Appendix to “Iterated Ultrapowers for the Masses”

Ali Enayat, Matt Kaufmann, and Zachiri McKenzie

August 18, 2017

Abstract

This document provides solutions to the exercises in “Iterated Ultrapowers for the Masses”.

3.3. Exercise. Let \(\mathcal{U} \) be an \(\mathcal{M} \)-amenable ultrafilter on the parametrically \(\mathcal{M} \)-definable subsets of \(\mathcal{M} \). We begin by showing that \(\mathcal{U}^2 \) is a filter on the parametrically \(\mathcal{M} \)-definable subsets of \(\mathcal{M}^2 \). Let \(X, Y \subseteq \mathcal{M}^2 \) be parametrically \(\mathcal{M} \)-definable. Let

\[
Z = \{ m \in \mathcal{M} : (X \cap Y) | m \in \mathcal{U} \},
\]

\[
Z_1 = \{ m \in \mathcal{M} : X | m \in \mathcal{U} \},
\]

\[
Z_2 = \{ m \in \mathcal{M} : Y | m \in \mathcal{U} \}.
\]

Since \(\mathcal{U} \) is \(\mathcal{M} \)-amenable, \(Z, Z_1 \) and \(Z_2 \) are parametrically \(\mathcal{M} \)-definable subsets of \(\mathcal{M} \). Now,

\[
Z = \{ m \in \mathcal{M} : X | m \cap Y | m \in \mathcal{U} \}.
\]

And, since \(\mathcal{U} \) is an ultrafilter, for all \(m \in \mathcal{M} \),

\[
X | m \cap Y | m \in \mathcal{U} \text{ if and only if } X | m \notin \mathcal{U} \text{ and } Y | m \in \mathcal{U}.
\]

Therefore, using the fact that \(\mathcal{U} \) is a filter,

\[
X \cap Y \in \mathcal{U}^2 \iff Z \in \mathcal{U} \iff Z_1 \cap Z_2 \in \mathcal{U} \iff Z_1 \in \mathcal{U} \text{ and } Z_2 \in \mathcal{U} \iff X \in \mathcal{U}^2 \text{ and } Y \in \mathcal{U}^2.
\]

It follows that if \(X, Y \in \mathcal{U}^2 \), then \(X \cap Y \in \mathcal{U}^2 \); and if \(X \in \mathcal{U}^2 \) and \(X \subseteq Y \), then \(Y \in \mathcal{U}^2 \). Therefore \(\mathcal{U}^2 \) is a filter. We are left to verify that \(\mathcal{U}^2 \) is an ultrafilter. Let \(X \) and \(Z_1 \) be as above. Let

\[
W = \{ m \in \mathcal{M} : (M^2 \setminus X) | m \in \mathcal{U} \}.
\]

Again, since \(\mathcal{U} \) is \(\mathcal{M} \)-amenable, \(W \) is a parametrically \(\mathcal{M} \)-definable subset of \(\mathcal{M} \). Note that

\[
W = \{ m \in \mathcal{M} : M \setminus (X | m) \in \mathcal{U} \}.
\]

And, since \(\mathcal{U} \) is an ultrafilter, for all \(m \in \mathcal{M} \),

\[
M \setminus (X | m) \in \mathcal{U} \text{ if and only if } X | m \notin \mathcal{U}.
\]

Therefore

\[
W = \{ m \in \mathcal{M} : X | m \notin \mathcal{U} \} = M \setminus Z_1.
\]
And so, since \mathcal{U} is an ultrafilter,

$$M^2 \setminus X \in \mathcal{U} \iff W \in \mathcal{U} \iff Z_1 \notin \mathcal{U} \iff X \notin \mathcal{U}^2.$$

This shows that \mathcal{U}^2 is an ultrafilter on the parametrically \mathcal{M}-definable subsets of M^2.

