
INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

Efficient, Verified Checking
of Propositional Proofs

Marijn J.H. Heule, Warren A. Hunt Jr.,
Matt Kaufmann, and Nathan D. Wetzler

http://www.cs.utexas.edu/users/moore/acl2

ITP in Brasilia, Brazil September 27, 2017

1/21

http://www.cs.utexas.edu/users/moore/acl2

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

ABSTRACT

We present a case study, consisting of a sequence of verified
checkers that validate SAT proofs. These culminate in an
efficient checker that can be used in SAT competitions and in
industry. No background in SAT is assumed.

2/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

OUTLINE

INTRODUCTION

The Problem
Propositional Proofs
Efficient Proof-checking

A SEQUENCE OF CHECKERS

The ACL2 Theorem-Proving System
The Input Format
[lrat-1] to [lrat-5]

CONCLUSION

Overview
References

3/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

OUTLINE

INTRODUCTION

The Problem
Propositional Proofs
Efficient Proof-checking

A SEQUENCE OF CHECKERS

The ACL2 Theorem-Proving System
The Input Format
[lrat-1] to [lrat-5]

CONCLUSION

Overview
References

4/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

THE PROBLEM

Boolean Satisfiability (SAT) solvers are proliferating and useful.

But how can we trust them?

Modern ones [3] emit proofs!

But how do we know that these “proofs” are valid?

We check them with software programs called checkers!

But how do we know that a checker is sound? Inspection?

I Checkers are typically simpler than solvers...
I ... but not that simple, and inspection is error-prone.

5/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

PROPOSITIONAL PROOFS
A propositional proof (or clausal proof, or refutation) for a formula
F is a sequence Π = 〈p1, p2, ..., pk〉 such that:

I Each pi is 〈bi, ci〉, where bi is a Boolean and ci is a clause.
Deletion step: bi is true; Addition step: bi is false.

I bk is false and ck is the empty clause, denoted by ⊥.

Formula

1

2

3

4

≡

1

2

3

4

5

≡

1

2

4

5
≡

1

2

4

5

6

≡

1

2

4

5

6

⊥

5

3

6

⊥

Proof

6/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

PROPOSITIONAL PROOFS
A propositional proof (or clausal proof, or refutation) for a formula
F is a sequence Π = 〈p1, p2, ..., pk〉 such that:

I Each pi is 〈bi, ci〉, where bi is a Boolean and ci is a clause.
Deletion step: bi is true; Addition step: bi is false.

I bk is false and ck is the empty clause, denoted by ⊥.

Formula

1

2

3

4
≡

1

2

3

4

5

≡

1

2

4

5
≡

1

2

4

5

6

≡

1

2

4

5

6

⊥
5

3

6

⊥

Proof

6/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

PROPOSITIONAL PROOFS
A propositional proof (or clausal proof, or refutation) for a formula
F is a sequence Π = 〈p1, p2, ..., pk〉 such that:

I Each pi is 〈bi, ci〉, where bi is a Boolean and ci is a clause.
Deletion step: bi is true; Addition step: bi is false.

I bk is false and ck is the empty clause, denoted by ⊥.

Formula

1

2

3

4
≡

1

2

3

4

5

≡

1

2

4

5

≡

1

2

4

5

6

≡

1

2

4

5

6

⊥
5

3

6

⊥

Proof

6/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

PROPOSITIONAL PROOFS
A propositional proof (or clausal proof, or refutation) for a formula
F is a sequence Π = 〈p1, p2, ..., pk〉 such that:

I Each pi is 〈bi, ci〉, where bi is a Boolean and ci is a clause.
Deletion step: bi is true; Addition step: bi is false.

I bk is false and ck is the empty clause, denoted by ⊥.

Formula

1

2

3

4
≡

1

2

3

4

5

≡

1

2

4

5
≡

1

2

4

5

6

≡

1

2

4

5

6

⊥
5

3

6

⊥

Proof

6/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

PROPOSITIONAL PROOFS
A propositional proof (or clausal proof, or refutation) for a formula
F is a sequence Π = 〈p1, p2, ..., pk〉 such that:

I Each pi is 〈bi, ci〉, where bi is a Boolean and ci is a clause.
Deletion step: bi is true; Addition step: bi is false.

I bk is false and ck is the empty clause, denoted by ⊥.

