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ABSTRACT
We give a query algorithm for agnostically learning deci-
sion trees with respect to the uniform distribution on inputs.
Given black-box access to an arbitrary binary function f on
the n-dimensional hypercube, our algorithm finds a function
that agrees with f on almost (within an ε fraction) as many
inputs as the best size-t decision tree, in time poly(n, t, 1/ε).
This is the first polynomial-time algorithm for learning de-
cision trees in a harsh noise model. We also give a proper
agnostic learning algorithm for juntas, a sub-class of decision
trees, again using membership queries.

Conceptually, the present paper parallels recent work to-
wards agnostic learning of halfspaces [13]; algorithmically, it
is significantly more challenging. The core of our learning
algorithm is a procedure to implicitly solve a convex opti-
mization problem over the L1 ball in 2n dimensions using
an approximate gradient projection method.

1. INTRODUCTION
Decision tree learning is one of the central problems in

computational learning [19, 15]. In practice, decision trees
are a key ingredient in the most competitive machine learn-
ing and statistics systems such as CART and C4.5 [4, 2, 17].
Trees are often built top-down based on simple greedy split-
ting criteria. This raises a natural algorithmic question:
How efficiently can one find the decision tree that best fits
the data?

A seminal result, due to Kushilevitz and Mansour (KM)
[15], is that decision trees are efficiently learnable under the
uniform distribution using membership queries. Membership
queries, a form of what is now popularly called“active learn-
ing,”are black-box access to the target function to be learned
f : {−1, 1}n → {−1, 1}, which, in this case, is assumed to
be noiseless, i.e., computable by a poly-sized decision tree.
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Given such an oracle and ε > 0 as input, the KM algorithm
outputs a hypothesis h : {−1, 1}n → {−1, 1} which disagrees
with f on ≤ ε fraction of x ∈ {−1, 1}n. More generally,
their query algorithm learns sparse polynomials and is a key
component to several other algorithms, including Jackson’s
celebrated result on learning DNF formulas [11].

However, the KM algorithm fails to address the follow-
ing practical (and theoretical) concern about the noiseless
assumption: in most cases of interest, the function to be
learned is not believed to be exactly computable by a small
decision tree. Indeed, the popularity of decision-tree induc-
tion is based on strong empirical evidence, across a number
of fields, that decision trees often yield good approximations
to complicated target functions. The present work aims to
address this concern by giving a decision-tree learning algo-
rithm in the agnostic setting [14]. In agnostic learning, no
assumption is made about the target function to be learned.
Instead, the goal of the learning algorithm is to output a
hypothesis (not necessarily a decision tree) that predicts
nearly as well as the best small decision tree. Hence, it
is equivalent to learning with arbitrarily chosen or adversar-
ial noise. For a concept class C and a target function f , let
optC = minc∈C Prx∈{−1,1}n [c(x) 6= f(x)] be the error rate of
the optimal concept in C with respect to f . The following is
our main result:

Theorem 1. Let C be the class of decision trees with at
most t leaves. There exists an algorithm that when given
t, ε > 0 and black-box access to any Boolean function f :
{−1, 1}n → {−1, 1}, runs in time poly(n, t, ε−1) and outputs
a hypothesis h : {−1, 1}n → {−1, 1} so that

Pr
x∈{−1,1}n

[h(x) 6= f(x)] ≤ optC + ε.

The hypothesis h is the sign of a sparse polynomial. Like
KM, our algorithm actually learns the concept class of sparse
polynomials, to which decision trees belong. More generally,
our result holds for real-valued functions f : {−1, 1}n →
[−1, 1] where f is interpreted as a conditional probability:
f specifies a distribution Df on (x, y) where x is uniform
over {−1, 1}n and y is distributed so that f(x) = EDf [y|x].
Our result is the best agnostic extension one might hope
for without further breakthroughs on the classical problem
of learning decision trees without noise. Removing the as-
sumption of membership queries looks hard since without
queries, the fastest known algorithm for learning poly-size
decision trees (with no noise) with respect to the uniform

distribution from random examples takes time nO(log n) [5].
When combined with results of Feldman et al. [6], our

algorithm shows that the problem of agnostically learning



sparse polynomials under the uniform distribution from ran-
dom examples (without queries) reduces to the problem of
learning parity with classification noise, a.k.a the noisy par-
ity problem. Feldman et al. gave such a reduction from
learning sparse polynomials with random classification noise.

Proper learning for Juntas: Another reason why de-
cision trees are popular hypotheses in practice is because
they are simple to understand. Thus, it is natural to look
for learning algorithms that output a decision tree; such a
learner that outputs a hypothesis from the target class C is
called a proper learner. There are no proper learners known
for decision trees even in the noiseless setting. However, we
give a proper learner for the easier problem of agnostically
learning k-juntas, which are functions that depend on only
k out of the n inputs. A k-junta can be represented by a
decision tree with 2k leaves. The problem of agnostically
learning k-juntas is to find the best predictor for a given
function f : {−1, 1}n → {−1, 1} which depends on at most
k variables.

