
Noname manuscript No.
(will be inserted by the editor)

Limited Second-Order Functionality in a First-Order
Setting

Matt Kaufmann · J Strother Moore

the date of receipt and acceptance should be inserted later

Abstract We describe how we have defined in ACL2 a weak version of the
Common Lisp functional apply, which takes a function and list of actuals and
applies the function to the actuals. Our version, called apply$, does not op-
erate on functions but on ordinary objects — symbols and lists representing
lambda expressions – some of which are interpreted as functions. We define
a syntactic notion of “tameness” to identify the interpretable objects. This
makes our apply$ weaker than a true second-order functional but we believe
apply$ is powerful enough for many uses in ACL2. To maintain soundness
and the conservativity of our Definitional Principle we require that certain
hypotheses, called “warrants”, be present in any theorem relying on the be-
havior of apply$ on non-primitives. Within these constraints we can define
“functionals” such as sum and foldr which map tame “functions” over lists
and accumulate the results. This allows the ACL2 user to avoid defining spe-
cialized recursive functions for each such application. We can prove and use
general-purpose lemmas about these “functionals.” We describe the formal-
ization, explain how we keep the Definitional Principle conservative, show
examples of useful functions using apply$ and theorems about them, sketch
the proof that there is a model of any extension of the system using the new
primitives, discuss issues arising in making these functions executable, and
show some preliminary performance results.

Keywords ACL2, theorem proving, apply, higher-order logic, functionals

1 About Lisp and ACL2

ACL2 is an untyped, first-order logic with induction up to ε0 = ωωω...

and a
conservative Definitional Principle [7] for recursive functions over an induc-

Department of Computer Science
University of Texas at Austin
E-mail: {kaufmann,moore}@cs.utexas.edu

2 M. Kaufmann, J S. Moore

tively constructed domain. It is also a programming language supported by an
automatic theorem prover [20,21]. As a language, ACL2 extends a substantial
applicative subset of ANSI standard Common Lisp [30,32].1

The Lisp programmer and the ACL2 user write (ψ α1 . . . αn) where
traditional mathematical notation would be ψ(α1, . . . , αn), denoting a call
of the n-ary function ψ on the n values delivered by the “actual expressions”
α1, . . . , αn. Thus, (mod x 2) is how we write what might otherwise be written
mod(x, 2) or even x mod 2.

ACL2 provides numbers, characters, strings, symbols, and lists. For exam-
ple (LAMBDA (X) X) is a list of length 3 whose elements are (i) the symbol
LAMBDA, (ii) the list of length 1 whose only element is the symbol X, and (iii)
the symbol X. Lists are represented by right-associated nests of ordered pairs
terminating in NIL. The list (1 2 3) is the ordered pair 〈1, 〈2, 〈3,NIL〉〉〉.

The function cons constructs ordered pairs and the functions car and cdr

return the left and right components respectively.

Any ACL2 object, x, can be written as a term whose value is that object
by preceding the object with a quote mark, ’x, or by writing (quote x). So
one way to write a term whose value is (LAMBDA (X) X) is ’(LAMBDA (X) X).
Another way is (cons ’LAMBDA ’((X) X)).

Newcomers to Lisp and ACL2 are sometimes confused by the mix of terms
and values. For example, in Lisp, both (mod x 2) and ’(mod x 2) are terms
that can be evaluated (provided, in the former case, the variable x has a
rational value). The former evaluates to a rational, in fact, to 0 or 1 if x is
integral. The latter evaluates to a list of length 3 whose first element is the
symbol mod, whose second element is the symbol x and whose third element
is the number 2.

ACL2 is case insensitive by default. So when we write symbols such as mod
we could write variations like Mod or MOD.

In this paper when a symbol appears as a function symbol we use lower-
case. We capitalize the symbol if it is the first symbol in a sentence. When
a symbol appears as a variable symbol we use lowercase italics. And when a
symbol appears inside a quoted constant we use uppercase. For example, a
term denoting the concatenation of the list (MON TUE WED) onto the value of
the variable x is (append ’(MON TUE WED) x). We could have equivalently
written (append ’(mon tue wed) x) but believe the former makes it clear
that append is a function symbol, the symbols MON, TUE, and WED appear in a
constant, and x is a variable.

ACL2 supports a Definitional Principle. To define a new function with
name ψ, formals ν1, . . . νn, and body β one executes the form (defun ψ
(ν1, . . . νn) β).2 To be admissible the definition must satisfy certain con-

1 See [20] for a description of the logic and system. For installation instructions and
many other resources, see the ACL2 home page [21]. Extensive web-based documentation
is available there. In this paper we sometimes refer to documentation by writing “see :DOC
x ,” which means “go to the ACL2 home page [21], click on The User’s Manuals link, then
click on the ACL2+Books Manual link and type x into the Jump to box.”

2 Optional declare forms may be placed before β but we ignore this for the moment.

Limited Second-Order Functionality in a First-Order Setting 3

straints including that there be some measure of the formals into the ordi-
nals that can be proved to decrease in every recursive call. If admissible, the
defun extends the logic by adding as an axiom the definitional equation (ψ
ν1 . . . νn) = β. This extension is conservative in the following sense. Let Γ be
the theory in which the defun is admitted. Let Γ ′ be Γ with the addition of
the definitional equation above. Then if formula τ can be proved in Γ ′ and ψ
is not ancestral in τ , then τ can be proved in Γ . We say a function is ances-
tral in a formula if the function is called in the formula, or is ancestral in the
definitional equation of or constraints on a function called in the formula.

Conservativity of the Definitional Principle is important because it means
the user can define concepts to structure a proof. For example to prove that
p→ q one might define some new concept r and then prove p→ r and r → q.
Conservativity guarantees that p→ q is a theorem in the original theory. New
concepts like r are often needed in inductive proofs.

We are frequently interested in functions in which apply$ is or is not ances-
tral. For ease of exposition, if apply$ is ancestral in f then we say f is a scion
of apply$ or simply a scion. The dictionary defines a “scion” to be a descen-
dant, especially a descendant of an influential family or person. Informally, if f
is a scion then f is apply$ or calls apply$, or calls a function that calls apply$,
etc. Many scions would be called “functionals” in higher-order systems but we
do not use that term since ACL2 is first-order. Furthermore, scions need not
take “functions” as arguments. The function defined by (defun silly (x)
(apply$ ’CONS (list x x))) is a scion but does not take a “function” as
an argument.

If f is not a scion, i.e., apply$ is not ancestral in f , then we say f is
independent of apply$.

2 The Goal of This Work

Because ACL2 is first-order, functions are not objects in the ACL2 universe.
Variables cannot take on functions as values and no function can take functions
as arguments. There are no functionals in ACL2. Prior to this work, the user
wishing to map over a list and sum the absolute values of the elements typically
had to define a recursive function specialized for that purpose.

(defun sum-abs (lst)
(if (endp lst)

0

(+ (abs (car lst)) (sum-abs (cdr lst)))))

If instead one wanted to sum the squares, a different function would be de-
fined. But a very common construct in Common Lisp is the loop special form.
Examples include

(loop for x in lst when (p x) sum (f x))
(loop for x in lst always (p x))
(loop for x from i to max by incr collect (f x))

4 M. Kaufmann, J S. Moore

We would like to give formal meaning to such expressions in ACL2. Our
approach will be to formalize apply$ as a “functional” that takes a “function”
and a list of objects and applies the “function” to the objects. Intuitively
(apply$ f (list a1 . . . an)) = (f a1 . . . an).3

We put the words “functional” and “function” in quotes here because, in
fact, apply$ is not a functional: its first argument is not (and cannot be) a
function; instead the “function” argument of apply$ will be an ordinary ACL2
object, normally a symbol naming a function or a list expression representing
a lambda expression. Apply$ will give such objects meaning by interpreting
them. But it is impossible to achieve this soundly for all definable functions in
our first-order untyped logic. So our apply$ is weak and can properly interpret
only a subset of the “function” objects one might pass to it.

Given apply$ we can define other “functionals.” We might, for example,
define (sum f lst) to sum the values of f over the elements of lst and (filter

p lst) to collect those elements of lst satisfying p.

Then the first loop expression above could be expressed formally as (sum

’f (filter ’p lst)). Of course, this captures the semantics of the Common
Lisp loop only if f and p fall into the subset of “functions” apply$ handles
properly.

The challenge is formalizing apply$ so that for a useful class of functions,
(apply$ f (list a1 . . . an)) is (f a1 . . . an) for each f in that class —
while preserving the untyped, first-order nature of ACL2 and the conservativ-
ity of ACL2’s Definitional Principle. Those aspects of ACL2 — an untyped
language, a first-order logic, and a conservative Definitional Principle — are
critical to many proof techniques in ACL2 not to mention its convenience,
power, efficiency, and legacy library of verified results.

Formalizing apply$ involves the kinds of considerations and compromises
that are familiar to anybody trying to build an effective automatic theorem
prover for a sufficiently powerful and convenient logic. Will the new feature be
sound? Will it provide the power and convenience we seek? Can we support
proofs of lemmas about it? Can we arrange for the lemmas we prove to be
used automatically in other proofs?

This paper is about those considerations and compromises and the log-
ical and engineering solutions we have found while formalizing apply$ and
extending the ACL2 theorem prover and system to support it.

3 We use “apply$” instead of “apply” because the latter is the corresponding Common
Lisp primitive which is a true functional. Apply$ and apply are equal on “tame” “guard
verified” function symbols when the actuals satisfy the “guard” of the function. See Section
11.

Limited Second-Order Functionality in a First-Order Setting 5

3 Overview of Our Solution

The following examples define “functionals” sum and foldr. Technically, these
functions are scions of apply$.

(defun sum (fn x)
(if (endp x)

0

(+ (apply$ fn (list (car x)))
(sum fn (cdr x)))))

and

(defun foldr (lst fn init)
(if (endp lst)

init
(apply$ fn

(list (car lst)
(foldr (cdr lst) fn init)))))

The definition of sum above may be paraphrased as: If x is the empty list,
then the value of (sum f x) is 0; else, the value of (sum f x) is obtained by
adding (a) the value of apply$ on f and the singleton list containing the first
element of x, written (car x), and (b) the recursively obtained value of sum
on f and the rest of x, written (cdr x).

With sum, for example, we could express (loop for v in lst sum (cube

(abs v))) as (sum ’(LAMBDA (V) (CUBE (ABS V))) lst). But this requires
that sum and thus apply$ be able to handle “LAMBDA expressions” composed of
the “functions” corresponding to those used in the loop statement. It is easy
to make apply$ interpret any finite set, S, of function symbols independent
of apply$: define apply$ as a “big switch” to look for each symbol in S and
call the corresponding function. Since each member of S is independent of
apply$ there is no recursion and thus no difficulty in admitting this definition
of apply$. But this is too restrictive a solution. First, consider the nested loop

(loop for x in lst sum (loop for y in x sum (abs y))).

