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● Evolution of the ITP Programme and
Evolution of the Isabelle - Architecture 

● Evolution of Isabelle - LCF - Kernels

● Evolution of Tools built upon Isabelle



  

 
The ITP Research Programme

and
The Evolution of the 
Isabelle/Architecture

 



  

The “Interactive Proof” 
Research Programme 

● 1968 : Automath
● 1975 : Stanford LCF

   LISP based Goal-Stack, orientation vs.  
   functional Programming, Invention: 
   Parametric Polymorphism

● 1979 : Edinburgh LCF
● 1984/5 : Cambridge LCF: core LCF principles (1) an abstract 

     type of theorems a (2) tactics that deliver a validation in the
     form of a function from a theorem list to a theorem.

Historic Overviews: 
http://www.cambridge.org/catalogue/catalogue.asp?ISBN=9780521395601
http://www.cl.cam.ac.uk/~mjcg/papers/HolHistory.pdf

http://www.cambridge.org/catalogue/catalogue.asp?ISBN=9780521395601


  

The “Interactive Proof” 
Research Programme 

● 1986-88 : HOL88, Isabelle, Coq
 Further search to more foundational and
 logically safe systems lead to abandon
 of LCF; HOL became  replacement.
 Invention: Basic Embedding Techniques

 Invention: Coq: Dependent types, proofobjects

 Invention: HOL: recursion embeddable,
      datatype packages,
      semantics & conservativity

      Invention: Isabelle: Meta-Logic,
    tactics as relations over thm's, 
    Meta-Variables, HO Unification,
    explicit global context (thy's) in 
    thm's and goal's ...
     



  

The “Interactive Proof” 
Research Programme 

● 1990-95 : HOL88, HOL4, Isabelle, Coq, 
 Maturing of “classic style”,

  search for more auomation

 Invention: Coq: Powerful Module Systems

 Invention: HOL: executable “formulas”
          meson-tac,

     embedding CSP with FP

      Invention: Isabelle: LF, Cube, FOL, ZF, (HOL)
   higher-order rewriter,
   tableaux prover



  

The “Interactive Proof” 
Research Programme 

● 1995-00 : HOL4, Isabelle, Coq, HOL-light
 Back to more basics again ...
 and more power and framework, too

 Invention: Isabelle: 
Class-type System,
proof objects (Isabelle 96

  Workshop !!!)
auto (combined reasoners)

 Invention: Isabelle: 
embedding HOLCF, HOL definitively
superseded LCF. ProofGeneral.



  

The “Interactive Proof” 
Research Programme 

● 2000-05 : Isabelle, HOL-light
 Back to more basics again ...
 and more power and framework, too

 Invention: HOL-Light
Real-number theories & IEEE754,
Groebner Basis tactics, ...

 Invention: Isabelle: 
ISAR-engine, Proof Documents
context (state) replaces “theory”
integration of ATP via 
Proof Objects



  

The “Interactive Proof” 
Research Programme 

● 2005-10 : Isabelle, HOL-light
 Back to more basics again ...
 and more power and framework, too

 Invention: HOL-Light
Formal Verification of Kernel
(without Conservativity) 

 Invention: Isabelle: 
Tools: C0, Simpl,

  TestGen, HOL-Z, HOL-OCL,
  HOL-Boogie, 



  

Evolving Isabelle Architecture 
(86)

ML

“classic”-kernel



  

Evolving Isabelle Architecture
(89)

ML

“classic”-kernel

procedures
(simp, fast,
etc...)

components
datatype 
record, ...



  

Evolving Isabelle Architecture
(98-05)

ML

extended-kernel PO

procedures
(simp, fast,
etc...)

blast,
auto ATP's

components
datatype 
record, ...

ATP's

certify

ProofGeneral



  

Evolving Isabelle Architecture
(05-09)

ML

nano-kernel
+ kernel PO

procedures
(simp, fast,
etc...)

auto,
metis,
zchaff

ATP's

components
datatype 
record, ...

integrators
sledge, 

ATP's

ATP

certify

Tools
HOL-Z, HOL-TestGen, 
Simpl, Sec Toolbox, HOL-OCL  Boogie/VCC

Argo/UML 

 CZT
ProofGeneral

c
o
d
e



  

Evolving Isabelle Architecture
(09)

nano-kernel
+ kernel PO

procedures
(simp, fast,
etc...)

auto,
metis,
Z3,zchaff

ATP's

components
datatype 
record, ...

integrators
sledge, smt

ATP's

ATP

certify

Tools
HOL-Z, HOL-TestGen, 
Simpl, Sec Toolbox, HOL-OCL  Boogie/VCC

Argo/UML 

 CZT
ProofGeneral / I3P / jEdit

c
o
d
e

Scala System Interface

integrators
sledge, 

n
b
e

ML running on multi-core arch
C1 C2 C3 C4



  

 

The Evolution of 

Isabelle - Kernels



  

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge 

(Edinburg LCF, HOL88?, Isabelle 89 ... 94-4, ...) 

