
ACL2 Support for Interactive Proof

Matt Kaufmann
The University of Texas at Austin

Dept. of Computer Science

Chalmers, August 10, 2015

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

2/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

3/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

INTRODUCTION (1)

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk: Give a sense of the ACL2 system, especially
how it supports user interaction.

Confession: there is considerable overlap with KeY invited talk
given last month.

But I may skip some material. I hope to leave lots of time for
discussion. Please ask questions during the talk!

4/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

INTRODUCTION (1)

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk: Give a sense of the ACL2 system, especially
how it supports user interaction.

Confession: there is considerable overlap with KeY invited talk
given last month.

But I may skip some material. I hope to leave lots of time for
discussion. Please ask questions during the talk!

4/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

INTRODUCTION (1)

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk:

Give a sense of the ACL2 system, especially
how it supports user interaction.

Confession: there is considerable overlap with KeY invited talk
given last month.

But I may skip some material. I hope to leave lots of time for
discussion. Please ask questions during the talk!

4/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

INTRODUCTION (1)

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk: Give a sense of the ACL2 system, especially
how it supports user interaction.

Confession: there is considerable overlap with KeY invited talk
given last month.

But I may skip some material. I hope to leave lots of time for
discussion. Please ask questions during the talk!

4/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

INTRODUCTION (1)

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk: Give a sense of the ACL2 system, especially
how it supports user interaction.

Confession: there is considerable overlap with KeY invited talk
given last month.

But I may skip some material. I hope to leave lots of time for
discussion. Please ask questions during the talk!

4/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

INTRODUCTION (1)

Quoting the ACL2 home page:

ACL2 is a logic and programming language in which you
can model computer systems, together with a tool to help
you prove properties of those models. “ACL2” denotes "A
Computational Logic for Applicative Common Lisp".

Goal for this talk: Give a sense of the ACL2 system, especially
how it supports user interaction.

Confession: there is considerable overlap with KeY invited talk
given last month.

But I may skip some material. I hope to leave lots of time for
discussion. Please ask questions during the talk!

4/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

5/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

6/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW

I ACL2 is freely available, including libraries of certifiable
books, from the ACL2 home page.

I ACL2 is written mostly in itself (!).
I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.

7/32

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW

I ACL2 is freely available, including libraries of certifiable
books, from the ACL2 home page.

I ACL2 is written mostly in itself (!).
I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.

7/32

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW

I ACL2 is freely available, including libraries of certifiable
books, from the ACL2 home page.

I ACL2 is written mostly in itself (!).

I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.

7/32

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW

I ACL2 is freely available, including libraries of certifiable
books, from the ACL2 home page.

I ACL2 is written mostly in itself (!).
I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.

7/32

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW

I ACL2 is freely available, including libraries of certifiable
books, from the ACL2 home page.

I ACL2 is written mostly in itself (!).
I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.

7/32

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW

I ACL2 is freely available, including libraries of certifiable
books, from the ACL2 home page.

I ACL2 is written mostly in itself (!).
I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.

7/32

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW

I ACL2 is freely available, including libraries of certifiable
books, from the ACL2 home page.

I ACL2 is written mostly in itself (!).
I About 10 MB of source code (Version 7.1).

I Bleeding edge for libraries (community books) and the ACL2
system are available from Github.

I Well over 400,000 events (theorems, definitions, other) are
evaluated in the community books.

I Workshop series: #13 is at UT, Oct. 1-2, 2015.

7/32

http://www.cs.utexas.edu/users/moore/acl2/
https://github.com/acl2/acl2
http://www.cs.utexas.edu/users/moore/acl2/workshops.html
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW (CONTINUED)

Development history:

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

Industrial usage: As far as I know, ACL2 is the only interactive
theorem prover (ITP) used with some regularity at several
companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities,
including —

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

8/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW (CONTINUED)
Development history:

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

Industrial usage: As far as I know, ACL2 is the only interactive
theorem prover (ITP) used with some regularity at several
companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities,
including —

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

8/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW (CONTINUED)
Development history:

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

Industrial usage: As far as I know, ACL2 is the only interactive
theorem prover (ITP) used with some regularity at several
companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities,
including —

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

8/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW (CONTINUED)
Development history:

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

Industrial usage: As far as I know, ACL2 is the only interactive
theorem prover (ITP) used with some regularity at several
companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities,
including —

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

8/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW (CONTINUED)
Development history:

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

Industrial usage: As far as I know, ACL2 is the only interactive
theorem prover (ITP) used with some regularity at several
companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities,
including —

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

8/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW (CONTINUED)
Development history:

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

Industrial usage: As far as I know, ACL2 is the only interactive
theorem prover (ITP) used with some regularity at several
companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities,
including —

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

8/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW (CONTINUED)
Development history:

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

Industrial usage: As far as I know, ACL2 is the only interactive
theorem prover (ITP) used with some regularity at several
companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities,
including —

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

8/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: OVERVIEW (CONTINUED)
Development history:

I Bob Boyer and J Moore started ACL2 in 1989. I joined and
Bob dropped out in 1993. J and I continue its development.

I Boyer-Moore Theorem Provers go back to the start of their
collaboration in 1971.

Industrial usage: As far as I know, ACL2 is the only interactive
theorem prover (ITP) used with some regularity at several
companies:

I AMD, Centaur, IBM, Intel, Oracle, Rockwell Collins

There are also users in the U.S. Government and universities,
including —

I UT Austin: x86 interpreter defined in ACL2, validation by
co-simulation, proofs about x86 machine code

8/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: LOGIC

The ACL2 logic is a first-order logic with induction up to ε0.

But all ACL2 theories extend a given ground-zero theory, which
axiomizes data types for:

I numbers (complex rationals), characters, strings, symbols;
I trees and lists, using a pairing operation (cons).

ACL2 extensions are conservative (a demo will discuss this).

I See M. Kaufmann and J Moore, “Structured Theory
Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

9/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: LOGIC

The ACL2 logic is a first-order logic with induction up to ε0.

