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Abstract. A fundamental strength of interactive theorem provers (ITPs)
is the high degree of trust one can place in formalizations carried out in
them. ITPs are usually also extensible, both at the logic level and at the
implementation level. There is consequently a substantial body of ex-
isting and ongoing research into the extension of ITPs while preserving
trust.

In order to survey existing and new work in this area, we organized the
Trusted Extension of Interactive Theorem Provers (TEITP) workshop.1

As a result of the workshop we have been able to get an overview of
the approaches taken by most of the major ITPs. In this document we
summarize the meeting and provide some background information for
readers unfamiliar with the area.

Introduction

The focus of the TEITP workshop arises from a conflict. On one hand, users often
want to extend the power of an ITP, e.g., by tapping into the power provided by
third-party automated theorem proving software, or by writing their own proof
procedures. On the other hand, such activity can obscure the trust story of the
ITP, since the correctness of the combined or extended system then needs to
be justified. The goal is to allow extensions of an ITP while preserving its trust
proposition.

In Section 1 we provide some detail about the workshop. Section 2 introduces
the major ideas and approaches to trusted extension that have been taken. Sec-
tion 3 presents developer-provided descriptions of the trust architecture of several
ITPs (Isabelle, ACL2, ProofPower, HOL-4, Coq, and PVS). Section 4 provides
a supplemental bibliography for the area.

This document was written by Konrad Slind following discussions at the
TEITP workshop and comments by Matt Kaufmann and Mike Gordon. System
trust descriptions are included with the permission of the developers (whose
names are included with the descriptions in Section 3).

1 Held August 11-12, 2010, in Cambridge, England. Organizers:Matt Kaufmann (UT
Austin), Konrad Slind (Rockwell Collins), and Mike Gordon (Cambridge University).



1 Workshop details

The workshop webpage

http://www.cs.utexas.edu/users/kaufmann/itp-trusted-extensions-aug-2010/

provides a great deal of information beyond this summary. In particular, it
has slides for all the talks, the participant list, and a transcript of an extended
discussion section held at the end of the workshop, along with other discussions
that occurred later.

The workshop presentations were of two kinds: (1) representatives of ACL2,
Coq, Isabelle, HOL-4, and PVS presented the trust proposition for their sys-
tems; and (2) talks on trust extensions and applications of trust in certification
processes.

Discussion session The discussion session ranged beyond the workshop topics
to encompass more general aspects of trust and trustworthiness of ITPs. The
discussion covered topics such as how to leverage the high level of trustworthiness
of ITPs, how to characterize or quantify trustworthiness, etc. We were fortunate
to have (in Kaufmann) a typist who could keep up with the discussion and the
resulting transcript provides a valuable supplement to the formal presentations.
Participants were given the opportunity after the workshop to review the notes
for accuracy and resulting corrections were incorporated. See the webpage for
the full text.

2 Approaches to Trusted Extension

Some fundamental approaches to ITP extension have emerged. ITP developers
and users typically use a selection of the following techniques:

1. Careful extension by experts
2. LCF style
3. Proof objects
4. Metafunctions
5. Implementation verification
6. Logic interpretation

We now give a little more detail on each of these. Of course, a given system
may employ more than one of these approaches.

2.1 Careful extension by experts

In this approach, the representations and procedures by which a theorem may
be proved in an ITP are strictly controlled and may only be revised or extended
by an expert, usually one of the system developers. Therefore, the correctness
of an extension to the system depends on the care taken by the developers who



implement the extension. ACL2 is a prime example of a system of this kind.
(Of course, there is always ongoing activity in any implementation to improve
the code and underlying algorithms. Moreover, all ITPs provide facilities for
extending the logic by definitions, and for improving the power of automated
procedures by adding lemmas. However, an ITP based on the Careful Extension
model will typically not support the implementation of a new proof procedure,
except by one of the developers.)

Some examples of such extensions:

– In [10], Boyer and Moore discuss the issues involved with integrating a linear
arithmetic decision procedure into the Boyer-Moore theorem prover, paying
particular attention to the interplay between conditional rewriting and the
decision procedure.

