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OVERVIEW

Talk objective: Give a sense of how we are tackling program
correctness for a widely-used graphical language

◮ LabVIEW: Graphical programming environment from
National Instruments (NI); ∼ 150,000 users

◮ ACL2: General-purpose theorem prover
(“A Computational Logic for Applicative Common Lisp”)

◮ Can be used to run and to verify (applicative) Lisp programs

◮ Goal: Use ACL2 to verify LabVIEW programs
◮ Translate LabVIEW programs to ACL2
◮ Assertion-based approach
◮ Main focus to date: proving loops correct

Note: Analogous ongoing effort at AMD (see DCC’02 talk)
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TALK OUTLINE

◮ Overview
◮ A program (our running example)
◮ Verification flow
◮ Example theorem
◮ Highlights of approach
◮ Example illustrating library development
◮ Summary
◮ Future work
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A PROGRAM (OUR RUNNING EXAMPLE)

We consider a LabVIEW program, gauss:

◮ Input: k, a natural number
◮ Output: sum of the integers from k down to 1

*** DEMO ***
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VERIFICATION FLOW

1. Run some tests.

2. Run the graph parser to produce a textual graph
representation

3. Run the translator on that textual graph to produce ACL2
code from a LabVIEW program:

◮ gauss-fns.lisp — function definitions
◮ gauss-work.lisp — proof file, user-editable
◮ gauss.lisp — top-level theorem

4. Certify these files (“books”) with ACL2, automatically if
possible

*** DEMO ***
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HEY, WAIT A MINUTE!

VERIFICATION COMPLETED!
(Maybe we’ll take a quick peek at gauss-work.lisp.)
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EXAMPLE THEOREM

Top-level file generated by our verification process:

(IN-PACKAGE "ACL2")

; Translation of program to ACL2 functions:
(INCLUDE-BOOK "gauss-fns")

; Include proof file (user-editable); ignore when
; reading this final result for logical content.
(LOCAL (INCLUDE-BOOK "gauss-work"))

(SET-ENFORCE-REDUNDANCY T)

; Main theorem:
(DEFTHM ACL2-TOP-INV$INV

(IMPLIES (GAUSS$INPUT-HYPS IN)
(G :ASN (ACL2-TOP-INV IN))))
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HIGHLIGHTS OF APPROACH

I’ll go through the generated code and illustrate some key
points:

◮ Modeling dataflow programs with ACL2 functions
◮ Modeling loops with recursion
◮ Proving correctness of loops: a generic VCG-like approach
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Modeling dataflow programs with ACL2 functions

Note that the translation to functions is mechanical and (at least
at a high level) straightforward.
Here is a snippet from file gauss-fns.lisp – just a quick
look here:

(DEFUN-N |_N_10| (IN)
(S* :ASN (EQUAL?-0<_T_2> IN)))

(DEFUN-ASN ACL2-TOP-INV (IN)
(|_N_10| (S* :|_T_1| (INPUT1<_T_0> IN)

:|_T_2| (ACL2-LOOP<_T_6> IN))))

Note that our translation supports evaluation in ACL2.
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Modeling loops with recursion

I’ll talk through the following from file gauss-fns.lisp:

(DEFUN |_N_15$LOOP| (N IN)
(DECLARE (XARGS :MEASURE (NFIX (- N (G :LC IN)))))
(COND ((OR (>= (G :LC IN) N)

(NOT (NATP N))
(NOT (NATP (G :LC IN))))

IN)
(T (|_N_15$LOOP| N

(S :LC (1+ (G :LC IN))
(|_N_15$STEP| IN))))))
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Proving correctness of loops

◮ Once and for all: introduce a generic loop function and
prove its correctness.

◮ Prove:
◮ The actual loop invariant is true initially; and
◮ The actual step function preserves the actual loop invariant.

◮ Conclude using ACL2’s functional instantiation technique
that the actual loop invariant holds.
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EXAMPLE ILLUSTRATING LIBRARY
DEVELOPMENT

*** DEMO (zeroing out an array) *** — if time
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SUMMARY

We have a mechanical approach to:

◮ translating LabVIEW diagrams into ACL2; and
◮ verifying loops with automated support.

Just an aside: The translator is written in ACL2. “Guard
checking” helped catch bugs!
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FUTURE WORK
Our approach works on small examples, but there’s lots more
to do.

◮ Move away from semantics of unbounded integers, and in
general support more data types.

◮ Handle state: limited I/O and global variables.
◮ Develop graphical interface: e.g., remove proved assertion

wires.
◮ Improve support for modularity, building on a nested loop

example already worked.
◮ Complete handling of unbounded while-loops.
◮ Support verification of timing properties for LabVIEW on

FPGAs.
◮ More examples may lead us to use ACL2’s hook for

connecting other proof tools.
◮ Goal: NI Labs (http://www.ni.com/labs/)
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