This expands to

(sum ’(LAMBDA (X) (SUM ’(LAMBDA (Y) (ABS Y)) X)) lst)

So apply$ must be able to interpret SUM, which cannot be in the set S described
above. Second, after apply$ is introduced the user may wish to define more
functions and apply$ should be able to handle them. So we need an extensible
apply$ that can handle at least some scions of apply$.

We also want to be able to execute ground instances of sum expressions.
For example, if square has been defined to square its argument, then (sum

’SQUARE ’(1 2 3)) should evaluate to (+ 1 4 9) = 14, and if the variable
lst in

(foldr lst

6 M. Kaufmann, J S. Moore

’(LAMBDA (X Y)

(FOLDR Y ’CONS (CONS X ’NIL)))

nil).

were replaced by ’(1 2 3) the ground term should evaluate to ’(3 2 1), i.e.,
the reverse of lst .

We want to be able to prove and use theorems about these concepts. For
example, sum distributes over list concatenation,

(sum f (append x y))
=

(+ (sum f x) (sum f y))

for any f , and

(foldr lst
’(LAMBDA (X Y)

(FOLDR Y ’CONS (CONS X ’NIL)))

nil).

=
(reverse lst).4

And we want all this to be sound. Indeed, we want the Definitional Principle
to remain conservative.

Naively, the function apply$ is understood as a predefined ACL2 primi-
tive whose axiomatic behavior evolves as new functions are introduced. For
example, if we define f with

(defun f (x) x)

then we might reasonably expect the equation

(equal (apply$ ’f (list 3))

3)

to be provable, but if instead we define f with

(defun f (x) (+ 4 x))

then we might instead reasonably expect that this time, the equation

(equal (apply$ ’f (list 3))

7)

is provable. Clearly the axiomatic behavior of apply$ has evolved in different
ways for these two examples.

This naive understanding of an evolving apply$ is problematic because
ACL2’s Definitional Principle is conservative: the function symbol f is not
ancestral in the term (apply$ ’f (list 3)), in spite of the occurrence of
the constant symbol ’f, since the function symbol f is not called in that

4 This equation is not a theorem. It requires a hypothesis called a “warrant” to apply
’FOLDR, which we discuss later.

Limited Second-Order Functionality in a First-Order Setting 7

term5; thus both equalities above should be provable before the definition of f
is introduced, which is a contradiction! We address this problem later, but for
the moment we stick with the naive understanding of apply$ as a predefined
primitive that evolves.

Apply$ will handle LAMBDA objects by evaluating the body of the expression
in an appropriately constructed environment binding the formals of the LAMBDA
object. This means we must formalize an expression evaluator as part of our
formalization of apply$. Our name for that evaluator will be ev$. Both ev$

and its counterpart for evaluating lists of expressions, ev$-list, will be defined
mutually recursively with apply$. But our discussion focuses on apply$.

The naive expectation is that if ψ is a function symbol naming a function
of arity n in ACL2, then

Expected Behavior of apply$ on ψ

(apply$ ’ψ args) = (ψ (nth 0 args) . . . (nth n− 1 args))

It is clear we can achieve this expectation for a large number of ACL2
primitives, like car, cdr, cons, etc., in which apply$ is not ancestral, by just
using the big switch idea. We call that big switch function apply$-prim (for
“apply$ a primitive”) and it handles about 800 ACL2 primitives.

We will strive to achieve the Expected Behavior for user-defined functions
ψ, but given the first-order nature of ACL2 will not be able to do it for all ψ
and args. Syntax alone suggests some restrictions. ACL2 supports multiple-
value return, but each function, including apply$, must return a fixed number
of values. If the Expected Behavior of apply$ on car holds, then apply$ must
return one value on car and thus must return one value on every input. Thus
this exact Expected Behavior cannot hold for a function that returns two or
more values.6

But there are two major logical problems.

One, which we call the local problem, is that since ψ is not ancestral in ’ψ,
the “Expected Behavior” guideline violates conservativity. ACL2 has scoping
mechanisms (see :DOC encapsulate and :DOC books) within which one can
declare an event to be local (see :DOC local), which limits the effect of that
event to within the scope. One can “export” theorems from a scope if the
locally defined functions are not ancestral in the exported theorem. This causes
problems for apply$. We might define ψ in some local event of a scope, prove
some theorem about the constant ’ψ without mentioning the function ψ, then
pop out of the scope exporting the “theorem.” But the exported formula is not
necessarily a theorem outside of the scope since ψ could be defined differently
now. Our solution to the local problem is to avoid adding axioms that extend

5 Formally the symbol F is just obtained from the ASCII code for ‘F’, which is 70,
by (intern (coerce (list (code-char 70)) ’string) "ACL2"). The function named f is
nowhere to be found!

6 This could be fixed by complicating our notion of “Expected Behavior” by making it
return a list of values but since the vast majority of ACL2 functions return one value we
settled for this simple form and await user complaints.

8 M. Kaufmann, J S. Moore

apply$’s behavior as new functions are introduced. Instead, when proving
theorems involving apply$ the formula must assume explicitly that apply$

behaves as expected on the relevant functions. These assumptions are called
“warrants” for the functions. Because ψ is ancestral in its warrant, theorems
about locally defined functions cannot be exported.

The other problem is illustrated by

(defun russell (fn) (not (apply$ fn (list fn))))

This is (apparently) an admissible function if apply$ is predefined since it does
not call itself recursively. Furthermore, some applications of russell produce
reasonable results in ACL2’s type-free logic, as shown below.

(russell ’NOT)

= {definition of russell}
(not (apply$ ’NOT ’(NOT)))

= {Expected Behavior of apply$ on NOT}
(not (not (nth 0 ’(NOT))))

= {evaluation of nth}
(not (not ’NOT))

= {evaluation of not}
T

But some applications of russell result in inconsistency if apply$ behaves
as “expected” on RUSSELL!

(russell ’RUSSELL)

= {definition of russell}
(not (apply$ ’RUSSELL ’(RUSSELL)))

= {Expected Behavior of apply$ on RUSSELL}
(not (russell (nth 0 ’(RUSSELL))))

= {evaluation of nth}
(not (russell ’RUSSELL))

Contradiction!

We do not want to prevent apply$ from operating on all scions of apply$
because that would prevent us from using scions like sum inside LAMBDA objects.
So we have to allow apply$ some “discretion” in when it behaves as expected
and when it does not.7 That “discretion” is based on how the functions to be
applied treat their arguments and what arguments are supplied to them.

We seek a syntactic characterization of the “function” argument to apply$

that will allow many interesting, practical applications while maintaining con-
servativity (and thus consistency). Our syntactic characterization is called
“tameness”.

7 Since apply$ (and every other ACL2 function) is total, problematic uses like (apply$

’RUSSELL ’(RUSSELL)) are legal terms and thus have some semantic values, but we will not
specify what they are.

Limited Second-Order Functionality in a First-Order Setting 9

Intuitively, a tame function is one whose body is a tame expression. To a
first approximation, a tame expression is any expression whose evaluation is
independent of apply$. However, we can allow apply$ and other scions to be
used in tame expressions provided the “functions” being passed are themselves
tame. Thus, (foldr x ’(LAMBDA (X Y) (FOLDR Y ’CONS (CONS X ’NIL)))

nil) is tame, even though foldr is a scion, because the LAMBDA object passed
to foldr is tame. The LAMBDA object is tame, even though it involves the scion
FOLDR, because the function passed there is CONS (the primitive for creating
an ordered pair), which is tame. The basic idea is that we can syntactically
confirm that we always get down to functions independent of apply$. This
idea is fundamental to tameness.

To identify tame functions syntactically we cannot permit new “functions”
to be created during evaluation as would happen if apply$ were applied to
a term that computes a LAMBDA object. So one condition a tame function
must satisfy is that we can classify each formal parameter as being treated
exclusively as a “function” (destined for apply$), an “expression” (destined for
ev$), or ordinary (never reaching either apply$ or ev$).8 We insist that only
quoted constants and variable symbols being treated as “functions” occupy
slots being treated as “functions.”

Some functions do not permit such classification. For example, russell,
as defined above, is rejected because its parameter, fn is used as a “function”
when it appears as the first argument of apply$ but not when it is used in the
list term.9

In our formalization, the “badge” of a symbol, if any, includes the character-
ization of each formal parameter, and badges are used to determine whether
functions and expressions are tame. Like apply$, badge is a function that
“evolves” as new functions are introduced. For primitives, badge uses a big
switch function, called badge-prim, to return the badges of the primitives.
For user-defined symbols, badge calls the undefined function badge-userfn

on the symbol. Warrants, mentioned earlier in connection with the local prob-
lem, assert the badges of user-defined functions by stipulating the value of the
badge-userfn.

Warrants raise a new question. Do theorems bearing warrants in their
hypotheses mean anything? If all warrants were identically false, the system
would be sound and we would still be able to prove the warranted theorems
and well as any formula containing a warrant as a hypothesis! Is there a way
to show that all the warrants are satisfiable? The short answer to that is
yes, we could have defined apply$ in a big switch mutually recursive clique
with scions. A suitable measure will exist due to tameness and the restrictions

8 Because apply$ interprets a LAMBDA object by evaluating the body with ev$ we have to
impose restrictions on how ev$ is used to enforce the restrictions on how “functions” are
used.

9 This syntactic rejection of russell can be skirted by defining it to be (defun russell

(fn x) (not (apply$ fn (list x x)))). The first formal of the revised russell is classi-
fied as a “function.” (Russell ’EQUAL ’EQUAL) behaves as expected because the supplied
“functional” argument, ’EQUAL, is a tame function. But (russell ’RUSSELL ’RUSSELL) does
not, because the “functional” argument, ’RUSSELL, is not a tame function.

10 M. Kaufmann, J S. Moore

enforced when badges are computed. We can then prove that all the warrants
are valid. See Section 10.

A second question that is natural to ask of any logical feature of ACL2

is: Can we execute ground instances of scions? Without special provisions we
cannot, because the axioms leave apply$ unspecified (equal to a call of an
undefined but constrained function) on user-defined functions. In proofs, war-
rant hypotheses alone specify how apply$ behaves on user-defined functions.
But to evaluate ground instances of scions at the top-level of ACL2’s read-
eval-print loop we have extended ACL2’s pre-existing notion of the evaluation
theory [19], which is an extension of the logical theory in which undefined
but constrained functions may be given semantic interpretations for purposes
of testing. We arrange for the evaluation theory to automatically assume all
available warrants.

4 Organization

It is impractical in one paper to cover fully the material introduced above. We
could write separate papers covering the formalization of apply$, its practical
applications and limitations, how to prove useful lemmas involving it, why
warrants do not render the undertaking vacuous, and how we address execution
problems. But we feel no single paper would be interesting in its own right
since, unless all the issues are addressed, apply$ is just a logically limited,
possibly unsound and/or non-executable hack.