Theorem 2. Let C be the class of k-juntas. There ex-
ists an algorithm that, given ε > 0, k, n ≥ 1 and oracle
access to arbitrary f : {−1, 1}n → {−1, 1}, runs in time
poly(n, kk, ε−k) and outputs a k-junta h such that,

Pr
x∈{−1,1}n

[h(x) 6= f(x)] ≤ optC + ε.

The running time grows as kk, which is polynomial in n
only if k = O( log n

log log n
). In contrast, the (improper) algo-

rithm in Theorem 1 agnostically learns O(log n)-juntas in
polynomial time.

1.1 Fourier-based Learning Algorithms
We describe three illuminating prior Fourier algorithms

for learning under the uniform distribution in terms of the
optimization problems they solve. Their approach to learn-
ing f : {−1, 1}n → {−1, 1} can be described simply in terms
of learning multivariate polynomials, where the monomials
correspond to the character functions χS(x) =

∏
i∈S xi, for

all S ⊆ [n].
The low-degree algorithm of Linial, Mansour, and Nisan

[16] (LMN) learns low-degree polynomials. Let Pd denote

the polynomials of total degree ≤ d. These have nO(d)

terms. Their algorithm approximately solves the following
minimization problem:

min
P∈Pd

E
x∈{−1,1}n

[
|P (x)− f(x)|2

]
. (1)

The LMN algorithm fits these coefficients to m = nO(d) ran-
dom labeled examples (xi, f(xi)), without the need for mem-
bership queries. Many natural classes of functions, ranging
from halfspaces to AC0, are well-approximated by polyno-
mials of varying degree, and LMN learns these (noiselessly)
with corresponding degrees of efficiency.

Kearns, Schapire, and Sellie [14] first considered Fourier-
based methods for a type of “weak” agnostic learning. Fur-
ther, Kalai et al. [13] (KKMS) showed that any concept
class C with “good” low-degree Fourier concentration can
be weakly agnostically learned; i.e., they showed that LMN
could be easily modified to output a hypothesis with error
O(opt) + ε in the agnostic setting. Subsequently, Jackson
(using an observation by Bshouty) presented an improved
analysis which gives a bound of 2opt + ε [12].

The main result of Kalai et al. is a strong agnostic learning
algorithm for halfspaces (and other suitably concentrated
concept classes). That is, the KKMS algorithm outputs a
hypothesis with error opt + ε. Achieving opt + ε, rather
than O(opt)+ε, is fundamentally important in learning the-
ory. Consider a typical boosting scenario where we can only
guarantee the existence of a weak learner with accuracy
1/2 + 1/poly(n), so that opt = 1/2 − 1/poly(n). A weak
agnostic learner might output a hypothesis with accuracy
1/2, but this is useless if we wish to boost. A strong agnos-
tic learner however, is guaranteed to find a hypothesis with
accuracy bounded away from 1/2.

To obtain their agnostic learning algorithm for functions
with low-degree Fourier concentration, KKMS considered
the following problem:

min
P∈Pd

E
x∈{−1,1}n

[ |P (x)− f(x)| ]. (2)

Their solution is to view this problem as a linear regression
problem in the nO(d)-dimensional space of coefficients and
solve it by linear programming. Intuitively, `1 regression is
better suited for agnostic learning – imagine starting with
a (noiseless) low-degree f and flipping any η fraction of the
{−1, 1} values of f . This can change the `1 “score” above of
P by at most η, but the `2 score can change by significantly
more (since P might take values outside [−1, 1]).

The KM algorithm, on the other hand, learns sparse poly-
nomials of arbitrary degree with respect to the `2 norm. It is
well-known that sparsity, meaning having few nonzero coef-
ficients, is closely related to the notion of the sum of magni-
tudes of Fourier coefficients being small. Let Kt denote the
set of polynomials for which this sum is at most t (decision
trees with at most t leaves fit into this category [15]). The
KM algorithm approximately solves the following problem:

min
P∈Kt

E
x∈{−1,1}n

[
|P (x)− f(x)|2

]
(3)

Equivalently, one can view KM as an agnostic learner for
parities, finding all Fourier coefficients above a certain thresh-
old (like the Goldreich-Levin algorithm [10]). In terms of
techniques, (3) is more challenging than (1) or (2), since in
those cases the set of coefficients is fixed, whereas KM must
discover the list of large coefficients amongst all 2n possibil-
ities.