Γ H
Θ
ϕ

Meaning: ϕ can be derived from Γ in the global context Θ

where:

Γ : local context, assumptions, premisses, ...
ϕ : conclusion
Θ: global context, the „theory“ (Σ,A)consisting
    of the „signature Σ“ and the „Axioms A“



  

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge 

(Edinburgh LCF, HOL88?, Isabelle 89 ... 94-4, ...) 

„Θ“ thy = { ancestors : thy list , 
             sign : Signature ,
            axms : thm list} 

„Γ H
Θ
ϕ“ thm = {context : thy, 

       hyps : term list, 
             prop : term}

_ _⊆ subthy : thy  thy => bool∗

Invariant:  is a partial ordering (no cycles)⊆

The inclusion ordering  ⊆ is critically used for the transfer of judgements („thm“s):

       Γ  H
Θ1 
ϕ   implies  Γ  H

Θ  2 
ϕ if  T

1
   ⊆ T

2   



  

The Classical LCF Kernel:

Typical Programming Interface

„ϕ H
Θ
ϕ“ trivial Θ „ϕ“ :: thm

„Γ H
Θ
ϕ  ξ  åΕ“     instantiate::  ... => thm => thm

„forward-     implies_elim   :: thm => thm => thm
 chaining“  

„backward- type tactic = thm => seq thm
chaining“

rtac , etac, dtac, ...

In Cambridge LCF: elementary rules of the HOL-logic as 
 basic operators on thm's, in Isabelle the elementary
 rules of an intuitionistic fragment of HOL called „Pure“



  

prf prf

T
1 T

2

T
3

T
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proof skripts using 
lemmas valid in glo-
bal context  T

1
 via 

transfer

prf

prf
merge

T
0

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge 

(Isabelle 89 ... 94-4, ...) 



  

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge 

(Isabelle 89 ... 94-4, ...) 

Explicit proof contexts turn the Kernel into a “transaction
machine” where the proofs can be executed interleaved
(The following was essentially already possible in 98):

goal A.thy “<lemma1>”
by(rtac …) by(dtac … )
val P1 = push_proof ()

goal B.thy “<lemma1>”
by(dtac … )
val P2 = push_proof ()

pop_proof(P1)
by(simp_tac …)
val thm1 = result()

pop_proof(P2)
by(simp_tac …)
val thm2 = result()



  

prf prf

T
1

T
2 T

4

proof skripts using 
lemmas valid in glo-
bal context  T

1
 via 

re-load of prf 1

T
0

Comparison: The “Minimal” LCF Kernel:
Fine grained global context transition without branch and merge 

Global Contexts implicit in the top-level ML shell
no transfer - import by reproving (HOL-light, HOL-88, HOL4) 



  

The Extended LCF Kernel:
Internalising again the Name-Management and the plug-in

Data into the Kernel
(ca. Isabelle 98, ...) 

„Θ“ thy =  {id:Id, 
   ancestors : thy list , 
    sign: Signature,

      axms: thm list,
      ...} 

„Γ H
Θ
ϕ“ thm = {context:thy, 

    hyps:term list, 
       prop:term}

„_ _“ ⊆ subthy: thy × thy bool→
The Global Context becomes an „Extensible Record“ where
Plugins can register their local state. (Used for configuration
data of automated provers (simpset, claset, etc.), but rapidly
for other stuff like a global Thm-Database, oracles, and proof-terms.
Consequence: Plugin-Infrastructure with merge, provided that
plugins were consequently parameterized wrt. Θ
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3

T
4

proof skripts using 
lemmas valid in glo-
bal context  T

1
 via 

transfer

merge

T
0

The Extended LCF Kernel:
fine-grained global context transition with branch and merge

proofs are global transitions, mixed with other extensions
(Isabelle 98, ..., but also Nano-Kernels Isabelle2005) 

T
3 - 3

T
3 - 2T

3 - 1

...
...

...

...

Name-Management done inside proofscripts  by 
Global Context-Management, NOT by SML.
Requires get_thm(the_context(), „add_commute“) ,
later antiquotation „{@thm add_commute}“ in proof scripts.
Mixture between Signature extensions and proofs
facilitated programming of packages and automated provers.