3.7. Exercise. Let \mathcal{U} be an \mathcal{M}-amenable ultrafilter on the parametrically \mathcal{M}-definable subsets of M. We will prove that for all positive integers n, \mathcal{U}^n is an ultrafilter on the parametrically \mathcal{M}-definable subsets of M^n by induction on n. The proof is an obvious generalization of Exercise 3.3. Let $n > 0$ and suppose that \mathcal{U}^n is an ultrafilter on the parametrically M^n-definable subsets of M^n. We need to show that \mathcal{U}^{n+1} is an ultrafilter on the parametrically \mathcal{M}-definable subsets of M^{n+1}. We begin by showing that \mathcal{U}^{n+1} is a filter. Let $X, Y \subseteq M^{n+1}$ be parametrically \mathcal{M}-definable. We will prove that for all positive integers n, \mathcal{U}^n is an ultrafilter on the parametrically \mathcal{M}-definable subsets of M^n by induction on n. The proof is an obvious generalization of Exercise 3.3. Let $n > 0$ and suppose that \mathcal{U}^n is an ultrafilter on the parametrically \mathcal{M}-definable subsets of M^n. We need to show that \mathcal{U}^{n+1} is a filter. Let $X, Y \subseteq M^{n+1}$ be parametrically \mathcal{M}-definable. Let

$$Z = \{ m \in M : (X \cap Y)|m \in \mathcal{U}^n \},$$

$$Z_1 = \{ m \in M : X|m \in \mathcal{U}^n \},$$

$$Z_2 = \{ m \in M : Y|m \in \mathcal{U}^n \}.$$

It follows from Lemma 3.6 that Z, Z_1 and Z_2 are parametrically \mathcal{M}-definable subsets of M. Now,

$$Z = \{ m \in M : X|m \cap Y|m \in \mathcal{U}^n \}.$$

By the induction hypothesis, for all $m \in M$,

$$X|m \cap Y|m \in \mathcal{U}^n \text{ if and only if } X|m \in \mathcal{U}^n \text{ and } Y|m \in \mathcal{U}^n.$$

Therefore, using the fact that \mathcal{U} is a filter,

$$X \cap Y \in \mathcal{U}^{n+1} \iff Z \in \mathcal{U} \iff Z_1 \cap Z_2 \in \mathcal{U} \iff$$

$$Z_1 \in \mathcal{U} \text{ and } Z_2 \in \mathcal{U} \iff X \in \mathcal{U}^{n+1} \text{ and } Y \in \mathcal{U}^{n+1}.$$

It follows that if $X, Y \in \mathcal{U}^{n+1}$, then $X \cap Y \in \mathcal{U}^{n+1}$; and if $X \in \mathcal{U}^{n+1}$ and $X \subseteq Y$, then $Y \in \mathcal{U}^{n+1}$. This shows that \mathcal{U}^{n+1} is a filter. We are left to verify that \mathcal{U}^{n+1} is an ultrafilter. Let X and Z_1 be as above. Let

$$W = \{ m \in M : (M^{n+1} \setminus X)|m \in \mathcal{U}^{n+1} \}.$$

It follows from Lemma 3.6 that W is a parametrically \mathcal{M}-definable subset of M. Note that

$$W = \{ m \in M : M^n \setminus (X|m) \in \mathcal{U}^n \}.$$

By the induction hypothesis we have, for all $m \in M$,

$$M^n \setminus (X|m) \in \mathcal{U}^n \text{ if and only if } X|m \notin \mathcal{U}^n.$$

Therefore

$$W = \{ m \in M : (X|m) \notin \mathcal{U}^n \} = M \setminus Z_1.$$

Using the fact that \mathcal{U} is an ultrafilter, this shows that

$$M^{n+1} \setminus X \in \mathcal{U}^{n+1} \iff W \in \mathcal{U} \iff Z_1 \notin \mathcal{U} \iff X \notin \mathcal{U}^{n+1},$$

2
which proves that \mathcal{U}^{n+1} is an ultrafilter on the parametrically \mathcal{M}-definable subsets of M^{n+1}.