Furthermore, all the work is available in the ACL2 Community Books
repository on GitHub10 [22].

The rest of this paper is organized as follows. In the next section, Section
5, we describe the formal definition of apply$ and its mutually recursive peers,
apply$-lambda, ev$, and ev$-list. The behavior of these functions depends
on that of two undefined functions, apply$-userfn and badge-userfn, whose
values are stipulated by warrants.

After introducing the formal definition of apply$ and its peers, we revert
to a bottom-up presentation to explain, in Section 6, how badges are inferred
from admitted function definitions. In Section 7 we describe the formalization

10 An ACL2 “book” is a file of formal definitions and theorems. Many books contain exten-
sive comments and documentation. Thousands of books contributed by the user community
are available via GitHub. A standard way of installing ACL2 from GitHub sources will down-
load the community books so they are available as the subdirectory books/ of your local
ACL2 directory. The top of the GitHub directory for ACL2 is https://github.com/acl2/-

acl2. The *.lisp files at the top level of that directory are copies of the ACL2 source files
from the ACL2 home page [21]. A particular book may be found by clicking your way down
the directory hierarchy. For example, to find books/projects/apply-model/apply.lisp start
on the GitHub page above and select books, then projects, etc. If the GitHub books were in-
stalled with your ACL2 system you can execute an include-book form to load the book into
your session. For example, (include-book "projects/apply-model/apply" :dir :system)

will load your local copy of projects/apply-model/apply.lisp. Once a book is loaded into
your ACL2 session you may inspect definitions, e.g., with (pe ’apply$), and otherwise
experiment with it.

Limited Second-Order Functionality in a First-Order Setting 11

of tameness. In Section 8 we describe how warrants are synthesized to stipulate
the value of the undefined badge-userfn and the tameness conditions required
by the undefined apply$-userfn. In Section 9 we bring all this together to
show some examples of theorems ACL2 has proved about scions of apply$.

In Section 10 we describe our basic approach to showing that the war-
rants are all satisfiable. Given an arbitrary set of badged user-defined func-
tions, we show that it is possible to define badge-userfn and apply$-userfn

so that all the warrants are valid. This is a meta-theoretic argument about
the ACL2 system, not a mechanically checked proof. Full details of the con-
struction, including the proof that a certain measure decreases, are given
in a long comment entitled “Essay on Admitting a Model for Apply$ and

the Functions that Use It” in the file apply-raw.lisp found in the ACL2
source files at the top of the GitHub page for ACL2.

In Section 11 we describe how we have arranged for ACL2’s top-level read-
eval-print loop to execute ground terms that ancestrally involve apply$ —
even though the connection of apply$ to user-defined functions is through the
undefined function apply$-userfn and warrant hypotheses. We also discuss
the optimization of LAMBDA object application. In Section 12 we report the
results of some preliminary performance comparisons.

In Section 13 we briefly point out some expressive limitations of apply$ all
stemming from the simple fact that apply$ only behaves as expected on syn-
tactically tame functions, even though some non-tame functions are perfectly
well-behaved!

In Section 14 we briefly mention related work, focusing on that which adds
some of the convenience of higher-order functionality to a first-order system
without changing the underlying logic. In Section 15 we briefly describe some
ongoing work to improve the convenience and execution efficiency of apply$.
We conclude, in Section 16, with acknowledgments.

Some supporting material may be found in the ACL2 Community Books
repository on GitHub. The “living” definition of apply$ as implemented in
the current ACL2 is defined in the ACL2 source files named apply*.lisp

at the top level of the GitHub page for ACL2 [22]. Those files are liable to
evolve with the rest of ACL2, e.g., we expect some future version of ACL2
to allow LAMBDA objects include DECLARE forms. However, for archival pur-
poses the formulation of apply$ described in this paper is posted among the
ACL2 Community Books repository under the GitHub ACL2 page (or your
local ACL2 directory) at books/projects/apply-model/. This paper is essen-
tially a readable README file for that directory. The book books/projects/-

apply-model/apply.lisp contains the complete formal definition of apply$
as reported here11. The file report.lisp contains the example theorems about

11 Following Common Lisp conventions for dealing with global name conflicts, the archival
definition of apply$ in the book books/projects/apply-model/apply.lisp is in its own
package (i.e., namespace), "MODAPP" (“model of apply$”). This accomplishes two things.
First, it allows the “living” apply$ (which is in the "ACL2" package) to evolve without con-
flict. Second, it shows that the archival apply$, interesting theorems about it, and example
constructions of models of it via “doppelgängers” (described below) making warrants prov-

12 M. Kaufmann, J S. Moore

scions presented in Section 9 of this paper. Two subdirectories, ex1/ and ex2/,
contain examples of the meta-level construction of a model making all war-
rants valid. The file ex1/user-defs.lisp contains just a few scions to model
and the file ex2/user-defs.lisp contains many. We think of the files in ex1/

being “surveyable” in the sense that the reader can better understand the
model construction technique with the small set of scions. We think of ex2/
as demonstrating that the model construction (and in particular, the termina-
tion argument which is only sketched here) works for a very large and complex
set of functions.

5 The Definition of Apply$

The following four definitions are all introduced together in a mutually re-
cursive clique (see :DOC mutual-recursion). Each is accompanied by an ex-
plicit measure term, which we discuss later. The definitions below have been
simplified slightly, e.g., we use (nth 2 args) for clarity below, where the ac-
tual definition has (caddr args) for runtime efficiency.12 But these defini-
tions are equivalent to the actual ones. See books/projects/apply-model/-

apply.lisp.
Three undefined functions are used below: apply$-userfn, the behavior of

which is described by warrants, and untame-apply$ and untame-ev$, which
remain completely unconstrained. These last two can be thought of as gener-
ating “don’t care” values when apply$ and ev$ are presented with “illegal”
inputs. The definition below uses cond, which provides a common way to ab-
breviate calls of if: the first clause says that if fn is a cons pair then return
(apply$-lambda fn args); the second clause says, else if (apply$-primp fn)
is true then return (apply$-prim fn args); else . . . and so on.

(defun apply$ (fn args)
(cond

((consp fn)
(apply$-lambda fn args))
((apply$-primp fn)
(apply$-prim fn args))
((eq fn ’BADGE)

(badge (nth 0 args)))
((eq fn ’TAMEP)

(tamep (nth 0 args)))
((eq fn ’TAMEP-FUNCTIONP)

(tamep-functionp (nth 0 args)))
((eq fn ’SUITABLY-TAMEP-LISTP)

(suitably-tamep-listp (nth 0 args) (nth 1 args) (nth 2 args)))

ably valid can all be admitted to ACL2 without relying on any built-in knowledge of the
“living” apply$.
12 (Caddr args) is a Common Lisp abbreviation for (car (cdr (cdr args))).

Limited Second-Order Functionality in a First-Order Setting 13

((eq fn ’APPLY$)

(if (tamep-functionp (nth 0 args))
(apply$ (nth 0 args) (nth 1 args))
(untame-apply$ fn args)))

((eq fn ’EV$)

(if (tamep (nth 0 args))
(ev$ (nth 0 args) (nth 1 args))
(untame-apply$ fn args)))

(t (apply$-userfn fn args))))

When fn is a cons, it is presumed to be a LAMBDA object and is applied
using apply$-lambda as discussed in a moment. If fn is one of the 800+
primitives, it is applied with apply$-prim. The next four clauses deal with
tame functions that could have been treated as primitives but happen to be
defined in books/projects/apply-model/apply.lisp, so are not identified
as primitive. But each of these clauses just recognizes the name of one of
these functions and unconditionally calls the appropriate tame function on
the correct number of arguments. The clauses handling APPLY$ and EV$ are
most instructive: apply$ can apply itself provided the leading element of args
is a tame function, and apply$ can apply ev$ provided the leading element
of args is a tame expression; otherwise, apply$ returns a “don’t care” value
when applied to itself or ev$. Finally, on all other symbols, apply$’s behavior
is determined by apply$-userfn — whose behavior is determined by warrants.

LAMBDA objects are handled by evaluating the body of the LAMBDA object
with an association list — a list of pairs (cons x y) — that binds each of the
LAMBDA object’s formals, x, to the corresponding element of args, y.

(defun apply$-lambda (fn args)
(ev$ (lambda-body fn)

(pairlis$ (lambda-formals fn) args)))

This brings us to ev$, the expression evaluator. If the object, x, to be eval-
uated is not tame, ev$ returns a “don’t care” value. If x is a variable symbol,
it looks up its value y (that is, finds a pair (cons x y)) in the association list
a. If x is a quoted form, (QUOTE κ), ev$ returns κ. If x is (IF α1 α2 α3), ev$
recursively evaluates α1 and, conditionally on the result, evaluates α2 or α3.
The next two clauses deal with how to evaluate forms beginning with APPLY$

and EV$ which we discuss in a moment. Otherwise, x is of the form (ψ α1 . . .
αn) and ev$ evaluates it by apply$ing ψ to the list obtained by evaluating
the αi.

(defun ev$ (x a)
(cond

((not (tamep x))
(untame-ev$ x a))
((variablep x)

14 M. Kaufmann, J S. Moore

(cdr (assoc x a)))
((fquotep x)
(nth 1 x))
((eq (car x) ’IF)

(if (ev$ (nth 1 x) a)
(ev$ (nth 2 x) a)
(ev$ (nth 3 x) a)))

((eq (car x) ’APPLY$)

(apply$ ’APPLY$

(list (nth 1 (nth 1 x)) (ev$ (nth 2 x) a))))
((eq (car x) ’EV$)

(apply$ ’EV$ (list (nth 1 (nth 1 x)) (ev$ (nth 2 x) a))))
(t (apply$ (car x) (ev$-list (cdr x) a)))))

The clause above dealing with APPLY$ is subtly different than one might
expect. The expected clause is

((eq (car x) ’APPLY$)

(apply$ ’APPLY$

(list (ev$ (nth 1 x) a) (ev$ (nth 2 x) a))))

but the actual clause above does not mention the first recursive call of ev$
and instead uses (nth 1 (nth 1 x)). The discussion later of tameness will
reveal that if x is a tame expression (which we know by the first clause of this
cond) beginning with APPLY$, then (nth 1 x) is a quoted tame function, i.e.,
(QUOTE ψ). The recursive ev$ of that form is ψ, i.e., (nth 1 (nth 1 x)). So
what is written above in the definition of ev$ is actually equal to what might
have been expected, but its justification in terms of a decreasing measure is
simpler. The same trick has been used in the clause about EV$.