But all ACL2 theories extend a given ground-zero theory, which
axiomizes data types for:

I numbers (complex rationals), characters, strings, symbols;
I trees and lists, using a pairing operation (cons).

ACL2 extensions are conservative (a demo will discuss this).

I See M. Kaufmann and J Moore, “Structured Theory
Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

9/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: LOGIC

The ACL2 logic is a first-order logic with induction up to ε0.

But all ACL2 theories extend a given ground-zero theory, which
axiomizes data types for:

I numbers (complex rationals), characters, strings, symbols;
I trees and lists, using a pairing operation (cons).

ACL2 extensions are conservative (a demo will discuss this).

I See M. Kaufmann and J Moore, “Structured Theory
Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

9/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: LOGIC

The ACL2 logic is a first-order logic with induction up to ε0.

But all ACL2 theories extend a given ground-zero theory, which
axiomizes data types for:

I numbers (complex rationals), characters, strings, symbols;

I trees and lists, using a pairing operation (cons).

ACL2 extensions are conservative (a demo will discuss this).

I See M. Kaufmann and J Moore, “Structured Theory
Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

9/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: LOGIC

The ACL2 logic is a first-order logic with induction up to ε0.

But all ACL2 theories extend a given ground-zero theory, which
axiomizes data types for:

I numbers (complex rationals), characters, strings, symbols;
I trees and lists, using a pairing operation (cons).

ACL2 extensions are conservative (a demo will discuss this).

I See M. Kaufmann and J Moore, “Structured Theory
Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

9/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: LOGIC

The ACL2 logic is a first-order logic with induction up to ε0.

But all ACL2 theories extend a given ground-zero theory, which
axiomizes data types for:

I numbers (complex rationals), characters, strings, symbols;
I trees and lists, using a pairing operation (cons).

ACL2 extensions are conservative (a demo will discuss this).

I See M. Kaufmann and J Moore, “Structured Theory
Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

9/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: LOGIC

The ACL2 logic is a first-order logic with induction up to ε0.

But all ACL2 theories extend a given ground-zero theory, which
axiomizes data types for:

I numbers (complex rationals), characters, strings, symbols;
I trees and lists, using a pairing operation (cons).

ACL2 extensions are conservative (a demo will discuss this).

I See M. Kaufmann and J Moore, “Structured Theory
Development for a Mechanized Logic.” Journal of
Automated Reasoning 26, no. 2 (2001) 161-203.

9/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ORDINALS

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: STRENGTHS

I Proof automation

I Support for user interaction

I Fast execution

I Documentation (about 100,000 lines for just the system)

I Interfaces include Emacs
(Is that really an interface? A strength?)
and the Eclipse-based ACL2 Sedan.

A potential weakness: first-order logic with only basic
quantifier support (but recursion helps).

10/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP
http://acl2s.ccs.neu.edu/acl2s/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: STRENGTHS

I Proof automation

I Support for user interaction

I Fast execution

I Documentation (about 100,000 lines for just the system)

I Interfaces include Emacs
(Is that really an interface? A strength?)
and the Eclipse-based ACL2 Sedan.

A potential weakness: first-order logic with only basic
quantifier support (but recursion helps).

10/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP
http://acl2s.ccs.neu.edu/acl2s/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: STRENGTHS

I Proof automation

I Support for user interaction

I Fast execution

I Documentation (about 100,000 lines for just the system)

I Interfaces include Emacs
(Is that really an interface? A strength?)
and the Eclipse-based ACL2 Sedan.

A potential weakness: first-order logic with only basic
quantifier support (but recursion helps).

10/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP
http://acl2s.ccs.neu.edu/acl2s/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: STRENGTHS

I Proof automation

I Support for user interaction

I Fast execution

I Documentation (about 100,000 lines for just the system)

I Interfaces include Emacs
(Is that really an interface? A strength?)
and the Eclipse-based ACL2 Sedan.

A potential weakness: first-order logic with only basic
quantifier support (but recursion helps).

10/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP
http://acl2s.ccs.neu.edu/acl2s/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: STRENGTHS

I Proof automation

I Support for user interaction

I Fast execution

I Documentation (about 100,000 lines for just the system)

I Interfaces include Emacs
(Is that really an interface? A strength?)
and the Eclipse-based ACL2 Sedan.

A potential weakness: first-order logic with only basic
quantifier support (but recursion helps).

10/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP
http://acl2s.ccs.neu.edu/acl2s/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: STRENGTHS

I Proof automation

I Support for user interaction

I Fast execution

I Documentation (about 100,000 lines for just the system)

I Interfaces include Emacs

(Is that really an interface? A strength?)
and the Eclipse-based ACL2 Sedan.

A potential weakness: first-order logic with only basic
quantifier support (but recursion helps).

10/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP
http://acl2s.ccs.neu.edu/acl2s/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: STRENGTHS

I Proof automation

I Support for user interaction

I Fast execution

I Documentation (about 100,000 lines for just the system)

I Interfaces include Emacs
(Is that really an interface? A strength?)

and the Eclipse-based ACL2 Sedan.

A potential weakness: first-order logic with only basic
quantifier support (but recursion helps).

10/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP
http://acl2s.ccs.neu.edu/acl2s/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: STRENGTHS

I Proof automation

I Support for user interaction

I Fast execution

I Documentation (about 100,000 lines for just the system)

I Interfaces include Emacs
(Is that really an interface? A strength?)
and the Eclipse-based ACL2 Sedan.

A potential weakness: first-order logic with only basic
quantifier support (but recursion helps).

10/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP
http://acl2s.ccs.neu.edu/acl2s/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: STRENGTHS

I Proof automation

I Support for user interaction

I Fast execution

I Documentation (about 100,000 lines for just the system)

I Interfaces include Emacs
(Is that really an interface? A strength?)
and the Eclipse-based ACL2 Sedan.

A potential weakness: first-order logic with only basic
quantifier support (but recursion helps).