3.8. Exercise. (a). Let \mathcal{U} be an \mathcal{M}-amenable ultrafilter. Let $\mathcal{M}^* = \text{Ult}(\mathcal{M}, \mathcal{U}, 2)$ (defined in Subsection ??). We need to define the interpretations of the relation symbols in $\mathcal{L}(\mathcal{M})$ in \mathcal{M}^*. Let $R(x_1, \ldots, x_n)$ be an n-ary relation symbol in $\mathcal{L}(\mathcal{M})$. For all $[f_1(0, 1)], \ldots, [f_n(0, 1)] \in \mathcal{M}^*$, define

$$R^{\mathcal{M}^*}([f_1(0, 1)], \ldots, [f_n(0, 1)]) \text{ if and only if}$$

$$\{ (x, y) \in M^2 : \mathcal{M} \models R(f_1(x, y), \ldots, f_n(x, y)) \} \in \mathcal{U}^2.$$

To see that this definition is consistent, let $f_1(x, y), \ldots, f_n(x, y), g_1(x, y), \ldots, g_n(x, y)$ be functions such that for all $1 \leq i \leq n$, $[f_i(0, 1)] = [g_i(0, 1)]$. Now, for all $1 \leq i \leq n$,

$$Z_i = \{ (x, y) \in M^2 : \mathcal{M} \models f_i(x, y) = g_i(x, y) \} \in \mathcal{U}^2.$$

Therefore $Z = Z_1 \cap \cdots \cap Z_n \in \mathcal{U}^2$ and

$$\begin{align*}
\{ (x, y) \in M^2 : \mathcal{M} \models R(f_1(x, y), \ldots, f_n(x, y)) \} & \cap Z \\
= \{ (x, y) \in M^2 : \mathcal{M} \models R(g_1(x, y), \ldots, g_n(x, y)) \} & \cap Z.
\end{align*}$$

This shows that replacing the f_is by the g_is does not change the truth value of $R^{\mathcal{M}^*}([f_1(0, 1)], \ldots, [f_n(0, 1)])$.

Theorem 0.1 (Łoś Theorem) Let $\phi(x_1, \ldots, x_n)$ be an $\mathcal{L}(\mathcal{M})$-formula. For all $[f_1(0, 1)], \ldots, [f_n(0, 1)] \in \mathcal{M}^*$,

$$\mathcal{M}^* \models \phi([f_1(0, 1)], \ldots, [f_n(0, 1)]) \text{ if and only if}$$

$$\{ (x, y) \in M^2 : \mathcal{M} \models \phi(f_1(x, y), \ldots, f_n(x, y)) \} \in \mathcal{U}^2.$$

Proof We prove this theorem by structural induction on ϕ. Without loss of generality we may assume that ϕ only contains the logical connectives \neg and \wedge, and the quantifier \exists. It follows from the definition of \mathcal{M}^* in Subsection ?? and above that the theorem holds for all atomic formulae. Suppose that the theorem holds for $\psi(x_1, \ldots, x_n)$, and $\phi(x_1, \ldots, x_n) = \neg \psi(x_1, \ldots, x_n)$. Let $[f_1(0, 1)], \ldots, [f_n(0, 1)] \in \mathcal{M}^*$. Now,

$$\mathcal{M}^* \models \phi([f_1(0, 1)], \ldots, [f_n(0, 1)]) \text{ if and only if}$$

$$\neg (\mathcal{M}^* \models \psi([f_1(0, 1)], \ldots, [f_n(0, 1)])) \text{ if and only if}$$

$$\{ (x, y) \in M^2 : \mathcal{M} \models \psi(f_1(x, y), \ldots, f_n(x, y)) \} \notin \mathcal{U}^2 \text{ if and only if}$$

$$M^2 \setminus \{ (x, y) \in M^2 : \mathcal{M} \models \psi(f_1(x, y), \ldots, f_n(x, y)) \} \notin \mathcal{U}^2 \text{ if and only if}$$

$$\{ (x, y) \in M^2 : \mathcal{M} \models \neg \psi(f_1(x, y), \ldots, f_n(x, y)) \} \in \mathcal{U}^2.$$