To see how ev$ performs its “evaluation”, consider the example (ev$

’(FOLDR ’(1) ’CONS ’NIL) nil). Since the FOLDR expression is tame, the
ev$ is equal to (apply$ ’FOLDR ’((1) CONS NIL)). By the definition of
apply$, (apply$ ’FOLDR ’((1) CONS NIL)) is (apply$-userfn ’FOLDR

’((1) CONS NIL)), whose value is determined (if at all) by a warrant. If we
have the warrant on FOLDR saying that we get the expected behavior when
the “functional” argument (here, CONS) is a tame function, then this is (foldr
’(1) ’CONS ’nil) = ’(1).

Finally, to evaluate a list of expressions we map ev$ over the list argument,
x, returning the empty list if x is empty and otherwise returning the list whose
head and tail are constructed by calling ev$ and (recursively) ev$-list on
the head and tail of x, respectively.

(defun ev$-list (x a)
(cond

((atom x) nil)

(t (cons (ev$ (car x) a)
(ev$-list (cdr x) a))))))

Limited Second-Order Functionality in a First-Order Setting 15

It remains to discuss the measures used to admit the apply$ clique. Col-
loquially, why does apply$ always terminate? To ensure admission, we must
exhibit measures of the incoming arguments of each of the four functions in
the clique so that whenever one of the functions calls itself or one of the oth-
ers, the callee’s measure of its incoming arguments is strictly smaller than the
caller’s measure of its incoming arguments. The measure we use is a lexico-
graphic combination of two measures. The most significant component for the
ev$ and ev$-list functions is the size of the expression or list of expressions,
measured with the built-in ACL2 function acl2-count. For apply$’s call of
itself, that component is one greater than the size of the tame function to
which it is being applied, i.e., (+ 1 (acl2-count (car args))). The second
component of the measures is always 0 except for apply$-lambda, where it is
1. See books/projects/apply-model/apply.lisp for details.

6 Badges

Consider

(defun foldr (lst fn init)
(if (endp lst)

init
(apply$ fn

(list (car lst)
(foldr (cdr lst) fn init)))))

Foldr treats its second argument, fn, exclusively as a function because it
is passed into the “functional” slot of apply$ and otherwise is only passed
down in recursion. Foldr treats its first and third arguments, lst and init ,
exclusively as ordinary ACL2 objects — they are never used as functions.
This information is gleaned from the definition of foldr when (def-warrant

FOLDR) is executed. The warrant created for foldr stipulates

(badge-userfn ’FOLDR) = ’(APPLY$-BADGE T 3 NIL :FN NIL).

(The warrant also constrains apply$-userfn on ’FOLDR, but we discuss that
later.)

The symbol APPLY$-BADGE is just a tag identifying this object as a badge.
The T tells us that foldr returns a single value13, the 3 is the arity of foldr,
and the last three elements are the “ilks” of the respective formal parameters

13 Functions that satisfy all the requirements imposed by apply$ except for the require-
ment that they return single values have badges in which this component is NIL. Even
though apply$ cannot behave as expected on such symbols, the corresponding multiple-
valued function might be used in the definition of a single-valued function and we need to
track the argument use of the multiple-valued function to determine whether the single-
valued function is acceptable. We could allow apply$ to handle multiple-valued functions
by complicating the “Expected Behavior” guideline but we have chosen not to.

16 M. Kaufmann, J S. Moore

and encode the above information about how foldr treats its arguments. As
previously noted, not every admitted function definition can have a badge
because some definitions violate our restrictions.

The ilk of a parameter with respect to a definition is one of the tokens :FN,
:EXPR, or NIL, if it is possible to assign an ilk at all. We informally say these
tokens denote that the parameter is “treated as a function,” “treated as an
expression,” or “treated as an ordinary object.” We extend the notion of ilk
from just parameters to the corresponding argument positions or slots of calls
of a function, ψ. So if the ith parameter of ψ has a given ilk then we say the
ith actual in a call of ψ, e.g., αi in (ψ α1 . . . αn), is in a slot of that same ilk.

We infer the ilks (and thus the badge) of ψ from its definition (defun ψ
(v1 . . . vn) β). The process is akin to type inference and the process signals
an error if the definition is found to violate certain restrictions. We do not
give the algorithm here; for details see the definition of badger in books/-

projects/apply-model/apply.lisp. If ψ is assigned a badge the following
conditions are guaranteed.

– The function ψ does not take the ACL2 state (see :DOC state) or single-
threaded objects (see :DOC stobj) among its inputs, is not defined as part
of a mutually recursive clique, has a natural-number valued termination
measure proved to decrease on each recursive call, and apply$ is not an-
cestral in the measure.

– Every function called in the body β, except recursive calls of ψ, has a
badge.

– Any vi assigned an ilk of :FN or :EXPR only occurs in slots of that same
ilk. Furthermore, there is at least one such occurrence.

– Every slot of ilk :FN or :EXPR is occupied by either a vi of the appropriate
ilk or by a quoted term. This implies that cons, for example, may not be
used to create new LAMBDA objects in the definitions of badged functions.

– If vi is assigned an ilk of :FN or :EXPR, then in every recursive call of ψ,
the ith actual is vi. That is, formals of ilk :FN and :EXPR must be passed
identically in recursion.

– If a quoted term, (QUOTE x), occurs in a slot of ilk :FN then x is either
a previously defined function symbol that is tame (see below), or a well-
formed LAMBDA object with a tame body. This implies that every function
symbol used in the body of a quoted LAMBDA object in a :FN slot is defined
and badged, which in turn implies that no recursion through quoted :FN

slots is allowed. An analogous restriction is imposed on quoted objects in
:EXPR slots.

7 Tameness

Recall that a tame function is one whose body is a tame expression and that,
to a first approximation, a tame expression is any expression that does not
involve a scion of apply$ unless the functions being passed into the :FN slots
are tame.

Limited Second-Order Functionality in a First-Order Setting 17

To determine whether a function is tame we have to explore its definition,
which here we treat as an object: tameness is a concept concerned with ACL2
objects used as data by apply$ and ev$. We speak of tame symbols or LAMBDA
objects (seen by apply$) and tame expressions (seen by ev$).

A symbol ψ is a tame function symbol iff it has a badge and the ilk of each
parameter is NIL. All of the 800+ primitives recognized by apply$-primp are
tame. But so is the function defined by

(defun fold-version-of-reverse (x)
(foldr x ’(LAMBDA (X Y) (FOLDR Y ’CONS (CONS X ’NIL))) nil)).

Even though it involves a call of foldr, the LAMBDA object is tame, as defined
below.

A list is a tame LAMBDA function iff it is of the form (LAMBDA α β) where
α is a list of n distinct symbols and β is a tame expression (see below).14

We may extend the notion of badge (which actually is just defined for some
symbols) to tame LAMBDA functions and let the arity field of the badge be n
and each ilk be NIL. The object (LAMBDA (X Y) (FOLDR Y ’CONS (CONS X

’NIL))) is tame because even though it involves a call of FOLDR the function
provided, CONS, is tame.

An object β is a tame expression iff it is (a) a symbol, (b) a list of the
form (QUOTE κ), or (c) a list of the form (ψ α1 . . . αn) where ψ is either a
symbol with a badge or a tame LAMBDA function, n is the arity in the badge of
ψ, and each αi is suitably tame with respect to the ith ilk of ψ — that is, αi

is a tame function or expression if the ith ilk is :FN or :EXPR, respectively.
As illustrated by foldr-version-of-reverse above, tame functions can

be defined in terms of non-tame ones. In the defun below, natp is the function
that returns T or NIL according to whether its argument is a natural number.
If we define square to square its input, collect to apply its :FN argument to
every element of its list argument, and filter to collect those elements of its
list argument that satisfy its :FN argument, then

(defun sqnats (x)
(collect ’SQUARE (filter ’NATP x)))

is tame and (sqnats x) collects the squares of the natural numbers in x.
In books/projects/apply-model/apply.lisp we formalize these various

notions of tameness as ACL2 functions: tamep-functionp for recognizing tame
function symbols and tame LAMBDA functions, tamep for recognizing tame ex-
pressions, and suitably-tamep-listp for recognizing suitably tame objects
with respect to a list of ilks.

8 Warrants

Merriam-Webster defines the word “warrant” to mean a “commission or docu-
ment giving authority to do something.” We introduce the notion of warrants

14 ACL2 imposes additional restrictions on its lambda objects, but the LAMBDA objects we
are dealing with here are just objects being used as data by apply$ and ev$.

18 M. Kaufmann, J S. Moore

for function symbols. A warrant for the symbol ψ gives apply$ permission to
apply the function of that name and tells it how to do so. Technically, an ACL2
warrant is a nullary predicate (which in ACL2 means a constant function of
no arguments that returns T or NIL). We explain by example.

Consider the function foldr defined above. Its warrant is introduced by
the command (def-warrant foldr) which defines apply$-warrant-foldr

so that

Theorem.

(apply$-warrant-foldr)

↔
((badge-userfn ’FOLDR) = ’(APPLY$-BADGE T 3 NIL :FN NIL))

∧
[∀ args .

(tamep-functionp (nth 1 args))

→
(apply$-userfn ’FOLDR args)

=

(foldr (nth 0 args) (nth 1 args) (nth 2 args))])

Note that foldr is ancestral in its warrant.

Using ACL2’s defun-sk (“define Skolem function”) to introduce the nullary
function apply$-warrant-foldr, def-warrant proves (conditional) rewrite
rules that make ACL2 behave as follows when (apply$-warrant-foldr) is
among the hypotheses of a conjecture

– (badge ’FOLDR) is replaced by the constant ’(APPLY$-BADGE T 3 NIL

:FN NIL), and
– (apply$ ’FOLDR (list a b c)) is rewritten to (foldr a b c), provided

ACL2 can prove (tamep-functionp b).

The rewrite rules for (badge ’ψ) and (apply$ ’ψ . . .) are designed to
“force” the assumption of the warrant for ψ. What this means is that the
rewrites are carried out even if no warrant is available, but a separate subgoal
is set aside to establish the warrant. A missing warrant will result in the
corresponding subgoal’s being unprovable. That unprovable subgoal is usually
presented as a “checkpoint” at the end of the failed proof attempt, alerting
the user to the need for the warrant.

If def-warrant is unable to determine a badge for the function, an error
is caused.

The file books/projects/apply-model/apply.lisp defines def-warrant
and introduces (defun$ ψ . . .) as an abbreviation for a sequence of two
events, (defun ψ . . .) followed by (def-warrant ψ). The notation (warrant

ψ1 . . . ψn) is a convenient abbreviation for the conjunction of the warrants of
the ψi, (and (apply$-warrant-ψ1) . . . (apply$-warrant-ψn)).

Limited Second-Order Functionality in a First-Order Setting 19

9 Examples

In this section we show a few scions and prove some relations connecting them.
None of these results will surprise the reader familiar with higher-order lan-
guages and theorem provers. Furthermore, it should come as no surprise that
limited second-order functionality can be supported in a first-order setting.
What may be informative is that so much can be done with such expressive
and theorem-proving ease, especially when one realizes that these proofs could
all be done by ACL2 before any support for apply$ was added (as demon-
strated by the certification of the books in the disjoint namespace set up by
books/projects/apply-model/).