– In [23] an integration of model-checking into PVS is described.
– In [2], Armand, Gregoire, Spiwack, and Thery extend Coq by adding machine

integers and arrays as primitive logical objects.

2.2 LCF style

This approach relies on the data abstraction facilities of the host programming
language. An abstract datatype of theorems is the central concept, with the
constructors of the abstract type being just the axioms and primitive rules of
inference of the logic. Typically, the rules of inference in an LCF-style system
are extremely simple—at the level of modus ponens, for example. The host pro-
gramming language (ML is popular) is required to have a strong type system, so
that arbitrary user-written proof procedures are guaranteed to ultimately reduce
to primitive inferences; thus user code cannot compromise the soundness of the
kernel implementation of the logic.

Isabelle, Proof Power, HOL Light, and HOL-4 are the main current examples
of LCF-style systems. The reference manuals for these systems provide back-
ground and overviews of how the LCF style is implemented.

The requirement that all proof steps be justified by passing through a simple
logical kernel can lead to relatively inefficient proof procedures in LCF style
systems. The thesis of Boulton [7] proposes techniques to ameliorate the problem,
and there is another good discussion of the issues in [16]. As mentioned, ML
has to date been the programming language of choice when implementing an
LCF style system. However, Pollack [21] offers reasons why a dependently-typed
programming language may be preferable.

2.3 Proof objects

In this approach, a theorem prover that successfully proves a formula also pro-
duces a proof object, which is a data structure. This data structure can then be
analyzed to see if it is in fact a formal proof of the formula. Proof objects decou-
ple the proof of a theorem from the system it is generated in. Thus, they provide
an extremely high level of assurance: a proof object can be, for example, checked



by multiple independently implemented proof checkers. Some provers only emit
a witness, or certificate, from which a full formal proof may be synthesized.

A long-standing issue with proof objects is their size: naive datastructures
representing proofs are too large. On the other hand, sophisticated representa-
tions make it harder to write proof checkers.

Several different ‘use-cases’ have been developed for proof objects:

– Constructive logics, e.g., Coq [5] and Agda [9], which are justified by the
Proofs-as-Programs principle, explicitly incorporate proofs in the logic of the
ITP. A formula in such a logic is a type, and a proof that the type is inhabited
amounts to a program that obeys the formula. Checking proof objects is
the essential component in the correctness argument for such systems. Note
that some systems, e.g., Coq, avoid some of the issues with the size of proof
objects by treating evaluation as a single step.

– Isabelle also provides proof objects [4], although they are not crucial to its
trust story, as Isabelle is an LCF design.

– A variety of SAT, FOL, and SMT provers generate proof objects, which are
used to guide automatic proof generation in a variety of ITPs. This allows an
ITP to extend its automation with the power of current automated provers
without compromising the trust story [6, 24].

– Proof objects have also been used for translating theories between different
implementations of HOL. Recent work in this area is the OpenTheory imple-
mentation of Hurd [19]. Earlier work in this area has been done by Skalberg
and Obua [20] in order to translate HOL-4 theories to Isabelle/HOL.

2.4 Metafunctions

This technique is originally due to Boyer and Moore[11] , but has been rediscov-
ered several times since. It is sometimes called reflection or partial reflection.2

The approach is based on an internalization of the syntax and semantics of a sub-
set3 S of the terms4 of the ITP’s logic. Suppose the subset S can be formalized
as a object-logic datatype T , and that a given object-logic algorithm

A : T → T

is formalized and proved—inside the theorem prover—to transform elements of
T to other elements of T having the same semantics (think: normalization). This
allows the following deduction: if a term t lying in S is encountered, it can be
mapped to T , and then A is applied; the result can be translated from T back
to a formula t′ in the object logic and the theorem

` t = t′

2 Note that this terminology overlaps with other usage of the word reflection, which
is an overloaded term in this area. See Section 2.5.