Suppose that the theorem holds for $\psi(x_1, \ldots, x_n)$ and $\theta(x_1, \ldots, x_n)$, and $\phi(x_1, \ldots, x_n) = \psi(x_1, \ldots, x_n) \wedge \theta(x_1, \ldots, x_n)$. Let $[f_1(0, 1)], \ldots, [f_n(0, 1)] \in \mathcal{M}^*$. Let

$$Z_1 = \{ (x, y) \in M^2 : \mathcal{M} \models \psi(f_1(x, y), \ldots, f_n(x, y)) \},$$

$$Z_2 = \{ (x, y) \in M^2 : \mathcal{M} \models \theta(f_1(x, y), \ldots, f_n(x, y)) \},$$

$$Z = \{ (x, y) \in M^2 : \mathcal{M} \models \phi(f_1(x, y), \ldots, f_n(x, y)) \}.$$
Note that \(Z = Z_1 \cap Z_2 \). Now,

\[
\mathcal{M}^* \models \phi([f_1(0, 1)], \ldots, [f_n(0, 1)]) \text{ if and only if } \\
\mathcal{M}^* \models \psi([f_1(0, 1)], \ldots, [f_n(0, 1)]) \text{ and } \mathcal{M}^* \models \theta([f_1(0, 1)], \ldots, [f_n(0, 1)]) \text{ if and only if } \\
Z_1 \in U^2 \text{ and } Z_2 \in U^2 \text{ if and only if } Z \in U^2.
\]

Suppose that the theorem holds for \(\psi(w, x_1, \ldots, x_n) \), and \(\phi(x_1, \ldots, x_n) = \exists w \psi(w, x_1, \ldots, x_n) \).

Let \([f_1(0, 1)], \ldots, [f_n(0, 1)] \in \mathcal{M}^* \). Now, if \(\mathcal{M}^* \models \phi([f_1(0, 1)], \ldots, [f_n(0, 1)]) \), then there exists \([h(0, 1)] \in \mathcal{M}^* \) such that

\[
\mathcal{M}^* \models \psi([h(0, 1)], [f_1(0, 1)], \ldots, [f_n(0, 1)]).
\]

Therefore

\[
\{(x, y) \in M^2 : \mathcal{M} \models \psi(h(x, y), f_1(x, y), \ldots, f_n(x, y)) \} \in U^2.
\]

And so

\[
\{(x, y) \in M^2 : \mathcal{M} \models \exists w \psi(w, f_1(x, y), \ldots, f_n(x, y)) \} \in U^2.
\]

We are left to show the converse. Since \(\mathcal{M} \) has definable Skolem functions, there is an \(\mathcal{M} \)-definable function \(g(x_1, \ldots, x_n) \) such that

\[
\mathcal{M} \models \forall x_1 \cdots \forall x_n \exists w \psi(w, x_1, \ldots, x_n) \rightarrow \psi(g(x_1, \ldots, x_n), x_1, \ldots, x_n).
\]

Therefore, if

\[
\{(x, y) \in M^2 : \mathcal{M} \models \phi(f_1(x, y), \ldots, f_n(x, y)) \} \in U^2,
\]

then \(\{(x, y) \in M^2 : \mathcal{M} \models \psi(g(f_1(x, y), \ldots, f_n(x, y)), f_1(x, y), \ldots, f_n(x, y)) \} \in U^2.\)

On the other hand, since \(h(x, y) = g(f_1(x, y), \ldots, f_n(x, y)) \) is \(\mathcal{M} \)-definable, we have

\[
\mathcal{M}^* \models \psi([h(0, 1)], [f_1(0, 1)], \ldots, [f_n(0, 1)]),
\]

and so \(\mathcal{M}^* \models \phi([f_1(0, 1)], \ldots, [f_n(0, 1)]) \).

The theorem now follows by induction. \(\square \)

(b). We need to show that \([0], [1] \) forms a set of order indiscernibles in \(\mathcal{M}^* \) over \(\mathcal{M} \).