  

The Extended LCF Kernel:
An Example at the Isar level:

theory AVL_def
imports Testing Main
begin

datatype 'a tree = ET |  MKT 'a "'a tree" "'a tree"

fun height :: "'a tree ⇒ nat"
where
  "height ET = 0"
| "height (MKT n l r) = 1 + max (height l) (height r)"

fun is_in  :: " 'a ⇒ 'a tree ⇒ bool"
where
  "is_in k ET = False"
| "is_in k (MKT n l r) = (k=n ∨ is_in k l ∨ is_in k r)"

T
3 - 3

T
3 - 2

T
3 - 1

T
3 - 0



  

The Nano-Kernel LCF - Architecture:
Putting the Classical Kernel actually into Plugins ...

(used since Isabelle2005) 

Classical Kernel: Naming (and therefore referencing to 
thm's) left to the SML-toplevel, Kernel
talks of logic-specific items (terms, hyps,...)

Nano-Kernel: Naming and Referencing is at the heart
of the design; keeping _ _ acyclic is the⊆
key invariant. From the perspective of
the Nano-Kernel, thm's and sign's are just
“data”. 



  

The Nano-Kernel LCF - Architecture:

Putting the Classical Kernel actually into Plugins ...
(used since Isabelle2005) 

context =   {id : Id, 
   ancestors : Id list, 

      ...}
„Θ“ thycontext =  context + {

    sign : Signature,
       thm_db : name ß thm,

      ...} 
„Γ H

Θ
ϕ“ thm = {certificate : CertId, 

    hyps : term, 
       prop : term}

CertificateTable :   CertId ß thycontext

„_ _“ ⊆ subthy: thycontext × thycontext bool→



  

The Nano-Kernel LCF - Architecture:
Putting the Classical Kernel actually into Plugins ...

(used since Isabelle2005) 

proofcontext = context + {
  theory_of_proof : CertId,
  fixes : string list,
  assumes : term list,
  ...}

Proof-Contexts are data-structures to capture 
local information like fixes, assumptions, abbreviations
etc., their names and their prover-configuration ...

In particular all local data relevant for the interfacing
between sub-proofcontexts to their supercontexts...
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Nano-Kernel LCF-Architecture:
fine-grained global context transition with branch and merge

proofs are global transitions, mixed with other extensions
grouping of context transitions via Kernel re-certication 

( but also Nano-Kernels Isabelle2005) 

T
3 - 3

T
3 - 2T

3 - 1

...
...

...

...

T
1 T

2

T
3

T
4

merge

T
0

T
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T
3 T

3 

...
...

...

...
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merge

T
0

Parallel Nano-Kernel LCF-Architecture:
coarse-grained parallelism

(Isabelle2008 in batch-mode, Isabelle2010 also in interactive mode) 

T
3 - 3

T
3 - 2T

3 - 1

...
...

...

...



  

Parallel Nano-Kernel LCF - Architecture:
Putting the Classical Kernel actually into Plugins ...

Isabelle2009 - 10 (!) 
...

„Θ“     thycontexts =  contexts + {
    sign : Signature,

     thm_db : name ß thm,
      ...} 

„Γ H
Θ
ϕ“ thm = {context : CertId, 

   promises: name ß thm future,
   hyps : term, 

       prop : term}
             

status :: thm => { failed : bool, 
  oracle: bool, 
  unfinished: bool}  

    ...



  

T
3

T
0

Parallel Nano-Kernel LCF-Architecture:
fine-grained, asynchronous parallelism

(Isabelle2009) 

T
3 - 3

T
3 - 2

T
3 - 1

T#
3 - 1

T#
3 - 2 T#

3 - 3
T#

3

⊒ ⊒ ⊒ ⊒

All thm's may contain sub-thm's (promises) used in their proof whose validation is 
actually left to an asynchronous thread managed in a data-stucture future. Successful 
validation leads to a fulfil-ment of a promise.  Merges were postponed till fulfillment 
of all promises in a thm_db of a global context.

(Futures are actually grouped, can emit/receive events and can be killed).