3 S must be a proper subset of the formulas of the logic, by Tarski’s Undefinability of
Truth theorem.

4 The metafunctions approach also works for formulas.



derived. In an implementation, there are significant choices to be made about
how to map terms between S and T and also in how to run A. For example, the
execution of A can be done purely by deductive steps, but it can be far faster to
compile and run the code for A in the metalanguage. However, in logics such as
higher order logic, taking this speedy route can mean that the equality of t and
t′ needs to be asserted as a new axiom since running the compiled code steps
out of the inference kernel.

Howe [18] developed an approach similar to metafunctions in the Nuprl type
theory, going as far as formalizing and verifying a term rewriter. Later work
in the Nurpl group [1] explored more recondite aspects of reflection, where the
logic featured an explicit rule of reflection. An approach to metafunctions in
Coq was presented in [8] and it has become a heavily exploited technique, for
example in Gonthier’s proof of the Four Color Theorem [14]. In Isabelle/HOL
the metafunctions approach has been applied to incorporate a linear arithmetic
decision procedure [12].

2.5 Implementation verification

One way to trust an ITP extension is to prove it correct, as we saw with the
metafunctions approach. However, that method essentially depends on the for-
malization of a subclass of terms. The lecture at TEITP by Kaufmann introduced
a new technique, known as defattach, which can be understood as a methodol-
ogy for refining the kernel code of an ITP. Using defattach allows users to safely
override existing prover functionality, provided that the invariants specified for
that functionality by the kernel developers are formally proved to be preserved.
In this way, code to be ‘attached’ need not identify a set of terms comprising
its domain, instead, it has to—provably—at least maintain the invariants of the
old code.

Harrison verified a formal model of the HOL Light kernel [17] against an
abstract set-theoretic specification. On the basis of that work, one could prove
proof procedures to be correct, e.g., by showing that a proof procedure proves no
more theorems than the kernel inference rules. Such approaches are also known
as procedural reflection. Harrison’s paper on reflection [16] gives a comprehensive
overview of the topic, with an extensive bibliography.

Another reflective approach is developed in Jared Davis’ Milawa prover[13],
which is obtained by bootstrapping from a simple prover (so simple that it can
be seen to be correct by inspection) to a system that provides a significant subset
of the functionality of the ACL2 prover. Each of the eleven bootstrapping steps
is formally shown to preserve the set of provable formulas and thus the final,
complex, prover is just as trustworthy as the simple initial implementation.

The work of Harrison and Davis can be seen to be complementary: Harrison
verifies a kernel, while Davis starts from an assumed correct kernel.

In his TEITP presentation, Shankar proposed an ITP design that uses a
variety of implementation verification ideas, but focuses on the use of proof
certificates. Instead of the proof translation idea described earlier, he advocates
a methodology based on the verification of proof certificate checkers.



2.6 Logic Interpretation

Instead of interpreting proofs, one can move to the level of logic interpretation.
For example, in recent years a link between ACL2 and HOL-4 has been created.
The link is achieved at both a physical level, so that results from one system can
be shipped to the other, and at a logical level; the ACL2 logic has been given
a formal model in HOL-4. A practical result of this embedding is that, if ACL2
proves a formula P in a theory T then there is also a HOL proof of P (translated
to the HOL theory of ACL2) in T (also translated to HOL). The embedding thus
constitutes a one-time heavyweight effort; subsequently, theories and theorems
proved in ACL2 may be automatically translated to HOL without having to
justify them by re-running proofs. An example of the application of this system
is a proof of the correctness of a model-checking algorithm [15].

3 System Trust Explanations

Here are contributions, made after the workshop ended, explaining major ITP
systems’ approaches to trust.