10/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP
http://acl2s.ccs.neu.edu/acl2s/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: MORE INFORMATION

NOTE: A longer variant of this talk, but targeted to CS grad
students and with more focus on using ACL2, is here:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/acl2-intro.pdf

That talk mentions this link to several demos and their logs:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/demos.tgz

11/32

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: MORE INFORMATION

NOTE: A longer variant of this talk, but targeted to CS grad
students and with more focus on using ACL2, is here:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/acl2-intro.pdf

That talk mentions this link to several demos and their logs:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/demos.tgz

11/32

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: MORE INFORMATION

NOTE: A longer variant of this talk, but targeted to CS grad
students and with more focus on using ACL2, is here:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/acl2-intro.pdf

That talk mentions this link to several demos and their logs:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/demos.tgz

11/32

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: MORE INFORMATION

NOTE: A longer variant of this talk, but targeted to CS grad
students and with more focus on using ACL2, is here:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/acl2-intro.pdf

That talk mentions this link to several demos and their logs:

http://www.cs.utexas.edu/users/kaufmann/talks/
acl2-intro-2015-04/demos.tgz

11/32

http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/demos.tgz

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: HIGHER-ORDER LOGIC?

Bob Boyer and I did some work in the mid-1980s on adapting
the Boyer-Moore prover to the programming language, SASL,
which is a weakly typed ancestor of Haskell.

Our work is described at some length in a Burroughs Technical
Report, and is summarized briefly here:

Bob Boyer and Matt Kaufmann. A Prototype
Theorem-Prover for a Higher-Order Functional
Language (with R. Boyer). In Proceedings of VERkshop
III — a formal verification workshop, Watsonville, CA,
February 1985. ACM SIGSOFT Software Engineering
Notes, Volume 10, Issue 4, August 1985, ACM, New
York, NY, USA.

Not included above is a larger example (a SASL unification
program).

12/32

http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf
http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: HIGHER-ORDER LOGIC?
Bob Boyer and I did some work in the mid-1980s on adapting
the Boyer-Moore prover to the programming language, SASL,

which is a weakly typed ancestor of Haskell.

Our work is described at some length in a Burroughs Technical
Report, and is summarized briefly here:

Bob Boyer and Matt Kaufmann. A Prototype
Theorem-Prover for a Higher-Order Functional
Language (with R. Boyer). In Proceedings of VERkshop
III — a formal verification workshop, Watsonville, CA,
February 1985. ACM SIGSOFT Software Engineering
Notes, Volume 10, Issue 4, August 1985, ACM, New
York, NY, USA.

Not included above is a larger example (a SASL unification
program).

12/32

http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf
http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: HIGHER-ORDER LOGIC?
Bob Boyer and I did some work in the mid-1980s on adapting
the Boyer-Moore prover to the programming language, SASL,
which is a weakly typed ancestor of Haskell.

Our work is described at some length in a Burroughs Technical
Report, and is summarized briefly here:

Bob Boyer and Matt Kaufmann. A Prototype
Theorem-Prover for a Higher-Order Functional
Language (with R. Boyer). In Proceedings of VERkshop
III — a formal verification workshop, Watsonville, CA,
February 1985. ACM SIGSOFT Software Engineering
Notes, Volume 10, Issue 4, August 1985, ACM, New
York, NY, USA.

Not included above is a larger example (a SASL unification
program).

12/32

http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf
http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: HIGHER-ORDER LOGIC?
Bob Boyer and I did some work in the mid-1980s on adapting
the Boyer-Moore prover to the programming language, SASL,
which is a weakly typed ancestor of Haskell.

Our work is described at some length in a Burroughs Technical
Report, and is summarized briefly here:

Bob Boyer and Matt Kaufmann. A Prototype
Theorem-Prover for a Higher-Order Functional
Language (with R. Boyer). In Proceedings of VERkshop
III — a formal verification workshop, Watsonville, CA,
February 1985. ACM SIGSOFT Software Engineering
Notes, Volume 10, Issue 4, August 1985, ACM, New
York, NY, USA.

Not included above is a larger example (a SASL unification
program).

12/32

http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf
http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: HIGHER-ORDER LOGIC?
Bob Boyer and I did some work in the mid-1980s on adapting
the Boyer-Moore prover to the programming language, SASL,
which is a weakly typed ancestor of Haskell.

Our work is described at some length in a Burroughs Technical
Report, and is summarized briefly here:

Bob Boyer and Matt Kaufmann. A Prototype
Theorem-Prover for a Higher-Order Functional
Language (with R. Boyer). In Proceedings of VERkshop
III — a formal verification workshop, Watsonville, CA,
February 1985. ACM SIGSOFT Software Engineering
Notes, Volume 10, Issue 4, August 1985, ACM, New
York, NY, USA.

Not included above is a larger example (a SASL unification
program).

12/32

http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf
http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

BACKGROUND: HIGHER-ORDER LOGIC?
Bob Boyer and I did some work in the mid-1980s on adapting
the Boyer-Moore prover to the programming language, SASL,
which is a weakly typed ancestor of Haskell.

Our work is described at some length in a Burroughs Technical
Report, and is summarized briefly here:

Bob Boyer and Matt Kaufmann. A Prototype
Theorem-Prover for a Higher-Order Functional
Language (with R. Boyer). In Proceedings of VERkshop
III — a formal verification workshop, Watsonville, CA,
February 1985. ACM SIGSOFT Software Engineering
Notes, Volume 10, Issue 4, August 1985, ACM, New
York, NY, USA.

Not included above is a larger example (a SASL unification
program).

12/32

http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf
http://www.cs.utexas.edu/users/kaufmann/documents/3201_001.pdf

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

13/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

14/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (I)

I All demos today, with logs, are available from this link to a
gzipped tarfile demos.tgz.

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I . . . but lemmas are usually needed (sometimes from
libraries).

15/32

http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2-log.txt

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (I)

I All demos today, with logs, are available from this link to a
gzipped tarfile demos.tgz.