The book projects/apply-model/report.lisp provides the ACL2 input
for all the examples in this section. The theorem names, e.g., Theorem T1,
used in our displays are the same as in report.lisp. At the end of this section
we note some additional example books.

Assume we have already defined the following functions, none of which are
scions of apply$, and assume all have warrants except for append, natp, and
evenp, which are ACL2 primitives and hence do not need warrants.

– (append x y) - concatenation of lists x and y
– (cube x) - x3

– (flatten x) - linear list of all atoms in the binary tree x
– (natp x) - T if x is a natural number, NIL otherwise
– (nats n) - the list of naturals from n down to 1
– (rev x) - reverse of the list x
– (square x) - x2

Assume the following scions have been defined and warranted so that the
formals named fn have ilk :FN and all other formals have ilk NIL. Also, let the
successive elements of list lst be e1 . . . en.

– (sum fn lst): (+ (fn e1) . . . (fn en))
– (filter fn lst): list of those ei such that (fn ei)
– (foldr fn lst): (fn e1 (fn e2 . . . (fn en init). . .))
– (foldt fn lst): a version of foldr for binary trees instead of linear lists

The formal definitions are

(defun$ sum (fn lst)
(cond ((endp lst) 0)

(t (+ (apply$ fn (list (car lst)))
(sum fn (cdr lst))))))

(defun$ filter (fn lst)
(cond ((endp lst) nil)

((apply$ fn (list (car lst)))
(cons (car lst) (filter fn (cdr lst))))
(t (filter fn (cdr lst)))))

(defun$ foldr (lst fn init)
(if (endp lst)

20 M. Kaufmann, J S. Moore

init
(apply$ fn

(list (car lst)
(foldr (cdr lst) fn init)))))

(defun$ foldt (x fn init)
(if (atom x)

(apply$ fn (list x init))
(apply$ fn (list x (foldt (car x)

fn
(foldt (cdr x) fn init))))))

Without apply$, the ACL2 user wishing to sum the squares of the elements
of lst would have to write (sum-squares lst) after introducing a recursive
function to do the job

(defun$ sum-squares (lst)

(if (endp lst)

0

(+ (square (car lst))

(sum-squares (cdr lst)))))

If the theorem-proving task required the knowledge that this function dis-
tributes over append, that fact would have to be proved

(sum-squares (append a b)) = (+ (sum-squares a) (sum-squares b)).

Furthermore, if the user then needed to sum the cubes or the absolute values,
etc., additional specialized recursive functions would first have to be intro-
duced, and the corresponding distribution laws proved about each.15

But sum does the job for all such functions. For example, ACL2 can prove

Theorem T1

(warrant square) → (sum-squares lst) = (sum ’SQUARE lst)

and that sum distributes over list concatenation no matter what function is
being applied

Theorem T2

(sum fn (append a b)) = (+ (sum fn a) (sum fn b)).

Notice that no warrant is required for fn here because this follows from the
definition of sum regardless of how apply$ is defined.

ACL2 can also reason about specific uses of sum, e.g., by proving:

Theorem T3

((warrant square) ∧ (natp n))
→
(sum ’SQUARE (nats n)) = (/ (* n (+ n 1) (+ (* 2 n) 1)) 6).

15 These kinds of problems can be partially addressed with macros that introduce the
required recursive functions and prove the indicated lemmas about them; for example see
:DOC deflist and :DOC defdata. In our opinion this is not as elegant as introducing the
scion itself as a function that can be directly named and used.

Limited Second-Order Functionality in a First-Order Setting 21

This theorem requires that the standard arithmetic book be loaded and a
hint has to be provided. The hint forces (sum ’SQUARE ’(1)) to expand
symbolically: ACL2’s “natural” proof technique for this ground term is to
evaluate it and that is impossible because apply$-userfn is undefined. We
anticipate changing the prover to eliminate the need for a hint but so far
we have resisted changes in the prover to support apply$. Note also that the
warrant for square is required because ’SQUARE is being applied. If the warrant
is omitted the proof fails with the goal (apply$-warrant-square), which is
a clear indication the warrant is needed.

Filter is useful when one wishes to apply a function only to certain el-
ements of a list. For example, we can define sum-squares-of-evens as the
recursive function that sums each element of its argument that satisfies evenp
and prove that it could have been defined with sum and filter.

Theorem T4

(warrant square)

→
(sum-squares-of-evens lst) = (sum ’SQUARE (filter ’EVENP lst)).

We do not need a warrant for evenp because it is an ACL2 primitive.
Since filter distributes over concatenation,

Theorem T5.

(filter fn (append a b)) = (append (filter fn a) (filter fn b)),

the user enjoys more generic reasoning than is possible with specialized func-
tions.

Foldr is more flexible than the other scions used above. For example,

Theorem T6.

(warrant square)

→
(foldr lst

’(LAMBDA (I A)

(IF (EVENP I)

(+ (SQUARE I) A)

A))

0)

=
(sum ’SQUARE (filter ’EVENP lst))

is proved without assistance by ACL2.16

Theorem T8

(warrant foldr)

16 Inspection of the script in projects/apply-model/report.lisp reveals that we do not
use the macro “+” in the LAMBDA object but use its expansion into a function of two argu-
ments, binary-+, because ev$ cannot handle macros. We similarly abbreviate the LAMBDA

objects in T9 and T11 below.

22 M. Kaufmann, J S. Moore

→
(foldr x

’(LAMBDA (X Y)

(FOLDR Y ’CONS (CONS X ’NIL)))

nil)

=
(rev x)

is particularly interesting since the LAMBDA object being passed to foldr calls
foldr itself. The theorem above is proved automatically provided ACL2 has
first proved

Theorem T7

(foldr x ’CONS y) = (append x y).

Still more generally, we can prove that for almost all fn, both (sum fn lst)
and (filter fn lst) can be computed by appropriate uses of foldr. Below,
we use the “backquote” notation of Common Lisp to describe LAMBDA objects
obtained by substituting the value of fn for fn in the “near constants” shown.

Theorem T9

(ok-fnp fn)
→
(foldr lst ‘(LAMBDA (X Y) (+ (,fn X) Y)) 0)

=
(sum fn lst)

Theorem T10

(ok-fnp fn)
→
(foldr lst ‘(LAMBDA (X Y) (IF (,fn X) (CONS X Y) Y)) nil)

=
(filter fn lst).

By “almost all fn” we mean for fn satisfying ok-fnp, which checks that fn is
not QUOTE and is a tame function of arity 1.

(defun$ ok-fnp (fn)
(and (not (equal fn ’QUOTE))

(tamep ‘(,fn X))))

Theorem T11

((ok-fnp f) ∧ (ok-fnp g))
→
(foldr lst

‘(LAMBDA (X Y) (IF (,f X) (+ (,g X) Y) Y))

0)

=
(sum g (filter f lst))

Limited Second-Order Functionality in a First-Order Setting 23

is potentially useful for converting an efficient computation into an easier-
to-reason-about compositional one. The foldr makes one pass through lst
whereas the compositional version essentially makes two.

Foldt, defined above, is like foldr but recurs over a binary tree accumu-
lating the values of fn on the subtrees. Here is an interesting theorem about
it

Theorem T12-lemma

(foldt x
’(LAMBDA (X Y)

(IF (CONSP X)

Y

(CONS X Y)))

z)
=
(append (flatten x) z)

from which it follows (Theorem T12) that for the LAMBDA object above,
(foldt x ’(LAMBDA . . .) nil) is (flatten x).

Despite the power of generalized scions like foldr to express these and
many other linear scions, we tend to prefer such functions as sum and filter

because we find them easier to compose. Other useful scions we have defined
and used include

– (foldl lst fn ans): like foldr but tail-recursive
– (prod fn lst): product of the values of fn on the elements of lst
– (collect fn lst): list of the values of fn on the elements of lst
– (collect-from-to fn start end incr): list of the values of fn on the

numbers between start and end in steps of incr
– (collect-on fn lst): list of the values of fn on the tails of lst
– (collect-as fn lst1 lst2): list of the values of fn on corresponding ele-

ments of lst1 and lst2
– (all fn lst): t or nil according to whether every element of lst satisfies

fn
– (xists fn lst): t or nil according to whether some element of lst satisfies

fn
– (until fn lst): initial sublist of lst up to first element satisfying fn
– (maxlist fn lst): maximum value of fn on elements of lst

In addition, it is sometimes useful to have versions of these functions that
allow additional parameters to be passed to the :FN argument17

(defun$ sum-with-params (fn lst params)

17 One might be tempted to allow LAMBDA objects containing free variables whose values
are determined by the lexical environment. But then apply$ would not be definable as a
function. Consider (apply$ ’(LAMBDA (X) PARAMS) ’(1)). The arguments to apply$ are
constants, so if apply$ is a function, the value must be a constant regardless of the lexical
environment.

24 M. Kaufmann, J S. Moore

(if (endp lst)

0

(+ (apply$ fn (cons (car lst) params))

(sum-with-params fn (cdr lst) params))))

or that map an expression over a domain, successively binding some variable
to the next element:

(defun$ sum-expr (x lst a)

(if (endp lst)

0

(+ (ev$ x (cons (cons ’X (car lst)) a))

(sum-expr x (cdr lst) a))))

Note that the ilks of sum-expr are (:EXPR NIL NIL). These two examples
suggest ways that all the scions mentioned could be generalized to be more
useful.

We can define

(defun$ russell (fn x)

(not (apply$ fn (list x x))))

and prove (Theorem T13) that (russell ’EQUAL ’EQUAL) = NIL. But we
cannot prove anything interesting about (russell ’RUSSELL ’RUSSELL): by
the definitions of russell and apply$, this is equal to (not (apply$-userfn

’RUSSELL ’(RUSSELL RUSSELL)), but that term is undefined except by the
warrant on russell. But the warrant tells us that (apply$-userfn ’RUSSELL

args) behaves as expected provided (tamep-functionp (car args)). And
(car args) is ’RUSSELL, which is not tame. So the warrant is useless to us.

See the two books books/projects/apply-model/ex2/user-defs.lisp

and books/projects/apply-model/ex2/user-thms.lisp for more examples,
where we define a wide variety of scions and prove some theorems about some
of the useful ones. Many of the scions in that user-defs.lisp book are quite
artificial and were added to test and demonstrate our method for building a
model of all warrants. They do, however, show a wide variety of recursions
and intertwining of scions.18

10 A Model

Warrants were introduced to allow apply$ to evolve as new functions are
introduced, while simultaneously maintaining the conservativity of the Defi-
nitional Principle. Warrants restrict the behavior of the undefined functions
badge-userfn and apply$-userfn. But if they over-restrict those functions,

18 The reader should be aware that our various example definition files are not always
compatible. For example, we may define a scion named sum in one file and place its :FN

formal as the first formal, and then in another example file define sum so that its :FN formal
is the second one.