3.1 Isabelle

(Larry Paulson, with feedback from Burkhart Wolff):
Isabelle uses the LCF approach to soundness. There is a proof kernel al-

though somewhat larger than that of a typical HOL system because it includes
an implementation of higher-order unification. Isabelle can generate full proof
terms that can be checked independently, although it normally generates mini-
mal proof terms in order to save space. External reasoners can be used as trusted
oracles, but all such uses are labelled as such in the proof term even if minimum
terms are enabled. Isabelle includes computational reflection, and the results of
computations can be accepted as theorems. This involves trusting about 2000
lines of code that describes how to translate executable fragments of higher-
order logic into one of several functional programming languages. Of course, the
corresponding language implementation must also be trusted. Isabelle proofs
do not generate theorems from such computations unless the user asks for this
explicitly, and such theorems are always labelled as coming from an oracle.

3.2 ACL2

(Matt Kaufmann and J Moore):
The ACL2 code base consists of approximately 240,000 lines of code – 10.5

MB – as of July, 2010. There is no subset identified as a “trusted” code base.
While more than 1/6 of the lines are comment lines, and the source code also
contains documentation strings (generating more than 1700 pages if printed),
nevertheless this is a large base of code to trust. Trust thus rests on the two
individuals who maintain the system, who apply their experience (over 70 years



combined in logic and automated reasoning) and passion towards producing a
system that follows its careful logical foundations (see
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html#Foundations).

Users can extend the power of the system, but only (if the two system main-
tainers have done their job well) in ways that respect its foundations. Such
extension facilities include a definitional principle, introduction of (witnessed)
constrained functions, and a powerful but safe macro facility. Many trustworthy
features are provided to extend the behavior of the automatic theorem prover,
including use of previously proved theorems as rules of various sorts, reflection
principles, and both static and computed hints. Computation is used during
proof.

Users have the power to connect to external tools (see for example
http://www.cs.utexas.edu/users/sandip/publications/clauseprocessors/main.html), or even to sub-
vert the system, provided they employ trackable “trust tags” that must be made
explicit when verifying (“certifying”) a collection of input files (“books”). For
maximum trust, ACL2 users should certify all books of a proof development, in
an environment without other processes writing to the ACL2 or user space in the
file system, and either without the use of trust tags or with explicit inspection
of their uses.

3.3 ProofPower

(Rob Arthan):
For the record, the ProofPower trust story is the LCF story, backed up by

a formal specification (but no proof) of the HOL language, logic and critical
properties of a proof tool. The support for Z in ProofPower is an example of an
extension in the sense of a semantic embedding of a new object language with a
trust story piggy-backing on the trust story of ProofPower-HOL. The trust story
for both ProofPower-HOL and ProofPower-Z includes the fact that the system
is interactively programmable, so an evaluator who wants to can really dig in
and pick syntax to pieces, which, in principle, mitigates the risk of problems of
the sort recently discussed in Freek Wiedijk’s (somewhat light-hearted) paper on
what he calls ”Pollack Consistency” [25]. In practice, the fact that you can easily
code up things like reports on which definitions have been proved consistent and
which have been given as axioms seems to be appreciated by commercial users.
(Evaluators really like checklists!).

3.4 HOL-4

(Konrad Slind):
HOL-4 is an implementation of the so-called LCF style, in which an abstract

datatype is used to implement the primitive rules of inference of a logic, higher
order logic (HOL) in this case. On top of this kernel, arbitrary ML programming
by arbitrarily naive users may be used to construct theorems. If the kernel is
a correct implementation, only genuine HOL theorems may thereby result. The



kernel is small enough that its correctness may be established by inspection,
informal proof, or even formal proof.

Interfacing with an external proof tool is typically performed by translating
witnesses provided by the external tool into HOL proofs, which are replayed
through the HOL kernel, obtaining the desired proof. However, occasionally it is
convenient to directly accept the judgement of an external tool. In those cases,
one can create a ”tagged” theorem, where the tag designates the external tool
that has been applied. Tags accumulate through primitive inference steps, with
the result that if a theorem th1 results from primitive inference on a tagged the-
orem th0, then th1 also becomes tagged. Consequently, only a theorem without
a tag can be truly said to have been obtained purely by HOL inference steps.