Formula

1

2

3

4
≡

1

2

3

4

5

≡

1

2

4

5
≡

1

2

4

5

6

≡

1

2

4

5

6

⊥

5

3

6

⊥

Proof

6/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

PROPOSITIONAL PROOF CHECKING
For Π = 〈p1, p2, ..., pk〉 as above, recursively define formulas
〈F0 = F,F1, ...,Fk〉 by executing the pi:

I For i > 0 and bi true, delete ci from Fi−1 to get Fi.
I For i > 0 and bi false, add ci to Fi−1 to get Fi.

For each addition step pi we require:
I If Fi−1 is satisfiable then Fi is satisfiable;
I This property must be checkable in polynomial time.

A popular proof system of propositional proofs is DRAT:

I DRAT allows the addition of so-called resolution
asymmetric tautologies (RATs) — whatever that means.

I It can be efficiently checked if a clause is a RAT.
I RATs are not necessarily implied by the formula.

7/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

FORMALIZING SOUNDNESS

The following is trivial by induction.

Lemma. Suppose that Π = 〈p1, p2, ..., pk〉 is a proof and F0 is
satisfiable. Then each Fi is satisfiable.

Soundness argument for DRAT proofs:

1. Deletion steps clearly preserve satisfiability.
2. Addition of RAT clauses preserves satisfiability.
3. By the lemma, if F0 is satisfiable then Fk is satisfiable.
4. Since pk adds the empty clause, Fk is unsatisfiable.
5. It follows immediately that F0 is unsatisfiable.

8/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

EFFICIENT PROOF-CHECKING

HOWEVER: Our ITP 2013 checker, discussed above, was
intended to be a proof of concept, not an efficient tool.

On one example:
I DRAT-trim checker [2]: 1.5 seconds
I Our ITP 2013 checker: 1 week

The flow for efficient, verified SAT proof-checking:

1. SAT solver verifies unsatisfiability of formula F; generates
alleged proof, Π0.

2. DRAT-trim takes inputs Π0 and F; outputs alleged proof Π1
for checker, in a format amenable to efficient checking.

3. A verified checker validates that Π1 is a proof for F [1, 4].

9/21

https://www.cs.utexas.edu/~marijn/drat-trim/

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

OUTLINE

INTRODUCTION

The Problem
Propositional Proofs
Efficient Proof-checking

A SEQUENCE OF CHECKERS

The ACL2 Theorem-Proving System
The Input Format
[lrat-1] to [lrat-5]

CONCLUSION

Overview
References

10/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

ACL2: AN EFFICIENT PROGRAMMING AND PROOF

SYSTEM

I Project began in 1989 but goes back to earliest
Boyer-Moore provers from the early 1970s.

I Programming language supports efficient execution
via any of six Common Lisp compilers.

I Remains under active development (maintaining
extensive libraries, documentation, proof debugging
capabilities, etc.).

Some organizations using ACL2:

11/21

http://www.cs.utexas.edu/users/moore/acl2/

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

A SEQUENCE OF CHECKERS

Table: Proof checking times in seconds on various inputs

Benchmark [lrat-1] [lrat-3] [lrat-4] [lrat-5]
(fast-alist) (shrink) (stobjs) (incremental)

uuf-100-3 0.09 0.03 0.05 0.01
tph6[-dd] 3.08 0.57 0.33 0.33
R_4_4_18 164.74 5.13 2.23 2.24
transform 25.63 6.16 5.81 5.82
Schur_161_5_d43 5341.69 2355.26 840.04 259.82

12/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

A SEQUENCE OF CHECKERS (2)

How this work progressed (will elaborate on the next slides).

1. [rat] Our ITP 2013 RAT checker: no deletion
2. [drat] Added deletion (thus implementing DRAT)
3. [lrat-1] Avoid search and delete clauses efficiently, using

fast-alists (applicative hash tables) and a linear proof
format, and with soundness proved from scratch

4. [lrat-2] Shrink fast-alists to keep the formulas Fi small
5. [lrat-3] Minor tweak to formula data-structure
6. [lrat-4] Added stobjs for assignments
7. [lrat-5] Compression, incremental reading, improved

soundness theorem

13/21

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

[drat]

Incorporating deletion was straightforward.

I In [rat], a proof is a list of clauses to be added (no deletion).
I A [drat] proof is a list of pairs 〈b, c〉, where b is a Boolean

deletion flag and c is a clause.
I We easily modified our ITP 2013 proof.

Deletion improves speed by keeping the formulas Fi small.

But the [drat] checker is still slow. Why?

I Unit propagation (UP) results in many linear searches
through Fi.