Limited Second-Order Functionality in a First-Order Setting 25

our example theorems could be vacuously valid. In this section we briefly de-
scribe a meta-level proof that our theorems are not vacuous by virtue of all
warrants being valid in a suitable evaluation theory.

Consider any ACL2 history, i.e., a sequence of admissible axiomatic events
including in particular uses of defun and def-warrant. We show that there
is a model of badge-userfn and apply$-userfn that satisfies all the axioms
and that makes all the warrants valid. We stress that our construction of a
model is not something that is or needs to be mechanized. The ACL2 sys-
tem does not actually build a model. We offer this construction as a means
of showing that a model satisfying all the warrants always exists for any ad-
missible history. That said, we exhibit examples of this model construction
in the two books named user-defs.lisp in subdirectories ex1/ and ex2/ of
books/projects/apply-model/; more on that below.

A key idea is the notion of the doppelgänger of a function, f , which is
a function with a different name, f !, and possibly a different definition, but
which satisfies the constraints on f . This makes f ! and f equal if f is defined
as opposed to merely constrained. But most importantly, for each function f
that has been replaced in the construction by a doppelgänger f !, we can define
f to be exactly f !; the resulting theory, the evaluation theory, thus extends
the original theory, as desired.

The first step in the construction of the model is to define the doppelgänger
for badge-userfn, named badge-userfn!. It is defined as a case split that rec-
ognizes each user-defined function f with a badge and returns that badge con-
stant. We then define badge! just like badge except that it calls badge-userfn!
instead of badge-userfn. We similarly define the functions tamep!, tamep--
functionp!, and suitably-tamep-listp!, each defined like its counterpart
but using the doppelgänger names.

Next, partition the badged user-defined functions into two groups, letting
G1 contain those that are ancestrally independent of apply$, and letting G2
contain those that are ancestrally dependent on apply$, i.e., G2 is the set of
scions.

Generally speaking, G1 functions do not need doppelgängers. We define
each G1 function just as the user did, using the same name.19

The remaining badged functions are those in the apply$ clique and the
G2 functions. We define a doppelgänger for each and put them all in the same
mutually recursive clique. The doppelgängers of all these functions are essen-
tially derived by the standard renaming of functions to their doppelgängers.
Full details of the construction are given in a long comment entitled “Essay
on Admitting a Model for Apply$ and the Functions that Use It” in
the file apply-raw.lisp found in the ACL2 sources.

The doppelgänger of apply$-userfn, aka apply$-userfn!, is defined as a
big case split that recognizes each function name in G1 or G2. For G1 functions,

19 Actually, if a G1 function, g, is ancestrally dependent on badge or the tamep functions, we
do introduce its doppelgänger, g!, that instead calls doppelgängers. To see an example of this,
look at ok-fnp in books/projects/apply-model/ex2/user-defs.lisp and its doppelgänger,
ok-fnp! in books/projects/apply-model/ex2/doppelgängers.lisp.

26 M. Kaufmann, J S. Moore

it calls the corresponding function20. But for G2 functions it first checks the
(doppelgänger versions of the) tameness conditions used in the warrant and
if the appropriate arguments are tame it calls the doppelgänger of the G2
function.

Finding a measure that justifies this mutual recursion in the apply$! clique
is the crux of the proof. The proof that the measure decreases in a well-
founded sense across every inter-clique call establishes the existence of the
doppelgängers defined in the clique.

Once all the doppelgängers are admitted, it is straightforward to prove by
recursion induction that each doppelgänger satisfies the definitional equation
of its counterpart, under the functional instantiation of replacing the con-
strained functions badge-userfn and apply$-userfn by their doppelgängers.

It is then straightforward to prove from the definition of apply$-userfn!
and the equalities above that every warrant is valid under that same functional
instantiation.

We return to the crux, which is that we can admit the clique under the
Definitional Principle by exhibiting a suitable measure. First, we eliminate
apply$-lambda! from the apply$! clique by inlining it and defining it later.
Then to admit the simplified clique we assign a measure below ω5 to each
function in the clique. Think of each measure as a 5-tuple, 〈a, b, c, d, e〉, of nat-
ural numbers compared lexicographically. The measure for the doppelgänger
of a user-defined function, f , has the following components listed from most
significant to least (where the notion of “weights” is defined below).

– a: 0 if the tameness conditions for f are satisfied, else 1
– b: the maximum of (1) the weights of the :FN and :EXPR arguments, (2)

the weights of every user-defined function g called in f other than f itself,
and (3) the weights of every quoted constant used in a :FN or :EXPR slot
in the body of f . The three parts, (1)–(3), are called the internals of a call
of f.

– c: the position at which f got its warrant in the user’s history, where the
first function warranted gets position 2. (Earlier positions are given to
apply$, apply$-lambda, ev$, and ev$-list.)

– d: the original measure justifying f
– e: 1

The weight of a cons is one greater than the sum of the weights of the car
and cdr.

The weight of a user-defined function symbol f is the weight of its body at
the time the (def-warrant f) occurred, where occurrences of the symbol in
recursive calls are given weight 0. The weight of all other symbols is 0.

The measure for (apply$! fn args) is 〈0, b, 0, 0, 1〉, where b is is the max-
imum of the weight of fn and, if fn has :FN or :EXPR arguments, then one
more than the maximum weights of those arguments in args, else 0.

20 For G1 functions with doppelgängers, i.e., those dependent on badge, tamep, etc, it calls
the doppelgänger.

Limited Second-Order Functionality in a First-Order Setting 27

The measure for (apply$-userfn! fn args) is the same as for apply$!

except that the last component is 0 instead of 1.
The measures for both (ev$! x a) and (ev$-list! x a) are 〈0, b, 1, 0, 1〉,

where b is the weight of x.
Proof Sketch: We must prove that these measures decrease in every inter-

clique call. We do not give the proof here. But apply$! can call ev$! on the
body of a LAMBDA object because the body has smaller weight than the LAMBDA
object. Apply$! can call apply$-userfn! because the first four components
are equal and the last component decreases from 1 to 0. (Apply$-userfn fn
args) can call every user-defined scion because the second component of the
caller’s measure is strictly larger than the second component of the callee’s
measure, since the former measures the entire weight of the callee symbol and
its :FN and :EXPR actuals but the latter only measures the internals.

As for calls from G2 functions, the key observations are (i) when a G2
function calls another G2 function, the weight of the caller is no smaller than
that of the callee because the caller’s internals include the callee, but if the
weights are equal, the chronological positions settle the question appropriately,
(ii) when a G2 function uses a quoted tame constant in a :FN or :EXPR slot,
every “function” in the constant was defined earlier or else the constant would
not be tame and the caller would not have gotten a badge, (iii) and when a G2
function calls itself the :FN and :EXPR arguments are passed down unchanged
allowing the original measure to justify the call. End Sketch

Full details of the proof for any admissible user history are given the afore-
mentioned “Essay on Admitting a Model for Apply$ and the Functions

that Use It” in the file apply-raw.lisp found in the ACL2 sources.
The books/projects/apply-model/ directory contains two examples of

this modeling process and verification of the warrants. See the README file in
that directory.

11 Execution

ACL2 supports (an extension of) a substantial subset of applicative Common
Lisp and is written in Common Lisp.21 ACL2 presents itself to the user as
a Lisp read-eval-print loop: it reads an ACL2 term and, if the term is well-
formed and ground, it evaluates the term according to the ACL2 axioms, and
prints the result.

One might naively think that when the user defines an admissible ACL2
function, that same function is defined in the underlying Common Lisp and
then the evaluation of ground terms is accomplished just by passing the term to
the underlying Common Lisp engine. However, many Common Lisp functions
are defined only on their intended domains, e.g., (car 7) is not specified by
the Common Lisp semantics [32]. But the ACL2 axioms “complete” those
semantics so that all primitive Common Lisp functions are fully specified,

21 Indeed, except for a relatively small amount of Common Lisp boot-strapping code, ACL2
is written in itself.

28 M. Kaufmann, J S. Moore

e.g., (car 7) is NIL under the ACL2 axioms. The preconditions imposed by
Common Lisp are formalized in ACL2 as guards (see :DOC guards) and ACL2
has a way to check, via theorem proving (see :DOC verify-guards), that the
user’s guards on a defined function are sufficient to imply that all Common Lisp
functions involved are called only on objects in their intended domains [16].
When a function definition is admitted, ACL2 defines two versions of it in the
underlying Common Lisp: one version is exactly what the user wrote and is
here called the fast version; the other version, called the executable counterpart,
calls the fast version if the user’s guards have been verified to imply all the
guards in the body and the arguments satisfy the user’s guards, otherwise it
runs code that implements the completion schemes adopted in the axioms.
Thus, executable counterparts always return answers in accordance with the
ACL2 axioms and can use the fast versions of any sub-computations known to
be equivalent. When ground terms are evaluated, the executable counterpart is
run. ACL2 computation agrees with the Common Lisp semantics when guards
are verified and hold on the inputs.

Another difference between ACL2 execution and Common Lisp is that
ACL2 permits new functions to be constrained but not defined (see :DOC
encapsulate). When such a function is encountered in execution, an error is
signaled.

But it is common for ACL2 users to employ undefined but constrained
functions in complex system models and prototypes, to formalize unspecified
behaviors. And it is common to test such complex models by running them on
interesting examples, e.g., an x86 model [13,12] might be tested by running it
on a binary image produced by gcc. To permit this, it must be possible for
the user to temporarily attach executable functions to constrained functions
for the purpose of testing such models. This attachment mechanism is called
defattach (see :DOC defattach) and the set of attachments defines an exten-
sion of the user’s logical theory. That extension, which preserves consistency, is
called the evaluation theory. The evaluation theory is not available for reason-
ing during proofs; for all intents and purposes it is only used in the evaluation
of forms entered by the user at the top-level of ACL2 read-eval-print loop.

Since badge-userfn and apply$-userfn are undefined but constrained
functions, they block most calls of apply$ and ev$. However, we have ar-
ranged for the evaluation theory to automatically include the attachments
of the (virtual) doppelgängers to these functions. We stress that we do not
actually define doppelgängers; because of the equivalence between functions
and their doppelgängers, we can use the executable counterparts of the user’s
original functions.

LAMBDA object application is also somewhat optimized. Logically the execu-
tion of tame LAMBDA application proceeds by calling ev$ on the body under an
appropriate association list binding the variable symbols to values. However,
when the LAMBDA object is well formed and has a verified guard of T, we can
run compiled code for the corresponding Lisp function using the Common Lisp
primitive apply. Furthermore, because tame LAMBDA objects are not formed on

Limited Second-Order Functionality in a First-Order Setting 29

the fly in function bodies, we can cache their suitability for this optimization
and their compiled code.

