactic

and automatic proof
– proof documentation
– code generation
– a programming interface and genericity in design

... a lot of machinery not worth to reinvent.

Conclusion
● Larry Paulson,

“How to write a theorem prover”:

– One final advice:
Don't write a theorem prover,
try to reuse someone else's.

● Harald Ganzinger, confronted with a
Java-From-Scratch Tableaux Prover:

– “Das ist doch wieder der naive Ansatz.”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

