INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION
00000 00000000 00

Efficient, Verified Checking
of Propositional Proofs

Marijn J.H. Heule, Warren A. Hunt Jr.,
Matt Kaufmann, and Nathan D. Wetzler

http://www.cs.utexas.edu/users/moore/acl2

THE UNIVERSITY OF

TEXAS o)

—— AT AUSTIN ——

ITP in Brasilia, Brazil September 27, 2017

1/21

http://www.cs.utexas.edu/users/moore/acl2

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION
00000 00000000 00

ABSTRACT

We present a case study, consisting of a sequence of verified
checkers that validate SAT proofs. These culminate in an
efficient checker that can be used in SAT competitions and in
industry. No background in SAT is assumed.

2/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

00000 00000000 [e]e]
! !

OUTLINE

INTRODUCTION
The Problem
Propositional Proofs
Efficient Proof-checking

A SEQUENCE OF CHECKERS
The ACL2 Theorem-Proving System
The Input Format
[Irat-1] to [lrat-5]

CONCLUSION

Overview
References

3/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION
00000 00000000 [e]e]

OUTLINE

INTRODUCTION

4/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

@®0000 00000000 [e]e]
! !

THE PROBLEM

Boolean Satisfiability (SAT) solvers are proliferating and useful.
But how can we trust them?

Modern ones [3] emit proofs!

But how do we know that these “proofs” are valid?

We check them with software programs called checkers!

But how do we know that a checker is sound? Inspection?

» Checkers are typically simpler than solvers...

» ... but not that simple, and inspection is error-prone.

5/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

O@000 00000000 [e]e]
! !

PROPOSITIONAL PROOFS

A propositional proof (or clausal proof, or refutation) for a formula
Fis a sequence II = (p1,p2, ..., px) such that:

» Each p; is (b;, c;), where b; is a Boolean and ¢; is a clause.
Deletion step: b; is true; ~ Addition step: b; is false.

» by is false and ¢y is the empty clause, denoted by L.
2
Formula

Proof

6]

6/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

O@000 00000000 [e]e]
! !

PROPOSITIONAL PROOFS

A propositional proof (or clausal proof, or refutation) for a formula
Fis a sequence II = (p1,p2, ..., px) such that:

» Each p; is (b;, c;), where b; is a Boolean and ¢; is a clause.
Deletion step: b; is true; ~ Addition step: b; is false.

» by is false and ¢y is the empty clause, denoted by L.

2
Formula

H -

-]

Proof

6]

6/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

O@000 00000000 [e]e]
! !

PROPOSITIONAL PROOFS

A propositional proof (or clausal proof, or refutation) for a formula
Fis a sequence II = (p1,p2, ..., px) such that:

» Each p; is (b;, c;), where b; is a Boolean and ¢; is a clause.
Deletion step: b; is true; ~ Addition step: b; is false.

» by is false and ¢y is the empty clause, denoted by L.

H H

2

—_
—_

2
Formula

-

H -

-]

n Proof

6/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION
0@000 00000000 00
; ;

PROPOSITIONAL PROOFS

A propositional proof (or clausal proof, or refutation) for a formula
Fis a sequence II = (p1,p2, ..., px) such that:

» Each p; is (b;, c;), where b; is a Boolean and ¢; is a clause.
Deletion step: b; is true; ~ Addition step: b; is false.

» by is false and ¢y is the empty clause, denoted by L.

(]
2

Formula _ _
[&]

—_
—_

2

-
2]

Proof

6/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

O@000 00000000 [e]e]
! !

PROPOSITIONAL PROOFS

A propositional proof (or clausal proof, or refutation) for a formula
Fis a sequence II = (p1,p2, ..., px) such that:

» Each p; is (b;, c;), where b; is a Boolean and ¢; is a clause.
Deletion step: b; is true; ~ Addition step: b; is false.

» by is false and ¢y is the empty clause, denoted by L.

--

.H
—_

Formula

B |~

o

-]
B
i
-

Proof

6/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION
00®00 00000000 00
; ;

PROPOSITIONAL PROOF CHECKING

For IT = (p1, p2, ..., px) as above, recursively define formulas
(Fo = F, Fy, ..., Fx) by executing the p;:

» Fori > 0 and b, true, delete c; from F;_; to get F;.
» Fori > 0 and b, false, add c; to F;_; to get F;.