Let \(\phi(x_0, \ldots, x_n) \) be an \(L(\mathcal{M}) \)-formula. Let \(m_1, \ldots, m_n \in M \). For each \(1 \leq i \leq n, m_i \) is represented in \(\mathcal{M}^* \) by the constant function \(h_i(x, y) = m_i \). Let

\[
Z = \{w \in M : M \models \phi(w, m_1, \ldots, m_n)\}.
\]

Note that

\[
\{m \in M : (M \times Z) \models m \in U\} = \begin{cases}
\emptyset & \text{if } Z \notin U \\
M & \text{if } Z \in U
\end{cases}
\]

and \(\{m \in M : (Z \times M) \models m \in U\} = Z \).

Therefore, \(M \times Z \in U^2 \) if and only if \(Z \times M \in U^2. \) Now, using part (a),

\[
\mathcal{M}^* \models \phi([0], [h_1(0, 1)], \ldots, [h_n(0, 1)]) \text{ if and only if } \\
\{(x, y) \in M^2 : \mathcal{M} \models \phi(x, m_1, \ldots, m_n)\} = Z \times M \in U^2 \text{ if and only if } \\
\{(x, y) \in M^2 : \mathcal{M} \models \phi(x, m_1, \ldots, m_n)\} = Z \times M \in U^2.
\]

4
\[\{ (x, y) \in M^2 : M \models \phi(y, m_1, \ldots, m_n) \} = M \times Z \in \mathcal{U}^2 \text{ if and only if} \]
\[\mathcal{M}^* \models \phi([1], [h_1(0,1)], \ldots, [h_n(0,1)]). \]
This shows that \{[0], [1]\} forms a set of order indiscernibles in \(\mathcal{M}^* \) over \(\mathcal{M} \).

3.9. Exercise. Let \(\mathcal{U} \) be an \(\mathcal{M} \)-amenable ultrafilter. Let \((I, <)\) be an ordered set disjoint from \(M \). Let \(\mathcal{M}^* = \text{Ult}(\mathcal{M}, \mathcal{U}, I) \) (defined on p.16-17). We need to define the interpretations of the relation symbols in \(\mathcal{L}(\mathcal{M}) \) in \(\mathcal{M}^* \). Let \(R(x_1, \ldots, x_n) \) be an \(n \)-ary relation symbol in \(\mathcal{L}(\mathcal{M}) \). For all \([f_1(I_1)], \ldots, [f_n(I_n)] \in M^* \), define
\[R^{\mathcal{M}^*}([f_1(I_1)], \ldots, [f_n(I_n)]) \text{ if and only if} \]
\[\{ u \in M^I : M \models R(f_1([u]), \ldots, f_n([u])) \} \in \mathcal{U}^I \text{ where } I_0 = \bigcup_{1 \leq j \leq n} I_j. \]

Let \(\varepsilon : M \rightarrow M^* \) be the map defined by \(m \mapsto [f_m(I_0)] \) where \(f_m \) is the constant map with value \(m \) and \(I_0 \subseteq I \) is finite. We need to verify that \(\varepsilon \) is an isomorphism between \(\mathcal{M} \) and \(\varepsilon(\mathcal{M}) \). Let \(m_1, m_2 \in M \). We have
\[\varepsilon(m_1) = \varepsilon(m_2) \text{ if and only if} \]
\[\{ u \in M^I : M \models f_{m_1}(I_0) = f_{m_2}(I_1) \} \in \mathcal{U}^I \text{ where } I_0, I_1 \subseteq I \text{ are finite and } I_2 = I_0 \cup I_1 \]
\[\text{if and only if } m_1 = m_2. \]
This shows that \(\varepsilon \) is a well-defined injection. Let \(R(x_1, \ldots, x_n) \) be an \(n \)-ary relation symbol in \(\mathcal{L}(\mathcal{M}) \). Let \(m_1, \ldots, m_n \in M \). We have
\[\mathcal{M}^* \models R(\varepsilon(m_1), \ldots, \varepsilon(m_n)) \text{ if and only if} \]
\[\{ u \in M^I : M \models R(f_{m_1}(I_1)[u], \ldots, f_{m_n}(I_n)[u]) \} \in \mathcal{U}^I \text{ where } I_1, \ldots, I_n \subseteq I \text{ are finite and } I_0 = \bigcup_{1 \leq j \leq n} I_j \]
\[\text{if and only if } \mathcal{M} \models R(m_1, \ldots, m_n). \]