Our apply$ is Common Lisp’s apply on tame guard verified function sym-
bols when the actuals satisfy the guard of the function. This claim extends to
tame guard verified LAMBDA objects.

For details of the handling of attachments to the functions badge-userfn

and apply$-userfn and the checking, compiling, and caching of LAMBDA ob-
jects, see the ACL2 source file apply-raw.lisp.

12 Some Preliminary Performance Comparisons

In this experiment we will time runs of variations of

(sum ’(LAMBDA (X) (BINARY-+ ’3 (BINARY-* ’2 (FIX X))))

million)

where *million* is a list constant containing the naturals from 1 to one mil-
lion, and sum is defined in Section 3. This is our proposed “formal semantics”
for the Common Lisp expression

(loop for x in *million* sum (+ 3 (* 2 (fix x)))).

The arithmetic expression was arbitrarily chosen. Fix is the identity on num-
bers and returns 0 on non-numbers. Its presence in the expression means that
the LAMBDA object can be legally executed on any input. If we knew this LAMBDA
object would only be applied to numbers we would not need fix.

Here are some variations on this computation.

Variation 1: (variation1 *million*), where

(defun variation1 (lst)

(declare (xargs :guard t))

(cond ((atom lst) 0)

(t (+ (+ 3 (* 2 (fix (car lst))))

(variation1 (cdr lst))))))

Variation 2: (sum ’VARIATION2 *million*), where

(defun variation2 (x)

(+ 3 (* 2 (fix x))))

Because no guard was declared, ACL2 does not consider variation2 to be
a “guard verified” function; the executable counterpart never runs the fast
version.

Variation 3: (sum ’VARIATION3 *million*), where

(defun variation3 (x)

(declare (xargs :guard t))

(+ 3 (* 2 (fix x))))

30 M. Kaufmann, J S. Moore

This ACL2 function is logically equivalent to variation2 but has had its
guards verified and so the fast function is run.

Variation 4: (sum *variation4* *million*), where

(defconst *variation4*

’(LAMBDA (X)

(BINARY-+ ’3 (BINARY-* ’2 (FIX X)))))

but in this test we will disable the optimized handling of APPLY$-LAMBDA so
that the body of this LAMBDA object is interpreted a million times by ev$.

Variation 5: (sum *variation5* *million*), where

(defconst *variation5*

’(LAMBDA (X)

(BINARY-+ ’3 (BINARY-* ’2 (FIX X)))))

The two LAMBDA objects, *variation4* and *variation5*, are identical.
However, before we run *variation5* we will install our optimized handling
of APPLY$-LAMBDA so that it will confirm that the LAMBDA object can be ap-
plied to any input, compile the LAMBDA, and cache that compiled code, so the
guard confirmation and compilation are not done again and the compiled code
is run each time.

Variation 6: (loop for x in *million* sum (+ 3 (* 2 x))) in Common
Lisp.

All of the timing is done with ACL2 Version 7.3 running CCL with the
high optimization settings provided by ACL2, on a 2.6 GHz Intel Core i7 with
16 GB of 1600 MHz DDR3. Three successive runs of each variation were done
and the times shown are the averages of the three.

variation description seconds
1 special purpose function 0.016
2 sum of fn symb with unverified guards 0.436
3 sum of fn symb with verified guards 0.333
4 interpreted LAMBDA object 6.490
5 compiled LAMBDA object 0.123
6 Common Lisp loop 0.012

Summarizing this table, variation 1, the special-purpose recursive func-
tion, is the fastest way to do this sum purely in ACL2. However, next best is
variation 5 where we use the sum scion with a LAMBDA object whose guards
can be verified. We see that compiling and caching is well worthwhile, beat-
ing variation 4 where we interpret the LAMBDA object with ev$, by a factor
of over 50. It was surprising to us that variation 3, mapping with a function
symbol whose guards have been verified is about 3 times slower than with the
comparable LAMBDA object, 5. This is mainly due to overhead associated with
linking from the function name to its attachment in the evaluation theory and
checking various conditions allowing the attachment to be run. Finally, we see
that raw Common Lisp, variation 6, beats the best scion expression, 5, by a
factor of about 10.

Limited Second-Order Functionality in a First-Order Setting 31

Overall we find these results encouraging but indicative that we must work
harder to improve execution performance if we want industrial users of ACL2
to rely routinely on scions. One possibility is to support limited use of the
Common Lisp loop construct in ACL2, which logically would expand to calls of
scions but “under the hood” would be presented as loop to the host Common
Lisp compiler in guard verified functions.

13 Limitations

The logic of ACL2 is first-order and untyped, with support for recursive defini-
tion over an inductively constructed domain. It remains so with the introduc-
tion of apply$. The addition of apply$ does not turn ACL2 into Haskell [17]
or ML [28] or HOL [15] or even Common Lisp [32]!

Many limitations of this work immediately come to mind: we cannot deal
with functions of order three or higher, polymorphic typing, non-terminating
functions, infinite lists, continuations, Currying, functions that create other
functions, etc., all of which are common attributes of virtually every higher-
order language.

Nevertheless, as the examples in the previous section show, apply$ allows
the convenient expression of many concepts and the convenient mechanical
proof of many relationships connecting them. In particular, as hinted by the
collection of scions enumerated in Section 9, we can handle many loop state-
ments, provided the expressions occurring in them are tame. This was a goal
of our work on apply$.

But within the context of that goal there are unfortunate limitations. As
described in Section 6, we do not assign badges to functions that operate on
state or single-threaded objects, are defined in mutually recursive cliques, or
are justified with measures that are ancestrally dependent on apply$ or return
ordinals other than natural numbers. These limitations stem more from our
desire to avoid complicating the project than from deep logical difficulties. We
believe these limitations could be removed or at least made less restrictive —
for example, we could more fully handle multiple-valued functions by having
apply$ always return a list of results rather than a fixed-length vector of
results — but we await such requests from users.

The syntactic analysis that is used to infer tameness is overly restrictive.
For example, (sum ’SQUARE lst) and (sum ’CUBE lst) are both recognized as
tame expressions, but (sum (if p ’SQUARE ’CUBE) lst) is not.

In addition, ACL2 does not rewrite constants, which means the rewriter
cannot simplify or normalize the bodies of LAMBDA objects or even substitute
one constant for a functionally equivalent one, e.g., ’IDENTITY for ’(LAMBDA

(X) X). In partial support of work in this direction, the books/projects/-

apply-model/apply.lisp book defines the predicate fn-equal using defun-sk
so that it tests that two objects are functionally equivalent when used by
apply$. The book proves that fn-equal is an equivalence relation and, ev-

32 M. Kaufmann, J S. Moore

ery time a scion is warranted, the system automatically generates and proves
congruence rules [9] for its :FN arguments, e.g.,

(fn-equal fn1 fn2) → (sum fn1 lst) = (sum fn2 lst).

But because ACL2 does not rewrite constants, these rules are not used auto-
matically.22

Another, less troubling, limitation is that apply$ cannot apply an untame
function even if, by “looking further ahead,” it could determine in some cases
that it will ultimately reach a tame function. For example, since we can prove
that (russell ’EQUAL ’EQUAL) is NIL one might expect we can prove that
(apply$ ’APPLY$ ’(RUSSELL (EQUAL EQUAL))) is NIL. But that is not prov-
able. Apply$ can apply itself only to tame functions and RUSSELL is not tame.
But if we looked one level deeper we would see that the untame RUSSELL is
being fed the tame EQUAL and so could be expanded as expected.

14 Related Work

In this section we survey some related work, focusing especially on that which
adds some of the convenience of higher-order functionality to a first-order sys-
tem, without modifying the underlying logic. The italicized restriction is critical
to this work and we explain why in the next few paragraphs, before comparing
this work to similar work. Adding apply$ to ACL2 did not change the term
structure of the language, the rules of inference, the extension principles, or
the logical foundations. This was crucial to the practicality of the undertak-
ing since it eliminated the need to inspect and possibly modify hundreds of
megabytes of prover code and previously verified libraries. Furthermore, the
commitment to not changing the logic was the major constraint on any solu-
tions we considered. Had we ignored this constraint the logical problems could
have been trivially solved by adopting a higher order logic but the practical
problems would have been insurmountable.

After wading through the myriad details of this paper, readers may ques-
tion whether we really left the underlying logic unchanged! The answer is
yes, because before we added apply$ to the definitions in our source code
we simply defined it, acting as ordinary users, under ACL2’s standard, con-
servative Definitional Principle. All the theorems of Section 9 were proved
by that earlier version of ACL2. Indeed, the theorems in books/projects/-

apply-model/report.lisp are all proved about the definition of apply$ in a
disjoint namespace (the symbol package "MODAPP"), demonstrating that none
of now-built-in handling of apply$ is necessary for these formulas to be the-
orems. The bulk of this paper describes the ramifications of our definition of
apply$, tamep, warrants, etc., but the logical foundations were never threat-
ened.

One might then ask “then why bother with all that talk, in Section 10,
of the model of apply$, doppelgängers, warrants, etc.?” The answer is that

22 In future work, we may explore the use of conditional rewrite rules instead.

Limited Second-Order Functionality in a First-Order Setting 33

the model establishes that theorems governed by warrant hypotheses are not
vacuously valid.

But to support efficient execution of apply$ in the evaluation theory we
had to modify ACL2’s source code, and to do that soundly we had to add the
definitions of apply$, tamep, etc., to the source definitions to “tie down” the
meanings of those function symbols.

Our commitment to not modifying ACL2’s first order logic is so important
to us that this section focuses on work undertaken with comparable restric-
tions: adding some second-order functionality to a first-order prover without
modifying the underlying logic.

There is a long and distinguished history of developing set theory in first-
order settings, including the set theories of Ackermann, Zermelo-Fraenkel, Von
Neumann-Bernays-Gödel, and Morse-Kelly. We regard that work to be in a
completely different sphere than this; we are not trying to support higher-
order logic, just to make a first-order interactive theorem prover a little more
convenient.

In the same sense, work on implemented higher-order systems is incom-
parable, including programming languages (e.g., Haskell [17], ML [28], and
Common Lisp [32]), interactive theorem provers (e.g., HOL [15], Isabelle [29],
and Coq [4]), and more automatic theorem provers (e.g., TPS [1], Satallax [10]
and Leo-II [3]). ACL2 with apply$ is still first-order, and our “functionals”
and the “functions” they handle are much more limited than the true function
objects in such systems.

Higher-order interactive theorem provers can take advantage of fully au-
tomatic theorem provers, by translating from higher-order logic to first-order
logic [26]: in essence, translate f(x) to apply(f, x). That approach is used, for
example, by the popular Sledgehammer tool [5]. Such work differs from ours:
it supports a higher-order interactive prover using first-order tools, while ours
enhances a first-order interactive prover to provide some of the benefits of
higher-order systems.