HOL-4 provides persistent theories, in which the results of a theory develop-
ment can be cached on disk, in a readable format. Since the disk representation
of a theory can be maliciously edited, tags are also attached to definitions and
theorems imported from a persistent theory.

In summary, one way to believe that a claimed theorem in HOL-4 has a
formal proof in the HOL logic is to do the following:

1. Arrange all theories needed to prove the theorem in dependency order;
2. Execute the theories, one at a time, in a single session (to avoid using per-

sistence);
3. Check that the theorem of interest is indeed proved, and also check that it

has no tags attached.

Another way to believe that a claimed theorem in HOL-4 has a formal proof is
to check a proof object created by a run of HOL-4. Some argue that checking such
proof objects provides a stronger level of trust than an LCF-style kernel. Code
supporting the generation and checking of proof objects has been implemented
several times for HOL-4 but its use is not yet commonplace.

3.5 PVS

(Natarajan Shankar):
PVS is primarily a research platform for experimenting with different modes

of inference, the interaction between formal language and inference, as well as
issues of trust and automation. Trust in PVS is not merely a matter of ensur-
ing that the inference steps have been correctly implemented. PVS provides an
expressive language for capturing mathematical concepts directly and precisely.
The automation available in the form of typechecking and theorem proving is
directed at making it easy to construct, debug, verify, and maintain proofs.

The PVS specification language is based on a higher-order logic enhanced
with predicate subtypes, structural subtypes, dependent types, parametric theo-
ries, theory interpretations, and algebraic and coalgebraic datatypes. Typecheck-
ing a PVS expression generates proof obligations. These must be proved in order
for the expression to be considered well-formed. Subtyping in PVS rules out un-
defined function applications, division by zero, out-of-bounds array accesses and



updates, and misapplied datatype accessors. Theory interpretations can be used
to instantiate abstract theories as well as to exhibit models of axiomatic theories.
A large fragment of the PVS language is executable. The type system and op-
erational semantics ensure that the execution of a well-typed PVS expression in
this fragment cannot trigger a runtime error (other than by exceeding resource
limits).

The PVS proof engine is built from a small set of primitive inference steps.
Most of the inference steps are small, but a few involve deep combinations of
decision procedures and rewriting. Larger proof strategies can be defined using
the primitive ones. Several external proof tools for BDD-based simplification
and model checking, monadic second-order reasoning, nonlinear arithmetic, and
predicate abstraction have been added to PVS. These external tools are trusted,
but the code used in defining strategies need not be trusted since the proofs can
be expanded down to the primitive inference steps.

3.6 Coq

(Laurent Thery):
Following Curry-Howard’s isomorphism, Coq logic is based on a typed lambda-

calculus: the Calculus of Inductive Construction where propositions as seen as
types and proofs as programs. Its trusted computing base consists in its type-
checker only: it is the piece of code that asserts that a given program has a
given type, i.e., that the program is a proof of the corresponding proposition.
If each proved proposition in Coq comes along with its associated proof-object,
this object is not a simple recording of all the primitive logical rules necessary
to get to the proof. Because proof-objects are really programs, they may also
include computations. This makes it possible to have explicit proof-objects even
for large applications. In particular, most of the trusted extensions that have
been developed within Coq use this capability of replacing proof steps by com-
putations. This is the so-called computational reflection[1]. A call to an external
tool is then represented in proof-objects by a call to a certified checker that
verifies the certificates or the traces that are generated by the external tools.

4 Further Sources

Although we have given a few pointers into the literature, we have certainly not
been exhaustive. However, here are a few other citations that may be useful.

– In [3], Rob Arthan provides a formal specification in ProofPower of the
requirements for an implementation of higher order logic.

– In [22], Randy Pollack provides a careful, somewhat philosophical, discussion
on the issues surrounding the checking of large proofs.

– (Mentioned in Rob Arthan’s description of ProofPower.) In [25], Wiedijk
discusses trust aspects surrounding the input and output of an ITP, arguing
that seemingly innocuous features of the concrete syntax used by an ITP
can affect trust, especially since the input and output ultimately have to be
read by humans.
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