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I . . . but lemmas are usually needed (sometimes from
libraries).

15/32

http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2-log.txt

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (I)

I All demos today, with logs, are available from this link to a
gzipped tarfile demos.tgz.

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I . . . but lemmas are usually needed (sometimes from
libraries).

15/32

http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2-log.txt

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (I)

I All demos today, with logs, are available from this link to a
gzipped tarfile demos.tgz.

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I . . . but lemmas are usually needed (sometimes from
libraries).

15/32

http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2-log.txt

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (I)

I All demos today, with logs, are available from this link to a
gzipped tarfile demos.tgz.

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I . . . but lemmas are usually needed (sometimes from
libraries).

15/32

http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2-log.txt

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (I)

I All demos today, with logs, are available from this link to a
gzipped tarfile demos.tgz.

I ACL2 programming and evaluation
[DEMO]: file demo-1.lsp
(log demo-1-log.txt)

I ACL2 as an automatic theorem prover
[DEMO]: file demo-2.lsp
(log demo-2-log.txt)

I ACL2 provides automation for induction, linear arithmetic,
Boolean reasoning, rule application, . . .

I . . . but lemmas are usually needed (sometimes from
libraries).

15/32

http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos.tgz
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-1-log.txt
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2.lsp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-2-log.txt

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (I) (CONTINUED)

ACL2 supports formally verified extensions.

In particular, GL is a verified clause processor defined and
verified by an ACL2 user, Sol Swords.
GL does proofs about finite domains by bit-blasting.

The next demo illustrates GL. It also shows the use of LOCAL,
for “private” events (using conservativity).

[DEMO]: book demo-gl.lisp
(log demo-gl-log.txt)

16/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOCAL
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-gl.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-gl.txt

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (I) (CONTINUED)

ACL2 supports formally verified extensions.

In particular, GL is a verified clause processor defined and
verified by an ACL2 user, Sol Swords.
GL does proofs about finite domains by bit-blasting.

The next demo illustrates GL. It also shows the use of LOCAL,
for “private” events (using conservativity).

[DEMO]: book demo-gl.lisp
(log demo-gl-log.txt)

16/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOCAL
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-gl.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-gl.txt

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (I) (CONTINUED)

ACL2 supports formally verified extensions.

In particular, GL is a verified clause processor defined and
verified by an ACL2 user, Sol Swords.
GL does proofs about finite domains by bit-blasting.

The next demo illustrates GL. It also shows the use of LOCAL,
for “private” events (using conservativity).

[DEMO]: book demo-gl.lisp
(log demo-gl-log.txt)

16/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOCAL
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-gl.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-gl.txt

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (I) (CONTINUED)

ACL2 supports formally verified extensions.

In particular, GL is a verified clause processor defined and
verified by an ACL2 user, Sol Swords.
GL does proofs about finite domains by bit-blasting.

The next demo illustrates GL. It also shows the use of LOCAL,
for “private” events (using conservativity).

[DEMO]: book demo-gl.lisp
(log demo-gl-log.txt)

16/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOCAL
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-gl.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-gl.txt

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (I) (CONTINUED)

ACL2 supports formally verified extensions.

In particular, GL is a verified clause processor defined and
verified by an ACL2 user, Sol Swords.
GL does proofs about finite domains by bit-blasting.

The next demo illustrates GL. It also shows the use of LOCAL,
for “private” events (using conservativity).

[DEMO]: book demo-gl.lisp
(log demo-gl-log.txt)

16/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOCAL
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-gl.lisp
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/demo-gl.txt

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

17/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

18/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2

ACL2 is typically controlled with conditional rewrite rules,
although there are other rule-classes too.

The basic idea: the ACL2 rewriter automatically applies the
rule

H −→ L = R
by replacing an instance L/s of L by R/s, when the rewriter can
verify H/s.

The documentation topic for rewrite shows many ways to
control the rewriter (needed only occasionally). I’ll mention
only a few:

19/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REWRITE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____RULE-CLASSES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REWRITE

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2

ACL2 is typically controlled with conditional rewrite rules,
although there are other rule-classes too.

The basic idea: the ACL2 rewriter automatically applies the
rule

H −→ L = R
by replacing an instance L/s of L by R/s, when the rewriter can
verify H/s.

The documentation topic for rewrite shows many ways to
control the rewriter (needed only occasionally). I’ll mention
only a few:

19/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REWRITE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____RULE-CLASSES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REWRITE

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2

ACL2 is typically controlled with conditional rewrite rules,
although there are other rule-classes too.

The basic idea: the ACL2 rewriter automatically applies the
rule

H −→ L = R
by replacing an instance L/s of L by R/s, when the rewriter can
verify H/s.

The documentation topic for rewrite shows many ways to
control the rewriter (needed only occasionally). I’ll mention
only a few:

19/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REWRITE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____RULE-CLASSES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REWRITE

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (2)

I backchain-limit: limit effort to relieve hypotheses
I force: defer proving H if necessary
I hide: hide a term from the rewriter
I syntaxp: attach a heuristic filter on a rule

Example of syntaxp: consider 3 + (4 + x).
It’s already in normal form: right-associated.
Our wish: 3 + (4 + x) = (3 + 4) + x = 7 + x.
ACL2 !>:pe associativity-of-+

-997 (DEFAXIOM ASSOCIATIVITY-OF-+
(EQUAL (+ (+ X Y) Z) (+ X (+ Y Z))))

ACL2 !>:pe fold-consts-in-+
-158 (DEFTHM FOLD-CONSTS-IN-+

(IMPLIES (AND (SYNTAXP (QUOTEP X))
(SYNTAXP (QUOTEP Y)))

(EQUAL (+ X (+ Y Z)) (+ (+ X Y) Z))))
ACL2 !>

20/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BACKCHAIN-LIMIT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (2)

I backchain-limit: limit effort to relieve hypotheses

I force: defer proving H if necessary
I hide: hide a term from the rewriter
I syntaxp: attach a heuristic filter on a rule