Let \(g(x_1, \ldots, x_n) \) be an \(n \)-ary function symbol in \(\mathcal{L}(\mathcal{M}) \). Let \(m_1, \ldots, m_n \in M \). Let \(m_0 \in M \) be such that
\[\mathcal{M} \models m_0 = g(m_1, \ldots, m_n). \]
Now,
\[g^{\mathcal{M}^*}(\varepsilon(m_1), \ldots, \varepsilon(m_n)) = g^{\mathcal{M}^*}([f_{m_1}(I_1)], \ldots, [f_{m_n}(I_n)]) = [h(I_0)], \]
where \(I_1, \ldots, I_n \subseteq I \) are finite and \(I_0 = \bigcup_{1 \leq j \leq n} I_j \), and \(h \) is a parametrically definable function such that for all \(u \in M^I \),
\[h(I_0)[u] = g^M(f_{m_1}(I_1), \ldots, f_{m_n}(I_n)) = g^M(m_1, \ldots, m_n) = m_0. \]

Therefore \(h(I_0) = f_{m_0}(I_0) = \varepsilon(m_0) \). This shows that \(\varepsilon \) is an isomorphism.

3.10. Exercise. Let \(I_0 \subseteq I \) be finite. We show that if \(I_0 = I_1 \cup I_2 \) with \(\text{max } I_1 < \text{min } I_2 \), then for all \(X \subseteq M^I \),
\[X \in \mathcal{U}^I \text{ if and only if } \{ s \in M^I : X|s \in \mathcal{U}^I \} \in \mathcal{U}^I. \]
by induction on the size of I_1. When $|I_1| = 1$ the result follows immediately from the definition of U^{I_0}. Suppose that the result holds for all finite $J_0 = J_1 \cup J_2 \subseteq I$ with $\max J_1 < \min J_2$ and $|J_1| = n$. Let $K_0 \subseteq I$ and suppose $K_0 = K_1 \cup K_2$ with $\max K_1 < \min K_2$ and $|K_1| = n + 1$. Suppose $K_1 = \{i_0 < \cdots < i_n\}$, and let $K'_1 = \{i_1 < \cdots < i_n\}$. Let $X \subseteq M^{K_0}$. From the definition of $X|s$, we get

$$\{s \in M^{K_1} : X|s \in U^{K_2}\} \in U^{K_1}$$

if and only if

$$\{q \in M^{K_1} : q = s \cup t \text{ where } s \in M^{(i_0)} \text{ and } t \in M^{K'_1}, (X|s)t \in U^{K_2}\} \in U^{K_1}.$$

Therefore the definition of U^{K_1} yields

$$\{s \in M^{K_1} : X|s \in U^{K_2}\} \in U^{K_1}$$

if and only if

$$\{s \in M^{(i_0)} : t \in M^{K'_1} : (X|s)t \in U^{K_2}\} \in U^{(i_0)}.$$

Which, by the induction hypothesis, gives

$$\{s \in M^{K_1} : X|s \in U^{K_2}\} \in U^{K_1}$$

if and only if

$$\{s \in M^{(i_0)} : X|s \in U^{K'_1 \cup K_2}\} \in U^{(i_0)}.$$

And finally, the definition of U^{K_0} gives

$$\{s \in M^{K_1} : X|s \in U^{K_2}\} \in U^{K_1}$$

if and only if $X \in U^{K_0}$.

This completes the proof.

