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INTRODUCTION (1)

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk: Give a sense of the ACL2 system, especially
how it supports user interaction.

Confession: there is considerable overlap with KeY invited talk
given last month.

But I may skip some material. I hope to leave lots of time for
discussion. Please ask questions during the talk!

4/32
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BACKGROUND: OVERVIEW

I ACL2 is freely available, including libraries of certifiable
books, from the ACL2 home page.

I ACL2 is written mostly in itself (!).
I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.

7/32
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BACKGROUND: OVERVIEW (CONTINUED)

Development history:

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

Industrial usage: As far as I know, ACL2 is the only interactive
theorem prover (ITP) used with some regularity at several
companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities,
including —

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code
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BACKGROUND: LOGIC

The ACL2 logic is a first-order logic with induction up to ε0.

But all ACL2 theories extend a given ground-zero theory, which
axiomizes data types for:

I numbers (complex rationals), characters, strings, symbols;
I trees and lists, using a pairing operation (cons).

ACL2 extensions are conservative (a demo will discuss this).

I See M. Kaufmann and J Moore, “Structured Theory
Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

9/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS
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BACKGROUND: STRENGTHS

I Proof automation

I Support for user interaction

I Fast execution

I Documentation (about 100,000 lines for just the system)

I Interfaces include Emacs
(Is that really an interface? A strength?)
and the Eclipse-based ACL2 Sedan.

A potential weakness: first-order logic with only basic
quantifier support (but recursion helps).

10/32
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BACKGROUND: MORE INFORMATION

NOTE: A longer variant of this talk, but targeted to CS grad
students and with more focus on using ACL2, is here:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/acl2-intro.pdf

That talk mentions this link to several demos and their logs:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/demos.tgz
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BACKGROUND: HIGHER-ORDER LOGIC?

Bob Boyer and I did some work in the mid-1980s on adapting
the Boyer-Moore prover to the programming language, SASL,
which is a weakly typed ancestor of Haskell.

Our work is described at some length in a Burroughs Technical
Report, and is summarized briefly here:

Bob Boyer and Matt Kaufmann. A Prototype
Theorem-Prover for a Higher-Order Functional
Language (with R. Boyer). In Proceedings of VERkshop
III — a formal verification workshop, Watsonville, CA,
February 1985. ACM SIGSOFT Software Engineering
Notes, Volume 10, Issue 4, August 1985, ACM, New
York, NY, USA.

Not included above is a larger example (a SASL unification
program).

12/32
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DEMOS (I)

I All demos today, with logs, are available from this link to a
gzipped tarfile demos.tgz.

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I . . . but lemmas are usually needed (sometimes from
libraries).
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DEMOS (I) (CONTINUED)

ACL2 supports formally verified extensions.

In particular, GL is a verified clause processor defined and
verified by an ACL2 user, Sol Swords.
GL does proofs about finite domains by bit-blasting.

The next demo illustrates GL. It also shows the use of LOCAL,
for “private” events (using conservativity).

[DEMO]: book demo-gl.lisp
(log demo-gl-log.txt)
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REWRITING IN ACL2

ACL2 is typically controlled with conditional rewrite rules,
although there are other rule-classes too.

The basic idea: the ACL2 rewriter automatically applies the
rule

H −→ L = R
by replacing an instance L/s of L by R/s, when the rewriter can
verify H/s.

The documentation topic for rewrite shows many ways to
control the rewriter (needed only occasionally). I’ll mention
only a few:

19/32
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REWRITING IN ACL2 (2)
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REWRITING IN ACL2 (3)

H −→ L = R (ordinary rewrite rule)

H −→ L ∼ R (congruence-based rewrite rule)

where ∼ is an equivalence relation.

Users prove equivalence, congruence, and refinement rules, to
tell ACL2 when such rewrites are valid.

B. Brock, M. Kaufmann, and J S. Moore. Rewriting with
Equivalence Relations in ACL2. J. Aut. Reasoning 40 (2008).

M. Kaufmann and J S. Moore. Double Rewriting for
Equivalential Reasoning in ACL2. Proc. ACL2 Workshop 2006.

M. Kaufmann and J S. Moore. Rough Diamond: An Extension
of Equivalence-based Rewriting. Proc. ITP 2014.
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DEMOS (II)

Our final demo shows how ACL2 proof development often
follows “the method”:

I ACL2 heuristically chooses and applies a destructor-style
induction scheme.

I ACL2 simplifies the base and induction steps.
I The user looks at key checkpoints, which are unproved

goals printed by ACL2.
I The user formulates conditional rewrite rules to simplify

those checkpoints.
I Repeat.
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DEMOS (II) (CONTINUED)

Quoting the documentation for induction:

. . . the interested reader should see Chapter XIV of A
Computational Logic (Boyer and Moore, Academic Press,
1979) which represents a fairly complete description of the
induction heuristics of ACL2.

This demo should give a sense of how ACL2 chooses (and
applies) induction schemes,
but the focus will be on user interaction.

— DEMO (excerpted from my TPHOLs 2008 talk) —
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VERY BRIEF SURVEY OF ACL2 FEATURES

Let’s see a bit more about how ACL2 supports proof
development . . .

I . . . by exploring briefly the ACL2 documentation.

NOTE:
I would be very happy to elaborate on any of these topics!
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VERY BRIEF SURVEY OF ACL2 FEATURES (2)

In particular, we might explore a few debugging features, as
time and interest permit.

I accumulated-
persistence

I break-rewrite
I cgen
I cw-gstack
I disassemble$
I dmr
I failed-forcing
I failure
I find-lemmas
I forward-chaining-

reports

I guard-debug
I measure-debug
I nil-goal
I print-gv
I profile-acl2
I profile-all
I proof-checker
I proof-tree
I pstack
I quick-and-dirty-

subsumption-
replacement-step

I redo-flat

I remove-hyps

I set-debugger-enable

I set-guard-msg

I sneaky

I spacewalk

I splitter

I time-tracker

I trace

I walkabout

I watch
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CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I ACL2 provides automation but scales to large problems . . .
. . . with libraries and by supporting user interaction.

I For more information, see the ACL2 home page.

THANK YOU!
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