Example of syntaxp: consider 3 + (4 + x).
It’s already in normal form: right-associated.
Our wish: 3 + (4 + x) = (3 + 4) + x = 7 + x.
ACL2 !>:pe associativity-of-+

-997 (DEFAXIOM ASSOCIATIVITY-OF-+
(EQUAL (+ (+ X Y) Z) (+ X (+ Y Z))))

ACL2 !>:pe fold-consts-in-+
-158 (DEFTHM FOLD-CONSTS-IN-+

(IMPLIES (AND (SYNTAXP (QUOTEP X))
(SYNTAXP (QUOTEP Y)))

(EQUAL (+ X (+ Y Z)) (+ (+ X Y) Z))))
ACL2 !>

20/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BACKCHAIN-LIMIT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (2)

I backchain-limit: limit effort to relieve hypotheses
I force: defer proving H if necessary

I hide: hide a term from the rewriter
I syntaxp: attach a heuristic filter on a rule

Example of syntaxp: consider 3 + (4 + x).
It’s already in normal form: right-associated.
Our wish: 3 + (4 + x) = (3 + 4) + x = 7 + x.
ACL2 !>:pe associativity-of-+

-997 (DEFAXIOM ASSOCIATIVITY-OF-+
(EQUAL (+ (+ X Y) Z) (+ X (+ Y Z))))

ACL2 !>:pe fold-consts-in-+
-158 (DEFTHM FOLD-CONSTS-IN-+

(IMPLIES (AND (SYNTAXP (QUOTEP X))
(SYNTAXP (QUOTEP Y)))

(EQUAL (+ X (+ Y Z)) (+ (+ X Y) Z))))
ACL2 !>

20/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BACKCHAIN-LIMIT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (2)

I backchain-limit: limit effort to relieve hypotheses
I force: defer proving H if necessary
I hide: hide a term from the rewriter

I syntaxp: attach a heuristic filter on a rule

Example of syntaxp: consider 3 + (4 + x).
It’s already in normal form: right-associated.
Our wish: 3 + (4 + x) = (3 + 4) + x = 7 + x.
ACL2 !>:pe associativity-of-+

-997 (DEFAXIOM ASSOCIATIVITY-OF-+
(EQUAL (+ (+ X Y) Z) (+ X (+ Y Z))))

ACL2 !>:pe fold-consts-in-+
-158 (DEFTHM FOLD-CONSTS-IN-+

(IMPLIES (AND (SYNTAXP (QUOTEP X))
(SYNTAXP (QUOTEP Y)))

(EQUAL (+ X (+ Y Z)) (+ (+ X Y) Z))))
ACL2 !>

20/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BACKCHAIN-LIMIT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (2)

I backchain-limit: limit effort to relieve hypotheses
I force: defer proving H if necessary
I hide: hide a term from the rewriter
I syntaxp: attach a heuristic filter on a rule

Example of syntaxp: consider 3 + (4 + x).
It’s already in normal form: right-associated.
Our wish: 3 + (4 + x) = (3 + 4) + x = 7 + x.
ACL2 !>:pe associativity-of-+

-997 (DEFAXIOM ASSOCIATIVITY-OF-+
(EQUAL (+ (+ X Y) Z) (+ X (+ Y Z))))

ACL2 !>:pe fold-consts-in-+
-158 (DEFTHM FOLD-CONSTS-IN-+

(IMPLIES (AND (SYNTAXP (QUOTEP X))
(SYNTAXP (QUOTEP Y)))

(EQUAL (+ X (+ Y Z)) (+ (+ X Y) Z))))
ACL2 !>

20/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BACKCHAIN-LIMIT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (2)

I backchain-limit: limit effort to relieve hypotheses
I force: defer proving H if necessary
I hide: hide a term from the rewriter
I syntaxp: attach a heuristic filter on a rule

Example of syntaxp: consider 3 + (4 + x).

It’s already in normal form: right-associated.
Our wish: 3 + (4 + x) = (3 + 4) + x = 7 + x.
ACL2 !>:pe associativity-of-+

-997 (DEFAXIOM ASSOCIATIVITY-OF-+
(EQUAL (+ (+ X Y) Z) (+ X (+ Y Z))))

ACL2 !>:pe fold-consts-in-+
-158 (DEFTHM FOLD-CONSTS-IN-+

(IMPLIES (AND (SYNTAXP (QUOTEP X))
(SYNTAXP (QUOTEP Y)))

(EQUAL (+ X (+ Y Z)) (+ (+ X Y) Z))))
ACL2 !>

20/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BACKCHAIN-LIMIT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (2)

I backchain-limit: limit effort to relieve hypotheses
I force: defer proving H if necessary
I hide: hide a term from the rewriter
I syntaxp: attach a heuristic filter on a rule

Example of syntaxp: consider 3 + (4 + x).
It’s already in normal form: right-associated.

Our wish: 3 + (4 + x) = (3 + 4) + x = 7 + x.
ACL2 !>:pe associativity-of-+

-997 (DEFAXIOM ASSOCIATIVITY-OF-+
(EQUAL (+ (+ X Y) Z) (+ X (+ Y Z))))

ACL2 !>:pe fold-consts-in-+
-158 (DEFTHM FOLD-CONSTS-IN-+

(IMPLIES (AND (SYNTAXP (QUOTEP X))
(SYNTAXP (QUOTEP Y)))

(EQUAL (+ X (+ Y Z)) (+ (+ X Y) Z))))
ACL2 !>

20/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BACKCHAIN-LIMIT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (2)

I backchain-limit: limit effort to relieve hypotheses
I force: defer proving H if necessary
I hide: hide a term from the rewriter
I syntaxp: attach a heuristic filter on a rule

Example of syntaxp: consider 3 + (4 + x).
It’s already in normal form: right-associated.
Our wish: 3 + (4 + x) = (3 + 4) + x = 7 + x.

