7.1 Perceptron vs. WINNOW

In the previous lecture we were introduced to the Perceptron algorithm, which learns halfspaces in n dimensions with a mistake bound of $O(1/\sigma^2)$. Here σ is the geometric margin of the sample set, defined as

$$\sigma = \min_{x \in X} \frac{|(x, h)|}{|x|}$$

where h is the normal to the hyperplane. It is clear that σ could be very smalls for certain distributions of points $x_1, \ldots, x_m \in S^{n-1}$ on the unit sphere.

Let’s compare the WINNOW and Perceptron algorithms:

- **WINNOW** - learns disjunctions on $k \leq n$ variables with a mistake bound of $O(k \log n)$.
- **Perceptron** - learns halfspaces in n dimensions with the mistake bound described above.

Note that a disjunction over $x \in \{0, 1\}^n$ is a type of halfspace:

$$\text{OR}(x_1, \ldots, x_m) \equiv \sum_{i=1}^{m} x_i \geq 1 \equiv \text{SIGN}(\sum_{i=1}^{m} x_i - 1)$$

Take an example: the “unknown literal” concept class $\{x_i\}$ with $1 \leq i \leq n$. If we run WINNOW on this concept class we obtain a mistake bound of $\log n$. What if we run the Perceptron algorithm? We can map $\{0, 1\}^n$ onto S^{n-1} through normalization, where $(1, \ldots, 1)$ becomes $(1/\sqrt{n}, \ldots, 1/\sqrt{n})$. What is the margin for this set of points? One separating halfspace is $x_i > 0$, but the margin could be as small as $1/n$:

$$(0, 1/\sqrt{n} - 1, \ldots, 1/\sqrt{n} - 1) \equiv (0, 1, \ldots, 1) \rightarrow \text{FALSE}$$

$$(1/\sqrt{n}, \ldots, 1/\sqrt{n}) \equiv (1, \ldots, 1) \rightarrow \text{TRUE}$$

So $\sigma^2 \approx 1/n$, and the mistake bound of Perceptron in this case is $O(n)$.

7-1
7.2 WINNOW: Beyond Disjunctions

Let’s state WINNOW in its full generality. First, define function f as

$$f(x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} u_i x_i \geq 1 - \delta \text{ for } u_1, \ldots, u_n \geq 0 \\ 0 & \text{if } \sum_{i=1}^{n} u_i x_i < 1 - \delta \text{ for } u_1, \ldots, u_n \geq 0 \end{cases}$$

where $x \in \{0, 1\}^n$. Note that f has a mistake bound approximately

$$O\left(\frac{n}{\delta^2} + \frac{\ln \Theta}{\delta^2} \sum_{i=1}^{n} u_i \right)$$ (7.1)

for all $\Theta > 0$. Now let’s check that this expression agrees with our earlier analysis of the WINNOW mistake bound.

$$\sum_{i=1}^{k} x_i > 1 \quad \forall x, \text{OR}(x_i) = \text{TRUE} \Rightarrow \sum_{i} x_i \geq 1$$

Choose $\delta = 1/2$ to obtain a mistake bound, from Equation 7.1, of:

$$O\left(\frac{4n}{\Theta} + 4k \ln \Theta \right)$$

Then choose $\Theta = n$ to obtain a mistake bound of $O(k \ln n)$. The learning performance of WINNOW is thus consistent across our analyses.

Now we can examine the performance of WINNOW on the concept class of halfspaces. Let h be a halfspace such that

$$h = \text{SIGN}(\sum_{i=1}^{n} w_i x_i - \gamma)$$

where γ, w_1, \ldots, w_n are positive integers. Define W to be the sum of the weights w_1, \ldots, w_n and γ. The mistake bound of WINNOW in this case is $O(W^2 \log n)$; the performance of WINNOW depends on the weights of the halfspace. Restating our definition of h, we have:

$$\sum_{i=1}^{n} w_i x_i \geq \gamma \quad \text{if } x \text{ labeled TRUE}$$

$$\sum_{i=1}^{n} w_i x_i < \gamma \quad \text{if } x \text{ labeled FALSE}$$

Dividing by γ:

$$\sum_{i=1}^{n} \frac{w_i}{\gamma} x_i \geq 1 \quad \text{if } x \text{ labeled TRUE}$$

$$\sum_{i=1}^{n} \frac{w_i}{\gamma} x_i < 1 \quad \text{if } x \text{ labeled FALSE}$$

What can we choose γ to be? It must always be $\leq 1 - \min(w_i/\gamma)$. Applying Equation 7.1, we obtain:

$$\frac{n}{(1 - \frac{\gamma}{w_i})^2 \Theta} + \frac{\ln \Theta}{(1 - \frac{\gamma}{w_i})^2 W}$$
If we choose \(\Theta = n \), this expression becomes:

\[
\approx W(\frac{w_i}{\gamma}) \ln n \leq W^2 \log n
\]

So for WINNOW, a weight \(W \) halfspace on \(n \) variables can be learned with mistake bound \(O(W^2 \log n) \).