3.12. Exercise. Let $I_2 \subseteq I$ be finite with $I_2 = I_0 \cup I_1$. Let $I \subseteq I$ be finite with $I_2 \subseteq J$. Let $f(I_0)$ and $g(I_1)$ be generalized terms. Let

$$Z_1 = \{u \in M^{I_2} : f(I_0)[u] = g(I_1)[u]\} \text{ and } Z_2 = \{u \in M^I : f(I_0)[u] = g(I_1)[u]\}.$$

We need to show that $Z_1 \in U^{I_2}$ if and only if $Z_2 \in U^I$. But this follows immediately from Lemma 3.11, since

$$Z_2 = \{s \cup t \in M^I : s \in Z_1 \land t \in M^{I \backslash I_2}\}.$$

Theorem 0.2 (Loś Theorem) Let $\phi(x_1, \ldots, x_n)$ be an $\mathcal{L}(M)$-formula. For all $[f_1(I_1)], \ldots, [f_n(I_n)] \in M^*$,

$$\mathcal{M}^* \models \phi([f_1(I_1)], \ldots, [f_n(I_n)])$$

if and only if

$$\{u \in M^{I_0} : \mathcal{M} \models \phi(f_1(I_1)[u], \ldots, f_n(I_n)[u])\} \in U^{I_0} \text{ where } I_0 = \bigcup_{1 \leq j \leq n} I_j.$$

Proof We prove this theorem by structural induction on ϕ. Without loss of generality we may assume that ϕ only contains the logical connectives \neg and \land, and the quantifier \exists. It follows from the definition of \mathcal{M}^* in Subsection ?? and Exercise 3.9 that the theorem holds for all atomic formulae. As was the case with the Loś Theorem proved in Exercise 3.8, the inductive steps where $\phi = \neg \psi$ and $\phi = \psi \land \theta$ follow from the basic properties of the ultrafilter U^{I_0}. Again, the nontrivial inductive step involves
dealing with the quantifier \exists. Suppose that the theorem holds for $\psi(w, x_1, \ldots, x_n)$, and $\phi(x_1, \ldots, x_n) = \exists w \psi(w, x_1, \ldots, x_n)$. Let $[f_1(I_1), \ldots, [f_n(I_n)] \in M^*$. If
\[
\mathcal{M}^* \models \phi([f_1(I_1)], \ldots, [f_n(I_n)]),
\]
then there exists $[g(J)] \in M^*$ such that
\[
\mathcal{M}^* \models \psi([g(J)], [f_1(I_1)], \ldots, [f_n(I_n)]).
\]
Therefore, by the induction hypothesis,
\[
Z_1 = \{ u \in M^{J'} : \mathcal{M} \models \psi(g(J)[u], f_1(I_1)[u], \ldots, f_n(I_n)[u]) \in \mathcal{U}^{J'} \}
\]
where $J' = J \cup \bigcup_{1 \leq j \leq n} I_j$.

Let $I_0 = \bigcup_{1 \leq j \leq n} I_j$. Let
\[
Z_2 = \{ u \in M^{I_0} : \mathcal{M} \models \exists w \psi(w, f_1(I_1)[u], \ldots, f_n(I_n)[u]) \}
\]
and
\[
Z_3 = \{ u \in M^{J'} : \mathcal{M} \models \exists w \psi(w, f_1(I_1)[u], \ldots, f_n(I_n)[u]) \}.
\]
Now, $Z_1 \subseteq Z_3$, and so $Z_3 \in \mathcal{U}^{J'}$. And
\[
Z_3 = \{ s \cup t \in M^{J'} : s \in Z_2 \land t \in M^{J' \setminus I_0} \},
\]
so, by Lemma 3.11, $Z_2 \in \mathcal{U}^{I_0}$.

We are left to show the converse. Since \mathcal{M} has definable Skolem functions, there exists a function $g(x_1, \ldots, x_n)$ such that
\[
\mathcal{M} \models \forall x_1 \cdots \forall x_n (\exists w \psi(w, x_1, \ldots, x_n) \rightarrow \psi(g(x_1, \ldots, x_n), x_1, \ldots, x_n))
\]
Let $I_0 = \bigcup_{1 \leq j \leq n} I_j$. Now, if
\[
\{ u \in M^{I_0} : \mathcal{M} \models \phi(f_1(I_1)[u], \ldots, f_n(I_n)[u]) \} \in \mathcal{U}^{I_0},
\]
then $\{ u \in M^{I_0} : \mathcal{M} \models \psi(g(f_1(I_1)[u], \ldots, f_n(I_n)[u]), f_1(I_1)[u], \ldots, f_n(I_n)[u]) \} \in \mathcal{U}^{I_0}$.