There have been previous approaches that include features into a first-
order setting that can be viewed as higher-order in nature. Some of these
extend first-order systems to support proofs by induction (already supported
by ACL2). Indeed, Peano arithmetic includes schematized induction, so we do
not view induction as particularly higher-order. A second approach is to al-
low a function symbol to represent more than one function. Kǔncar [23] deals
with such overloading for Isabelle, and points to an example from Obua that
is reminiscent of the RUSSELL example given in Section 3 above. But over-
loading alone does not support data objects that represent functions. Indeed,
the encapsulate and functional instantiation features [8] already provided by
ACL2 and its predecessor, Nqthm [7], support forms of generic functions that
are, in a sense, extensible; but they are not adequate for the kinds of examples
discussed above in Section 9, nor do they support the use of loop constructs
(see Section 2). A third approach, implemented in Beeson’s Otter-λ [2], is
based on an extension of first-order syntax to include lambda terms that de-

34 M. Kaufmann, J S. Moore

note functions. This extends the power of the automatic first-order prover,
Otter [25], with “the power of lambda unification.”

By contrast, ACL2 is an interactive prover whose logic does not have
lambda terms. Rather, the first argument of apply$ may be a list whose first
element is the symbol, LAMBDA. Our use of first-order data items to represent
functions is by no means new; indeed, this idea is present in ZF set theory and,
more recently, goes back to McCarthy’s early LISP work [24] and is explored
in the use of defunctionalization by Reynolds [31] to formalize the operational
semantics of a higher-order language using a first-order interpreter (where
the lambdas may have free variables, which we do not allow in our lambda
constants). Our contribution is not to the creation of interpreters, nor does
it pertain to logics that augment the inference rules of traditional first-order
logic, such as rewriting logic [27]. Our contribution, rather, is to extend an
interactive theorem prover to provide convenient support for a higher-order
style that can serve as a basis for loop constructs, while staying firmly within
traditional first-order logic and extending automation already provided by the
system to work nicely with the new features.

Previous work of Boyer and Moore (a co-author of this paper) dealt with
an effort to support some higher-order functionality in a mechanized theorem
prover for a first-order system: the work on V&C$ in Nqthm [6]. In that work,
V&C$ was axiomatized to be an uncomputable but first-order universal eval-
uator that returned the “Value and Cost” of an expression as a pair, or else
returned nil indicating that no cost was sufficient. Every time a new defi-
nition was added, axioms were added to extend the functions formals and
body, used by V&C$. Because Nqthm did not have local scopes, this was not
the problem it would be in ACL2. Many commonly used examples of Lisp-style
loop expressions were formalized and properties were proved.

Nqthm was strictly more powerful than ACL2 with apply$ in the following
sense: V&C$ allows one to formalize and prove that some expressions could not
be evaluated. However, overall we feel that ACL2 is a superior system, as
witnessed by the scale of its industrial applications, its flexibility as a system
programming language, its speed of execution, and the number and difficulty
of its applications. See [18] for a close-up look at several uses of ACL2 at one
company, or inspect the ACL2 Community Books at GitHub.

It has been noted that with just foldr (sometimes called lit [14]), one
could define explicitly many first-order functions one would normally define
recursively. In order to reason about these functions, the only inductive rea-
soning necessary would thus be to prove a few inductive properties of foldr.

We considered a similar observation when contemplating our proof of the
existence of a model for warrants. Had we restricted scions to those easily
recognizable as instances of foldr and foldl, we could simply show that those
two functions could be defined as part of the apply$ clique and introduce all
other scions as instances. However, we preferred to prove our more general
scheme consistent because of its directness and convenience to the user.

Limited Second-Order Functionality in a First-Order Setting 35

15 Note on Ongoing Work

The paper was originally submitted to this special issue of the Journal of
Automated Reasoning in April, 2017. Reviewers accepted the paper in
August, 2018, but made several helpful suggestions and requests to which we
responded in October, 2018. However, between April, 2017 and October, 2018,
we have continued to work on apply$. These changes are not reflected in this
paper because they do not change the logical story. However, we anticipate
that future releases of ACL2 will expand the support for apply$. For example,
we can see how to support macroexpansion in LAMBDA object bodies and how
to allow LAMBDA objects containing declarations (as ACL2’s defun has always
done). The latter change will allow the user to specify guards on quoted LAMBDA

expressions (a feature of LAMBDA objects not otherwise mentioned in this paper)
and the compiler to optimize the compilation of such expressions. We also
anticipate a much more sophisticated cache implementation supporting general
guards on LAMBDA objects. We anticipate supporting a subset of Common
Lisp loop via formal translation to scions. We still anticipate working on
performance, particularly for the scions of apply$ involved in the semantics of
Common Lisp loop statements. Optimal performance may require exploiting
“output contracts” [11] or Jared Davis’ “return specifiers” as described in
the book books/std/util/define.lisp. If and when these new features are
adopted they will be described in ACL2’s online documentation.

16 Acknowledgments

We thank the reviewers for their helpful suggestions. We thank ForrestHunt,
Inc., for its support of the ACL2 project in general and this work in particular.
We also would like to acknowledge Mike Gordon, whose support for higher-
order logic never diminished his enthusiasm for our first-order provers and with
whom we shared many hours of interesting and enlightening conversations.

References

1. Peter B. Andrews and Chad E. Brown. TPS: A hybrid automatic-interactive system for
developing proofs. Journal of Applied Logic, 4(4):367 – 395, 2006. Towards Computer
Aided Mathematics.

2. Michael Beeson. Otter-lambda, a theorem-prover with untyped lambda-unification. In
Geoff Sutcliffe, Stephan Schulz, and Tanel Tammet, editors, Proceedings of the ESFOR
workshop at IJCAR 2004, 2004.

3. Christoph Benzmüller, Nik Sultana, Lawrence C. Paulson, and Frank Theiß. The higher-
order prover LEO-II. Journal of Automated Reasoning, 55(4):389–404, 2015.

4. Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program Develop-
ment: Coq’Art The Calculus of Inductive Constructions. Springer Publishing Company,
Incorporated, 1st edition, 2010.

5. Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban.
Hammering towards QED. J. Formalized Reasoning, 9(1):101–148, 2016.

36 M. Kaufmann, J S. Moore

6. R. Boyer and J S. Moore. The addition of bounded quantification and partial functions
to a computational logic and its theorem prover. Journal of Automated Reasoning,
4(2):117–172, 1988.

7. R. S. Boyer and J S. Moore. A Computational Logic Handbook, Second Edition. Aca-
demic Press, New York, 1997.

8. R.S. Boyer, D.M. Goldschlag, M. Kaufmann, and J S. Moore. Functional instantiation
in first-order logic. In V. Lifschitz, editor, Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy, pages 7–26. Academic
Press, 1991.

9. B. Brock, M. Kaufmann, and J S. Moore. Rewriting with equivalence relations in ACL2.
Journal of Automated Reasoning, 40(4):293–306, 2008.

10. Chad E. Brown. Satallax: An automatic higher-order prover. In Automated Reasoning -
6th International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012.
Proceedings, pages 111–117, 2012.

11. Harsh Chamarthi, Peter C. Dillinger, and Panagiotis Manolios. Data definitions in the
ACL2 sedan. In ACL2 ’14, pages 27–48. EPTCS, 2014.

12. S. Goel, W.A. Hunt, and M. Kaufmann. Simulation and formal verification of x86
machine-code programs that make system calls. In K. Claessen and V. Kuncak, editors,
FMCAD’14: Proceedings of the 14th Conference on Formal Methods in Computer-Aided
Design, pages 91–98. EPFL, Switzerland, 2014.

13. Shilpi Goel. Formal Verification of Application and System Programs Based on a
Validated x86 ISA Model. PhD thesis, University of Texas at Austin, 2016.

14. M. J. C. Gordon. On the power of list iteration. The Computer Journal, 22(4):376–
379, 1979. Based on the author’s 1973 technical report, http://www.brics.dk/~danvy/
MIP-R-101.pdf.

15. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, New York, NY,
USA, 1993.

16. D. Greve, M. Kaufmann, P. Manolios, J S. Moore, S. Ray, J. L. Ruiz-Reina, R. Sumners,
D. Vroon, and M. Wilding. Efficient execution in an automated reasoning environment.
Journal of Functional Programming, 18(01), January 2008.

17. The Haskell home page, Accessed: 2017. https://www.haskell.org.
18. W. A. Hunt, Jr., M. Kaufmann, J S. Moore, and A. Slobodova. Industrial hardware

and software verification with ACL2. In Verified Trustworthy Software Systems, volume
375. The Royal Society, 2017 (to appear). (Article Number 20150399).

19. M. Kaufmann. Trusted extension of ACL2 system code: Towards an open architecture.
In Workshop on Trusted Extensions of Interactive Theorem Provers, 2010. See http:

//www.cs.utexas.edu/users/kaufmann/itp-trusted-extensions-aug-2010/.
20. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An Approach.

Kluwer Academic Press, Boston, MA., 2000.
21. M. Kaufmann and J S. Moore. The ACL2 home page. In http: // www. cs. utexas.

edu/ users/ moore/ acl2/ . Dept. of Computer Sciences, University of Texas at Austin,
2018.

22. M. Kaufmann, J S. Moore, and ACL2 User Community. ACL2 sources and ACL2
community books on GitHub. In https: // github. com/ acl2/ acl2 . GitHub, 2018.

23. Ondřej Kunčar. Correctness of Isabelle’s cyclicity checker: Implementability of overload-
ing in proof assistants. In Proceedings of the 2015 Conference on Certified Programs
and Proofs, CPP ’15, pages 85–94, New York, NY, USA, 2015. ACM.

24. J. McCarthy. Recursive functions of symbolic expressions and their computation by
machine (part I). CACM, 3(4):184–195, 1960.

25. W. McCune. Otter 3.0 Reference Manual and Guide. Tech. Report ANL-94/6, Argonne
National Laboratory, Argonne, IL, 1994. See also URL http://www.mcs.anl.gov/AR/

otter/.
26. Jia Meng and Lawrence C. Paulson. Translating higher-order clauses to first-order

clauses. J. Autom. Reasoning, 40(1):35–60, 2008.
27. Jos Meseguer. Twenty years of rewriting logic. The Journal of Logic and Algebraic

Programming, 81(7):721 – 781, 2012. Rewriting Logic and its Applications.
28. Laurence C. Paulson. ML for the Working Programmer. Cambridge University Press,

New York, NY, USA, 1991.

Limited Second-Order Functionality in a First-Order Setting 37

29. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS 828,
1994.

30. Kent Pitman. The Common Lisp HyperSpec. See http://www.lispworks.com/

documentation/common-lisp.html.
31. John C. Reynolds. Definitional interpreters for higher-order programming languages.

Higher Order Symbol. Comput., 11(4):363–397, December 1998.
32. G. L. Steele, Jr. Common Lisp The Language, Second Edition. Digital Press, 30 North

Avenue, Burlington, MA. 01803, 1990.