I Deletion does a linear search and a lot of consing.

14/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

THE LRAT PROOF FORMAT

Together with others, we developed a Linear RAT (LRAT) proof
format [1].

Hints direct exactly where unit propagation is done – no search!
This addresses the first of the two “Why It’s Slow” problems.

Again:
I Unit propagation (UP) results in many linear searches

through Fi.
I Deletion does a linear search and a lot of consing.

Clause indices help solve the second problem.

The remaining checkers implement these efficiencies.

15/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

[lrat-1], [lrat-2], AND [lrat-3]

I Proof steps represent the LRAT format.

I We used fast-alists, an ACL2 hash-table data structure.

I Unit propagation benefits from fast lookup of clauses.

I How to manage the big change from [drat] to [lrat-1]?
I Painful to rework another’s proof
I Decision: Sketch hand proof and carry out a fresh proof
I Used top-down approach

I Profiling showed 69% of the time inside hons-get in [lrat-1].

I The RAT check visits every clause in the formula Fi.

I Shrink the formula’s fast-alist when heuristics say to do so.

16/21

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HONS-GET

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

[lrat-4]
A bottleneck in [lrat-3]: evaluation of a literal n requires a
linear-time search for either n or −n in the assignment.

[lrat-4] solution: use single-threaded objects (stobjs) to model
assignments.

I Lookup is a constant-time array reference.

I Avoids memory allocation (consing) when pushing new
literals onto assignment.

Tweaking the [lrat-3] proof seemed difficult! Instead....

I We proved correspondence theorems relating [lrat-3]
functions to [lrat-4] functions.

I Soundness of [lrat-4] follows from soundness of [lrat-3].

17/21

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

[lrat-5]

I Uses the compressed LRAT format, for which size is
25%-35% of uncompressed LRAT

I Supports incremental reading and checking, thereby
significantly lowering the memory footprint

I Generalizes the proof checking to partial proofs

I Optionally emits the unsatisfiable formula to deal with
parsing trust issues. Uses diff to compare with input.

Verified checker used to certify “the largest math proof ever”
I Proof production (solving) time: 13,516 CPU hours
I Proof conversion time (into CLRAT): 22,605 CPU hours
I Proof certification time (using ACL2): 8,651 CPU hours

18/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

OUTLINE

INTRODUCTION

The Problem
Propositional Proofs
Efficient Proof-checking

A SEQUENCE OF CHECKERS

The ACL2 Theorem-Proving System
The Input Format
[lrat-1] to [lrat-5]

CONCLUSION

Overview
References

19/21

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

CONCLUSION

Verification of unsatisfiability results can now be achieved with
reasonable overhead and high confidence in correctness:

I It is easy to emit proofs in a SAT solver;
I The complex checking produces hints for efficient checks;
I A highly trusted checker certifies the result.

All supporting materials for the presented checkers, including
proofs, may be found in the projects/sat/lrat/ directory
within the ACL2 community books; see its README file.

The technology is now ready for real-world applications:
I This tool chain is already used in industry (at Centaur);
I Huge proofs of mathematical theorems can be certified;
I SAT 2017 Competition used our tools to validate all results.

20/21

https://github.com/acl2/acl2/tree/master/books/

INTRODUCTION A SEQUENCE OF CHECKERS CONCLUSION

[1] Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and
Peter Schneider-Kamp. Efficient certified rat verification. In Automated Deduction –
CADE 26, pages 220–236, Cham, 2017. Springer International Publishing.

[2] Marijn Heule. The DRAT format and DRAT-trim checker. CoRR, abs/1610.06229,
2016. Source code available from:
https://github.com/marijnheule/drat-trim.

[3] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with
extended resolution. In Maria Paola Bonacina, editor, Automated Deduction -
CADE-24 - 24th International Conference on Automated Deduction, Lake Placid, NY,
USA, June 9-14, 2013. Proceedings, volume 7898 of LNCS, pages 345–359. Springer,
2013.

[4] Peter Lammich. Efficient verified (un)sat certificate checking. In Automated
Deduction – CADE 26, pages 237–254, Cham, 2017. Springer International
Publishing.

21/21

https://github.com/marijnheule/drat-trim

	Introduction
	The Problem
	Propositional Proofs
	Efficient Proof-checking

	A Sequence of Checkers
	The ACL2 Theorem-Proving System
	The Input Format
	[lrat-1] to [lrat-5]

	Conclusion
	Overview
	References