ACL2 !>:pe associativity-of-+
-997 (DEFAXIOM ASSOCIATIVITY-OF-+

(EQUAL (+ (+ X Y) Z) (+ X (+ Y Z))))

ACL2 !>:pe fold-consts-in-+
-158 (DEFTHM FOLD-CONSTS-IN-+

(IMPLIES (AND (SYNTAXP (QUOTEP X))
(SYNTAXP (QUOTEP Y)))

(EQUAL (+ X (+ Y Z)) (+ (+ X Y) Z))))
ACL2 !>

20/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BACKCHAIN-LIMIT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (2)

I backchain-limit: limit effort to relieve hypotheses
I force: defer proving H if necessary
I hide: hide a term from the rewriter
I syntaxp: attach a heuristic filter on a rule

Example of syntaxp: consider 3 + (4 + x).
It’s already in normal form: right-associated.
Our wish: 3 + (4 + x) = (3 + 4) + x = 7 + x.
ACL2 !>:pe associativity-of-+

-997 (DEFAXIOM ASSOCIATIVITY-OF-+
(EQUAL (+ (+ X Y) Z) (+ X (+ Y Z))))

ACL2 !>:pe fold-consts-in-+
-158 (DEFTHM FOLD-CONSTS-IN-+

(IMPLIES (AND (SYNTAXP (QUOTEP X))
(SYNTAXP (QUOTEP Y)))

(EQUAL (+ X (+ Y Z)) (+ (+ X Y) Z))))
ACL2 !>

20/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BACKCHAIN-LIMIT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (2)

I backchain-limit: limit effort to relieve hypotheses
I force: defer proving H if necessary
I hide: hide a term from the rewriter
I syntaxp: attach a heuristic filter on a rule

Example of syntaxp: consider 3 + (4 + x).
It’s already in normal form: right-associated.
Our wish: 3 + (4 + x) = (3 + 4) + x = 7 + x.
ACL2 !>:pe associativity-of-+

-997 (DEFAXIOM ASSOCIATIVITY-OF-+
(EQUAL (+ (+ X Y) Z) (+ X (+ Y Z))))

ACL2 !>:pe fold-consts-in-+
-158 (DEFTHM FOLD-CONSTS-IN-+

(IMPLIES (AND (SYNTAXP (QUOTEP X))
(SYNTAXP (QUOTEP Y)))

(EQUAL (+ X (+ Y Z)) (+ (+ X Y) Z))))
ACL2 !>

20/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BACKCHAIN-LIMIT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____HIDE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYNTAXP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (3)

H −→ L = R (ordinary rewrite rule)

H −→ L ∼ R (congruence-based rewrite rule)

where ∼ is an equivalence relation.

Users prove equivalence, congruence, and refinement rules, to
tell ACL2 when such rewrites are valid.

B. Brock, M. Kaufmann, and J S. Moore. Rewriting with
Equivalence Relations in ACL2. J. Aut. Reasoning 40 (2008).

M. Kaufmann and J S. Moore. Double Rewriting for
Equivalential Reasoning in ACL2. Proc. ACL2 Workshop 2006.

M. Kaufmann and J S. Moore. Rough Diamond: An Extension
of Equivalence-based Rewriting. Proc. ITP 2014.

21/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EQUIVALENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONGRUENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REFINEMENT

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (3)

H −→ L = R (ordinary rewrite rule)

H −→ L ∼ R (congruence-based rewrite rule)

where ∼ is an equivalence relation.

Users prove equivalence, congruence, and refinement rules, to
tell ACL2 when such rewrites are valid.

B. Brock, M. Kaufmann, and J S. Moore. Rewriting with
Equivalence Relations in ACL2. J. Aut. Reasoning 40 (2008).

M. Kaufmann and J S. Moore. Double Rewriting for
Equivalential Reasoning in ACL2. Proc. ACL2 Workshop 2006.

M. Kaufmann and J S. Moore. Rough Diamond: An Extension
of Equivalence-based Rewriting. Proc. ITP 2014.

21/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EQUIVALENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONGRUENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REFINEMENT

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (3)

H −→ L = R (ordinary rewrite rule)

H −→ L ∼ R (congruence-based rewrite rule)

where ∼ is an equivalence relation.

Users prove equivalence, congruence, and refinement rules, to
tell ACL2 when such rewrites are valid.

B. Brock, M. Kaufmann, and J S. Moore. Rewriting with
Equivalence Relations in ACL2. J. Aut. Reasoning 40 (2008).

M. Kaufmann and J S. Moore. Double Rewriting for
Equivalential Reasoning in ACL2. Proc. ACL2 Workshop 2006.

M. Kaufmann and J S. Moore. Rough Diamond: An Extension
of Equivalence-based Rewriting. Proc. ITP 2014.

21/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EQUIVALENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONGRUENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REFINEMENT

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

REWRITING IN ACL2 (3)

H −→ L = R (ordinary rewrite rule)

H −→ L ∼ R (congruence-based rewrite rule)

where ∼ is an equivalence relation.

Users prove equivalence, congruence, and refinement rules, to
tell ACL2 when such rewrites are valid.

B. Brock, M. Kaufmann, and J S. Moore. Rewriting with
Equivalence Relations in ACL2. J. Aut. Reasoning 40 (2008).

M. Kaufmann and J S. Moore. Double Rewriting for
Equivalential Reasoning in ACL2. Proc. ACL2 Workshop 2006.

M. Kaufmann and J S. Moore. Rough Diamond: An Extension
of Equivalence-based Rewriting. Proc. ITP 2014.

21/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EQUIVALENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONGRUENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REFINEMENT

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

22/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

23/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II)

Our final demo shows how ACL2 proof development often
follows “the method”:

I ACL2 heuristically chooses and applies a destructor-style
induction scheme.

I ACL2 simplifies the base and induction steps.
I The user looks at key checkpoints, which are unproved

goals printed by ACL2.
I The user formulates conditional rewrite rules to simplify

those checkpoints.
I Repeat.