Let $h(I_0) = g(f_1(I_1), \ldots, f_n(I_n))$. Therefore
\[
\{ u \in M^{I_0} : \mathcal{M} \models \psi(h(I_0)[u], f_1(I_1)[u], \ldots, f_n(I_n)[u]) \} \in \mathcal{U}^{I_0}.
\]
And so, by the induction hypothesis,
\[
\mathcal{M}^* \models \psi([h(I_0)], [f_1(I_1)], \ldots, [f_n(I_n)]),
\]
which means $\mathcal{M}^* \models \phi([f_1(I_1)], \ldots, [f_n(I_n)])$.

The theorem now follows by induction. \qed
We now turn to showing that the embedding \(\varepsilon : \mathcal{M} \rightarrow \mathcal{M}^* \) defined in Subsection ?? is elementary. As we did in the solution to Exercise 3.9, if \(I_0 \subseteq I \) is finite and \(m \in M \), then we write \(f_m(I_0) \) for the constant function with value \(m \). Let \(\phi(x_1, \ldots, x_n) \) be an \(\mathcal{L}(\mathcal{M}) \)-formula. Let \(I_0 \subseteq I \) be finite. Note that, for all \(m_1, \ldots, m_n \in M \),

\[
\{ u \in M^{I_0} : M \models \phi(f_{m_1}(I_0)[u], \ldots, f_{m_n}(I_0)[u]) \} = \begin{cases} M^{I_0} & \text{if } M \models \phi(m_1, \ldots, m_n) \\ \emptyset & \text{otherwise} \end{cases}
\]

Therefore the Loś Theorem proved above yields:

\[
\mathcal{M}^* \models \phi(\varepsilon(m_1), \ldots, \varepsilon(m_n)) \text{ if and only if } \{ u \in M^{I_0} : M \models \phi(f_{m_1}(I_0)[u], \ldots, f_{m_n}(I_0)[u]) \} \in \mathcal{U}^{I_0} \text{ if and only if } \mathcal{M} \models \phi(m_1, \ldots, m_n).
\]

3.14. Exercise. We need to show that \((I, <)\) is a set of order indiscernibles over \(\mathcal{M} \). Let \(\phi(y_1, \ldots, y_n, x_0, \ldots, x_{k-1}) \) be an \(\mathcal{L}(\mathcal{M}) \)-formula. Let \(m_1, \ldots, m_n \in M \), and let \(i_0 < \cdots < i_{k-1} \) and \(j_0 < \cdots < j_{k-1} \) be in \(I \). Let \(I_0 = \{i_0 < \cdots < i_{k-1}\} \) and let \(J_0 = \{j_0 < \cdots < j_{k-1}\} \). Now,

\[
\mathcal{M}^* \models \phi(\varepsilon(m_1), \ldots, \varepsilon(m_n), [i_0], \ldots, [i_{k-1}]) \text{ if and only if } \{ u \in M^{I_0} : M \models \phi(m_1, \ldots, m_n, i_0[u], \ldots, i_{k-1}[u]) \} \in \mathcal{U}^{I_0} \text{ if and only if } \{ (x_0, \ldots, x_{k-1}) \in M^k : M \models \phi(m_1, \ldots, m_n, x_0, \ldots, x_{k-1}) \} \in \mathcal{U}^k \text{ if and only if } \{ u \in M^{I_0} : M \models \phi(m_1, \ldots, m_n, j_0[u], \ldots, j_{k-1}[u]) \} \in \mathcal{U}^{I_0} \text{ if and only if } \mathcal{M}^* \models \phi(\varepsilon(m_1), \ldots, \varepsilon(m_n), [j_0], \ldots, [j_{k-1}]),
\]

where the first and last equivalences follow from the Loś Theorem, and the middle two equivalences follow from the definition of the dimensional ultrapower.