For each addition step p; we require:
» If F;_; is satisfiable then F; is satisfiable;
» This property must be checkable in polynomial time.

A popular proof system of propositional proofs is DRAT:
» DRAT allows the addition of so-called resolution
asymmetric tautologies (RATs) — whatever that means.
» It can be efficiently checked if a clause is a RAT.
» RATs are not necessarily implied by the formula.

7/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

[ele]e] o} 00000000 [e]e]
! !

FORMALIZING SOUNDNESS

The following is trivial by induction.

Lemma. Suppose that IT = (p1,pa, ..., pk) is a proof and F is
satisfiable. Then each F; is satisfiable.

Soundness argument for DRAT proofs:

Deletion steps clearly preserve satisfiability.
Addition of RAT clauses preserves satisfiability.

By the lemma, if F is satisfiable then Fj is satisfiable.
Since p; adds the empty clause, Fy is unsatisfiable.

S e

It follows immediately that Fy is unsatisfiable.

8/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

00000 00000000 [e]e]
! !

EFFICIENT PROOF-CHECKING

HOWEVER: Our ITP 2013 checker, discussed above, was
intended to be a proof of concept, not an efficient tool.

On one example:
» DRAT-trim checker [2]: 1.5 seconds
» Our ITP 2013 checker: 1 week

The flow for efficient, verified SAT proof-checking:
1. SAT solver verifies unsatisfiability of formula F; generates
alleged proof, Ily.

2. DRAT-trim takes inputs Iy and F; outputs alleged proof II;
for checker, in a format amenable to efficient checking.

3. A verified checker validates that I1; is a proof for F [1, 4].

9/21

https://www.cs.utexas.edu/~marijn/drat-trim/

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

00000 00000000 [e]e]
: I

OUTLINE

A SEQUENCE OF CHECKERS

10/21

INTRODUCTION A SEQUENCE OF CHECKERS
00000

CONCLUSION
©0000000
;

[e]e]

ACL2: AN EFFICIENT PROGRAMMING AND PROOF
SYSTEM

» Project began in 1989 but goes back to earliest
Boyer-Moore provers from the early 1970s.

» Programming language supports efficient execution
via any of six Common Lisp compilers.

» Remains under active development (maintaining

extensive libraries, documentation, proof debugging
capabilities, etc.).

Some organizations using ACL2:

AMDD\ [z (intel>‘

ORACLE I=EE INSTRUMENTS:

Raytheon .ﬂ.g:

Rockwey A
Collins estrel institute

11/21

http://www.cs.utexas.edu/users/moore/acl2/

INTRODUCTION
00000

A SEQUENCE OF CHECKERS

00000000

CONCLUSION

[e]e]

A SEQUENCE OF CHECKERS

Table: Proof checking times in seconds on various inputs

Benchmark [Irat-1] | [lrat-3] | [Irat-4] [Irat-5]

(fast-alist) | (shrink) | (stobjs) | (incremental)
uuf-100-3 0.09 0.03 0.05 0.01
tph6[-dd] 3.08 0.57 0.33 0.33
R_4 4 18 164.74 5.13 2.23 2.24
transform 25.63 6.16 5.81 5.82
Schur_161_5_d43 5341.69 | 2355.26 | 840.04 259.82

12/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

00000 00@00000 [e]e]
!

A SEQUENCE OF CHECKERS (2)

How this work progressed (will elaborate on the next slides).

1. [rat] Our ITP 2013 RAT checker: no deletion
2. [drat] Added deletion (thus implementing DRAT)

3. [Irat-1] Avoid search and delete clauses efficiently, using
fast-alists (applicative hash tables) and a linear proof
format, and with soundness proved from scratch

[Irat-2] Shrink fast-alists to keep the formulas F; small
[lrat-3] Minor tweak to formula data-structure

[Irat-4] Added stobjs for assignments

N o 9

[Irat-5] Compression, incremental reading, improved
soundness theorem

13/21

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

00000 000e0000 [e]e]
! !

[drat]

Incorporating deletion was straightforward.

» In [rat], a proof is a list of clauses to be added (no deletion).

» A [drat] proof is a list of pairs (b, c), where b is a Boolean
deletion flag and c is a clause.

» We easily modified our ITP 2013 proof.
Deletion improves speed by keeping the formulas F; small.

But the [drat] checker is still slow. Why?

» Unit propagation (UP) results in many linear searches
through F;.