24/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THE-METHOD

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II)

Our final demo shows how ACL2 proof development often
follows “the method”:

I ACL2 heuristically chooses and applies a destructor-style
induction scheme.

I ACL2 simplifies the base and induction steps.
I The user looks at key checkpoints, which are unproved

goals printed by ACL2.
I The user formulates conditional rewrite rules to simplify

those checkpoints.
I Repeat.

24/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THE-METHOD

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II)

Our final demo shows how ACL2 proof development often
follows “the method”:

I ACL2 heuristically chooses and applies a destructor-style
induction scheme.

I ACL2 simplifies the base and induction steps.
I The user looks at key checkpoints, which are unproved

goals printed by ACL2.
I The user formulates conditional rewrite rules to simplify

those checkpoints.
I Repeat.

24/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THE-METHOD

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II)

Our final demo shows how ACL2 proof development often
follows “the method”:

I ACL2 heuristically chooses and applies a destructor-style
induction scheme.

I ACL2 simplifies the base and induction steps.

I The user looks at key checkpoints, which are unproved
goals printed by ACL2.

I The user formulates conditional rewrite rules to simplify
those checkpoints.

I Repeat.

24/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THE-METHOD

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II)

Our final demo shows how ACL2 proof development often
follows “the method”:

I ACL2 heuristically chooses and applies a destructor-style
induction scheme.

I ACL2 simplifies the base and induction steps.
I The user looks at key checkpoints, which are unproved

goals printed by ACL2.

I The user formulates conditional rewrite rules to simplify
those checkpoints.

I Repeat.

24/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THE-METHOD

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II)

Our final demo shows how ACL2 proof development often
follows “the method”:

I ACL2 heuristically chooses and applies a destructor-style
induction scheme.

I ACL2 simplifies the base and induction steps.
I The user looks at key checkpoints, which are unproved

goals printed by ACL2.
I The user formulates conditional rewrite rules to simplify

those checkpoints.

I Repeat.

24/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THE-METHOD

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II)

Our final demo shows how ACL2 proof development often
follows “the method”:

I ACL2 heuristically chooses and applies a destructor-style
induction scheme.

I ACL2 simplifies the base and induction steps.
I The user looks at key checkpoints, which are unproved

goals printed by ACL2.
I The user formulates conditional rewrite rules to simplify

those checkpoints.
I Repeat.

24/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THE-METHOD

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II) (CONTINUED)

Quoting the documentation for induction:

. . . the interested reader should see Chapter XIV of A
Computational Logic (Boyer and Moore, Academic Press,
1979) which represents a fairly complete description of the
induction heuristics of ACL2.

This demo should give a sense of how ACL2 chooses (and
applies) induction schemes,
but the focus will be on user interaction.

— DEMO (excerpted from my TPHOLs 2008 talk) —

25/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____INDUCTION
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/perm-transitive-demo.lsp
http://www.cs.utexas.edu/users/moore/publications/tutorial/kaufmann-TPHOLs08

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II) (CONTINUED)

Quoting the documentation for induction:

. . . the interested reader should see Chapter XIV of A
Computational Logic (Boyer and Moore, Academic Press,
1979) which represents a fairly complete description of the
induction heuristics of ACL2.

This demo should give a sense of how ACL2 chooses (and
applies) induction schemes,
but the focus will be on user interaction.

— DEMO (excerpted from my TPHOLs 2008 talk) —

25/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____INDUCTION
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/perm-transitive-demo.lsp
http://www.cs.utexas.edu/users/moore/publications/tutorial/kaufmann-TPHOLs08

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II) (CONTINUED)

Quoting the documentation for induction:

. . . the interested reader should see Chapter XIV of A
Computational Logic (Boyer and Moore, Academic Press,
1979) which represents a fairly complete description of the
induction heuristics of ACL2.

This demo should give a sense of how ACL2 chooses (and
applies) induction schemes,

but the focus will be on user interaction.

— DEMO (excerpted from my TPHOLs 2008 talk) —

25/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____INDUCTION
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/perm-transitive-demo.lsp
http://www.cs.utexas.edu/users/moore/publications/tutorial/kaufmann-TPHOLs08

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II) (CONTINUED)

Quoting the documentation for induction:

. . . the interested reader should see Chapter XIV of A
Computational Logic (Boyer and Moore, Academic Press,
1979) which represents a fairly complete description of the
induction heuristics of ACL2.

This demo should give a sense of how ACL2 chooses (and
applies) induction schemes,
but the focus will be on user interaction.

— DEMO (excerpted from my TPHOLs 2008 talk) —

25/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____INDUCTION
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/perm-transitive-demo.lsp
http://www.cs.utexas.edu/users/moore/publications/tutorial/kaufmann-TPHOLs08

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

DEMOS (II) (CONTINUED)

Quoting the documentation for induction:

. . . the interested reader should see Chapter XIV of A
Computational Logic (Boyer and Moore, Academic Press,
1979) which represents a fairly complete description of the
induction heuristics of ACL2.

This demo should give a sense of how ACL2 chooses (and
applies) induction schemes,
but the focus will be on user interaction.

— DEMO (excerpted from my TPHOLs 2008 talk) —

25/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____INDUCTION
http://www.cs.utexas.edu/users/kaufmann/talks/key-invited-2015/demos/perm-transitive-demo.lsp
http://www.cs.utexas.edu/users/moore/publications/tutorial/kaufmann-TPHOLs08

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

26/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

27/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

VERY BRIEF SURVEY OF ACL2 FEATURES

Let’s see a bit more about how ACL2 supports proof
development . . .

I . . . by exploring briefly the ACL2 documentation.

NOTE:
I would be very happy to elaborate on any of these topics!

28/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

VERY BRIEF SURVEY OF ACL2 FEATURES

Let’s see a bit more about how ACL2 supports proof
development . . .

I . . . by exploring briefly the ACL2 documentation.

NOTE:
I would be very happy to elaborate on any of these topics!