7.3 Decision Lists on \(k \) Variables

Remember that we gave a PAC algorithm for decision lists on \(k \) variables, then showed that you need \(\approx O(n \log n/\epsilon) \) examples.

How do we realize a decision list as a linear threshold function? Recall that a decision list of length \(k \) is a set of variables of the form \(x_1, x_i, x_j, \ldots \), equivalent to:

\[
\text{SIGN}(2^k x_1 - 2^{k-1} x_i + 2^{k-2} x_j - \ldots)
\]

Applying our analysis from Section 7.2, we know that the mistake bound of WINNOW on this problem will be \(O(2^{2k} \log n) \). This bound is much worse than our performance on disjunctions, \(O(n \log n) \).

7.4 Exploring WINNOW

Now we will explore the WINNOW in greater detail. Recall that the halfspace we want to learn can be defined as:

\[
\sum_{i=1}^{n} u_i x_i \geq 1 \quad \text{if } x \text{ labeled TRUE} \quad (7.2)
\]

\[
\sum_{i=1}^{n} u_i x_i < 1 \quad \text{if } x \text{ labeled TRUE} \quad (7.3)
\]

WINNOW learns this halfspace with the mistake bound defined in Equation 7.1.

Our initial halfspace is \(\sum w_i x_i \geq \Theta \), where \(\forall i, w_i = 1 \). Let \(\alpha = 1 + \delta/2 \). Every time we predict negative where the real label is positive, we promote each \(w_i \) such that \(x_i = 1 \): so \(w'_i = w_i \alpha \). Every time we generate a false positive, we demote all \(w_i \) such that \(x_i = 1 \): so \(w'_i = w_i / \alpha \).

Let \(u \) be the number of promotions and \(v \) be the number of demotions performed by WINNOW. We will prove two assertions:

\[
v \leq \frac{\alpha}{\alpha - 1} * \frac{n}{\Theta} + \alpha u \quad (7.4)
\]

\[
u + v \leq \frac{\alpha}{\alpha + 1} * \frac{n}{\Theta} + (1 + \alpha)u \quad (7.5)
\]
Let \(w_i^{\text{bef}} \) and \(w_i^{\text{aft}} \) denote the values of weight \(i \) before and after, respectively, a promotion or demotion. More precisely, for a promotion, \(w_i^{\text{aft}} = w_i^{\text{bef}} + x_i(\alpha - 1)w_i^{\text{bef}} \). For a promotion to occur, we must have incorrectly predicted false, so it must be the case that

\[
\sum_{i=1}^{n} w_i^{\text{bef}} x_i \leq \Theta
\]

\(x_i = 1 - \sum_{i=1}^{n} w_i^{\text{aft}} \leq \sum_{i=1}^{n} w_i^{\text{bef}} + (\alpha - 1)\Theta \quad \text{← after promotion} \)

\[
1 - \sum_{i=1}^{n} w_i^{\text{aft}} \leq \sum_{i=1}^{n} w_i^{\text{bef}} + (1 - \frac{1}{\alpha})\Theta \quad \text{← after demotion} \]

Initially, what is the sum of the \(w_i \)'s?

\[
\sum_{i=1}^{n} w_i \leq n + u(\alpha - 1)\Theta - v(1 - \frac{1}{\alpha})\Theta \geq 0
\]

We know that the sum of the weights is always \(\geq 0 \), so

\[
v \leq \frac{\alpha}{\alpha - 1} \frac{n}{\Theta} + \alpha u
\]

This inequality is equivalent to Equation 7.4. Now, after \(u \) promotions and \(v \) demotions,

\[
\exists i. \log w_i \geq \frac{u - (1 - \delta)u}{\sum_{i=1}^{n} u_i \log \alpha}
\]

And this inequality is equivalent to Equation 7.5. Observe that each \(w_i \leq \alpha \Theta \). If we make a promotion, noting that \(\sum u_i x_i \geq 1 \) since the example is actually positive, then:

\[
w_i^{\text{aft}} = w_i^{\text{bef}} x_i
\]

We can write this equation as

\[
\sum_{i=1}^{n} u_i \log w_i^{\text{aft}} \geq \sum_{i=1}^{n} u_i \log w_i^{\text{bef}} + u_i x_i \log \alpha
\]

where \(u_i x_i \log \alpha \) is at most \(u_i x_i \).

Our exploration of WINNOW continues in the next lecture.