  

Parallel 
Nano-Kernel 
LCF-Archi-
tecture

in the 

jEdit - GUI

fine-grained, 
asynchronous 
parallelism
(Isabelle2009-2) 



  

PIDE - GUI - Architecture
(see PIDE - Project: http://bitbucket.org/pide/pide/wiki/Manifesto)

π d.e

prover

SML/
Scala
inter
face

π d.e (Java / Scala)

inte-
gration
layer

installation
manager

src
distribution

server

e.g. Isabelle (SML)

domain edit
plugin

domain view
plugin

Swing
library

. . .

u
s
e
r

JVM/
Scala
inter
face



  

Context-Management
and Document Model

● Document Model (following the Notepad-
Metaphor [Lüth, Wolff 97])

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

Notepad / 
Node

semantic
branch

syntactic
merge



  

Context-Management
and Document Model

● Document Model (following the Notepad-
Metaphor [Lüth, Wolff 97])

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom

atom
T

3

T
0

T
3 - 2

T
3 - 1

“semantic”
evaluation
by the 
kernel



  

Web - 
Apps

Architecture in the Future

π d.e      Isabelle
SML/
Scala
inter
face

JVM/
Scala
inter
face

e.g. Isabelle (SML)

JVM/
Scala
inter
face

SML/
Scala
inter
face

ATP's
(Z3, E, Spass)



  

 

FM Tool-Development 
built 

upon the Isabelle Framework



  

Tools as Plug-Ins (I)
● Simpl [Schirmer]

– conservatively derived PO-generator for
an imperative core-language

– front-ends: C0 (Leinenbach), C0-VAMOS (Daum)
C?? (Norrish, NICTA)

– classical library development
● Security Toolbox [Sprenger]

– conservatively derived PO-generator for
an interleaved transition systems

– classical library development for Crypt-Engines



  

Tools as Plug-Ins (II)
● HOL-Z [Brucker, Rittinger, Wenzel, Wolff]

– conservative, shallow Embedding for Z and Schema-Calculus, 
– integrated in a TOOL-chain 

(loader for external TC ZETA and format .holz)
– Plug-In with
● own state (ZEnv capturing “schema signatures”

and proof-obligations)
● own Isar commands 

– for loading “load_holz”, 
– for support of refinement methodology “refine A B [functional]”
– for proving “zallintro, zexelim” …

● reuse of: GUI, Prover, Libraries, ... 



  

Tools as Plug-Ins (II')
● HOL-Z (cont)



  

Tools as Plug-Ins (III)
● HOL-Boogie [Böhme, Wolff]

– Proof-Environment for non-conservative PO-generator 
Boogie and the VCC - FrontEnd (Concurrent, X86 C)

– Intended to Debug Z3 - Proofs (Z3 integrated)
– Plug-In Managed State: PO-Management
– Integration of Z3 + Proof-Reconstruction [Böhme]
– own integrative (SMT) Proof-Methods
– own (native) Proof-tactics for Decomposition and

Memory-Model-Handling for VCC1 and VCC2
– Tracking of Assertions



  

Tools as Plug-Ins (III')
● HOL-Boogie [Böhme, Wolff]

HOL-Boogie

.thyVCC

Boogie

.bpl

.bpl

axiomatization of the 
“c virtual machine” (cvm)

.b2i

C 
com
piler

Z3



  

Tools as Plug-Ins (IV)
● HOL-OCL [Brucker, Wolff]

– conservative, shallow Embedding for UML/OCL class
diagrams and object-oriented specifications

– Support for Refinement-Methodology 
– Plug-In in Tool-Chain (Loader for Argo/UML …)
– Plug-in State: PO-Management, OO-DM Management
– Own Proof-Commands
– Own Proof Methods



  

Tools as Plug-Ins (IV')
● HOL-OCL [Brucker, Wolff]



  

Tools as Plug-Ins (III)
● HOL-TestGen [Brucker, Brügger, Krieger, Wolff]

– Proof-Environ
ment for Con
servative
Test-Data-
Generation 
and Test-Dri
ver Genera
tion

– Used for 
Security 
Test 
Scenarios ...



  

 

Conclusion



  

Conclusion
● The ITP Programme (and Isabelle in 

particular) allowed:
– reconciliation of foundational with pragmatic

technology issues
– reconciliation specification & programming
– reconciliation with ATP (via Oracles, Proof-Object 

certification, Tactic Proof Reconstruction)
– parallel evaluation of proofs &
– parallel (distributed) documents



  

Conclusion
● Reusing Isabelle as FM tool foundation

offers:
– substantial conservative libraries
– standardized interfaces to tactic

and automatic proof
– proof documentation
– code generation
– a programming interface and genericity in design

... a lot of machinery not worth to reinvent.



  

Conclusion
● Larry Paulson, 

“How to write a theorem prover”:

– One final advice: 
Don't write a theorem prover,
try to reuse someone else's.

● Harald Ganzinger, confronted with a 
Java-From-Scratch Tableaux Prover:

– “Das ist doch wieder der naive Ansatz.”
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