28/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

VERY BRIEF SURVEY OF ACL2 FEATURES

Let’s see a bit more about how ACL2 supports proof
development . . .

I . . . by exploring briefly the ACL2 documentation.

NOTE:
I would be very happy to elaborate on any of these topics!

28/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

VERY BRIEF SURVEY OF ACL2 FEATURES (2)

In particular, we might explore a few debugging features, as
time and interest permit.

I accumulated-
persistence

I break-rewrite
I cgen
I cw-gstack
I disassemble$
I dmr
I failed-forcing
I failure
I find-lemmas
I forward-chaining-

reports

I guard-debug
I measure-debug
I nil-goal
I print-gv
I profile-acl2
I profile-all
I proof-checker
I proof-tree
I pstack
I quick-and-dirty-

subsumption-
replacement-step

I redo-flat

I remove-hyps

I set-debugger-enable

I set-guard-msg

I sneaky

I spacewalk

I splitter

I time-tracker

I trace

I walkabout

I watch

29/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ACCUMULATED-PERSISTENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ACCUMULATED-PERSISTENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BREAK-REWRITE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CGEN
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CW-GSTACK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DISASSEMBLE\protect \T1\textdollar
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DMR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAILED-FORCING
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAILURE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FIND-LEMMAS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORWARD-CHAINING-REPORTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORWARD-CHAINING-REPORTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD-DEBUG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____MEASURE-DEBUG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____NIL-GOAL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PRINT-GV
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROFILE-ACL2
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROFILE-ALL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROOF-CHECKER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROOF-TREE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PSTACK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____QUICK-AND-DIRTY-SUBSUMPTION-REPLACEMENT-STEP
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____QUICK-AND-DIRTY-SUBSUMPTION-REPLACEMENT-STEP
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____QUICK-AND-DIRTY-SUBSUMPTION-REPLACEMENT-STEP
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REDO-FLAT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REMOVE-HYPS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SET-DEBUGGER-ENABLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SET-GUARD-MSG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SNEAKY
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SPACEWALK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SPLITTER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TIME-TRACKER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TRACE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WALKABOUT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WATCH

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

VERY BRIEF SURVEY OF ACL2 FEATURES (2)

In particular, we might explore a few debugging features, as
time and interest permit.

I accumulated-
persistence

I break-rewrite
I cgen
I cw-gstack
I disassemble$
I dmr
I failed-forcing
I failure
I find-lemmas
I forward-chaining-

reports

I guard-debug
I measure-debug
I nil-goal
I print-gv
I profile-acl2
I profile-all
I proof-checker
I proof-tree
I pstack
I quick-and-dirty-

subsumption-
replacement-step

I redo-flat

I remove-hyps

I set-debugger-enable

I set-guard-msg

I sneaky

I spacewalk

I splitter

I time-tracker

I trace

I walkabout

I watch

29/32

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEBUGGING
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ACCUMULATED-PERSISTENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ACCUMULATED-PERSISTENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BREAK-REWRITE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CGEN
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CW-GSTACK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DISASSEMBLE\protect \T1\textdollar
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DMR
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAILED-FORCING
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FAILURE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FIND-LEMMAS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORWARD-CHAINING-REPORTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORWARD-CHAINING-REPORTS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD-DEBUG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____MEASURE-DEBUG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____NIL-GOAL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PRINT-GV
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROFILE-ACL2
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROFILE-ALL
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROOF-CHECKER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROOF-TREE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PSTACK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____QUICK-AND-DIRTY-SUBSUMPTION-REPLACEMENT-STEP
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____QUICK-AND-DIRTY-SUBSUMPTION-REPLACEMENT-STEP
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____QUICK-AND-DIRTY-SUBSUMPTION-REPLACEMENT-STEP
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REDO-FLAT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____REMOVE-HYPS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SET-DEBUGGER-ENABLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SET-GUARD-MSG
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SNEAKY
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SPACEWALK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SPLITTER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TIME-TRACKER
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TRACE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WALKABOUT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WATCH

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

30/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

OUTLINE

Introduction

Background

Demos (I)

Rewriting in ACL2

Demos (II)

Very Brief Survey of ACL2 Features

Conclusion

31/32

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I ACL2 provides automation but scales to large problems . . .
. . . with libraries and by supporting user interaction.

I For more information, see the ACL2 home page.

THANK YOU!

32/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I ACL2 provides automation but scales to large problems . . .
. . . with libraries and by supporting user interaction.

I For more information, see the ACL2 home page.

THANK YOU!

32/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I ACL2 provides automation but scales to large problems . . .
. . . with libraries and by supporting user interaction.

I For more information, see the ACL2 home page.

THANK YOU!

32/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I ACL2 provides automation but scales to large problems . . .

. . . with libraries and by supporting user interaction.
I For more information, see the ACL2 home page.

THANK YOU!

32/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I ACL2 provides automation but scales to large problems . . .
. . . with libraries and by supporting user interaction.

I For more information, see the ACL2 home page.

THANK YOU!

32/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I ACL2 provides automation but scales to large problems . . .
. . . with libraries and by supporting user interaction.

I For more information, see the ACL2 home page.

THANK YOU!

32/32

http://www.cs.utexas.edu/users/moore/acl2/

Introduction Background Demos (I) Rewriting in ACL2 Demos (II) Very Brief Survey of ACL2 Features Conclusion

CONCLUSION

I ACL2 has a 25 (or 44) year history and is used in industry.

“Microprocessor design goes daily through numerous
optimizations that affect thousands of lines of code.
These optimizations must be proved correct.”

— Anna Slobodova, verification manager at Centaur
Technology

I ACL2 provides automation but scales to large problems . . .
. . . with libraries and by supporting user interaction.

I For more information, see the ACL2 home page.

THANK YOU!

32/32

http://www.cs.utexas.edu/users/moore/acl2/

	Introduction
	Background
	Demos (I)
	Rewriting in ACL2
	Demos (II)
	Very Brief Survey of ACL2 Features
	Conclusion