» Deletion does a linear search and a lot of consing.

14/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

00000 00008000 [e]e]
! !

THE LRAT PROOF FORMAT

Together with others, we developed a Linear RAT (LRAT) proof
format [1].

Hints direct exactly where unit propagation is done — no search!
This addresses the first of the two “Why It’s Slow” problems.

Again:
» Unit propagation (UP) results in many linear searches
through F;.

» Deletion does a linear search and a lot of consing.

Clause indices help solve the second problem.

The remaining checkers implement these efficiencies.

15/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

00000 00000800 [e]e]
! !

[Irat-1], [Irat-2], AND [lrat-3]

» Proof steps represent the LRAT format.

v

We used fast-alists, an ACL2 hash-table data structure.

v

Unit propagation benefits from fast lookup of clauses.

v

How to manage the big change from [drat] to [Irat-1]?

» Painful to rework another’s proof
» Decision: Sketch hand proof and carry out a fresh proof
» Used top-down approach

v

Profiling showed 69% of the time inside /1015-get in [lrat-1].

v

The RAT check visits every clause in the formula F;.

v

Shrink the formula’s fast-alist when heuristics say to do so.

16/21

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HONS-GET

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

00000 00000000 [e]e]
! !

[lrat-4]

A bottleneck in [Irat-3]: evaluation of a literal n requires a
linear-time search for either n or —# in the assignment.

[Irat-4] solution: use single-threaded objects (sfobjs) to model
assignments.

» Lookup is a constant-time array reference.

» Avoids memory allocation (consing) when pushing new
literals onto assignment.
Tweaking the [Irat-3] proof seemed difficult! Instead....

» We proved correspondence theorems relating [lrat-3]
functions to [Irat-4] functions.

» Soundness of [lrat-4] follows from soundness of [lrat-3].

17/21

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

00000 0000000e [e]e]
! !

[lrat-5]

» Uses the compressed LRAT format, for which size is
25%-35% of uncompressed LRAT

» Supports incremental reading and checking, thereby
significantly lowering the memory footprint

» Generalizes the proof checking to partial proofs

» Optionally emits the unsatisfiable formula to deal with
parsing trust issues. Uses diff to compare with input.

7

Verified checker used to certify “the largest math proof ever”
» Proof production (solving) time: 13,516 CPU hours
» Proof conversion time (into CLRAT): 22,605 CPU hours
» Proof certification time (using ACL2): 8,651 CPU hours

18/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION
00000 00000000 [e]e]

OUTLINE

CONCLUSION

19/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

00000 00000000 [1]
! !

CONCLUSION

Verification of unsatisfiability results can now be achieved with
reasonable overhead and high confidence in correctness:

» It is easy to emit proofs in a SAT solver;
» The complex checking produces hints for efficient checks;
» A highly trusted checker certifies the result.

All supporting materials for the presented checkers, including
proofs, may be found in the projects/sat/lrat/ directory
within the ACL2 community books; see its README file.

The technology is now ready for real-world applications:
» This tool chain is already used in industry (at Centaur);
» Huge proofs of mathematical theorems can be certified;

» SAT 2017 Competition used our tools to validate all results.

20/21

https://github.com/acl2/acl2/tree/master/books/

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

00000 00000000 oe
!

[1] Luis Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and
Peter Schneider-Kamp. Efficient certified rat verification. In Automated Deduction —
CADE 26, pages 220-236, Cham, 2017. Springer International Publishing.

[2] Marijn Heule. The DRAT format and DRAT-trim checker. CoRR, abs/1610.06229,
2016. Source code available from:
https://github.com/marijnheule/drat-trim.

[3] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with
extended resolution. In Maria Paola Bonacina, editor, Automated Deduction -
CADE-24 - 24th International Conference on Automated Deduction, Lake Placid, NY,
USA, June 9-14, 2013. Proceedings, volume 7898 of LNCS, pages 345-359. Springer,
2013.

[4] Peter Lammich. Efficient verified (un)sat certificate checking. In Automated
Deduction — CADE 26, pages 237-254, Cham, 2017. Springer International
Publishing.

21/21

https://github.com/marijnheule/drat-trim

	Introduction
	The Problem
	Propositional Proofs
	Efficient Proof-checking

	A Sequence of Checkers
	The ACL2 Theorem-Proving System
	The Input Format
	[lrat-1] to [lrat-5]

	Conclusion
	Overview
	References