1.2 Sparse `1 Regression
We present an agnostic analog of KM for concepts such

as decision trees that are well-approximated by sparse poly-
nomials. Our main algorithm approximately solves the fol-
lowing problem that we refer to as the sparse `1 regression
problem:

min
P∈Kt

E
x∈{−1,1}n

[ |P (x)− f(x)| ] (4)

One can cast (4) as a convex optimization problem with 2n

variables, using either the Fourier coefficients P̂ (S), S ⊂ [n],
or its pointwise values P (x), x ∈ {−1, 1}n as variables. Since
sparse polynomials have compact Fourier representations,
it is natural to use the former approach. If we knew the
support of the optimal P , then one could find P by solving
the resulting LP. It is, however, unclear how to do this. One
may guess that a natural candidate ought to be the set of
Fourier coefficients returned by running KM on f , but it is
unclear why this should be the case. Although Jackson’s



result implies a guarantee of 2opt + ε [12], the true optimal
solution could well involve coefficients that are not in the
support of f . Our main result is a strong agnostic learner
for decision trees that outputs a hypothesis with error opt+ε.

Our solution to (4) uses the gradient-projection method
from convex optimization which iterates a gradient step and
a projection step. In the gradient step, we move in the direc-
tion opposite the gradient of the function to be minimized.
Since the gradient step might take us outside of the feasible
set Kt, one moves back via a projection step to the closest
point in Kt (in Euclidean distance). A simple analysis due
to Zinkevich [20] shows that this procedure approaches the
optimum fairly quickly on a wide class of problems.

Differentiating the objective function in (4) gives the
(sub)gradient function sgn(P (x) − f(x)). While this func-
tion is easy to compute pointwise, we will need to rewrite
it in the Fourier basis, where it need not have a compact
Fourier representation. Thus, in polynomial time, we can
only compute a very weak approximation to the gradient,
namely we can only guarantee that we have a good L∞ es-
timate for every Fourier coefficient via the KM algorithm.
This is problematic, as the L1 or L2 difference could be large,
as we are working in 2n dimensions. Since the gradient com-
putation is rather inaccurate, the gradient step may take us
to a point that is far in L2 distance from where we should be
(were the algorithm run without using KM). This is a prob-
lem as Zinkevich’s analysis proceeds by showing that the
squared L2 distances from the optimal solution decrease.

Our key insight is that given points P, P ′ so that L∞(P −
P ′) ≤ ε, we can project them onto the L1 ball, retriev-
ing points Q and Q′ where L2(Q − Q′) ≤ O(

√
εt). Thus,

if we take ε = 1/poly(t), the projection step gets us close
in Euclidean distance to the correct point, which allows us
to use the standard analysis of the gradient descent algo-
rithm. This is a departure point from previous work on
the gradient-projection method [20, 7], since the properties
of the L1 ball in high dimensions are crucial for us. Indeed,
the same arguments no longer work for the Lp ball for p > 1.

Our proper agnostic learner for k-juntas uses a different
approach: the crucial step is to characterize the best k-junta
for predicting a given function f in terms of the Fourier
expansion of f . We then show that one can find a good
predictor among subsets of a set R of O(k2) variables with
large low-degree influence.

We present our algorithm for sparse `1 regression and defer
details of how it solves the problem of agnostic learning to
Appendix A. We discuss relations between our work and
recent work on Compressed Sensing in Appendix B.

2. PRELIMINARIES
Any function P : {−1, 1}n → R can be represented as

a polynomial, P (x) =
∑

S⊆[n] P̂ (S)χS(x), where χS(x) =∏
i∈S xi and P̂ (S) is the Fourier coefficient of S. Let supp(P ) =

{S | P̂ (S) 6= 0} be the support of P . Define a binary sign
function, sgn : R → {−1, 1}, where sgn(x) = 1 iff x ≥ 0.

We define the Lp norms of the coefficient vectors in 2n

dimensions: L1(P ) =
∑

S |P̂ (S)|, L2(P ) = (
∑

S P̂ (S)2)
1
2 ,

L∞(P ) = maxS |P̂ (S)|.

We define the `p norms of the function P for p ≥ 1 as

‖P (x)‖p = Ex∈{−1,1}n [|P (x)|p]
1
p ,

‖P (x)‖∞ = max
x∈{−1,1}n

|P (x)|.

We define the inner product of two functions as,

P ·Q = Ex[P (x)Q(x)].

By orthogonality of characters, P · Q =
∑

S P̂ (S)Q̂(S). A
special case is Parseval’s identity: P ·P = ‖P (x)‖22 = L2(P )2.

Given an oracle for P : {−1, 1}n → R and θ > 0, the KM
algorithm returns a list of size at most L2(P )2θ−2 containing

all S such that |P̂ (S)| ≥ θ. One can estimate these coeffi-
cients accurately by sampling, and set the other coefficients
to 0 to get a sparse approximation Q for P .

Lemma 3. [15] Given an oracle for P : {−1, 1}n → R,
KM(P, θ) returns Q : {−1, 1}n → R with | supp(Q)| ≤
O(L2(P )2θ−2) and L∞(P − Q) ≤ θ. The running time is
poly(n, θ−1, L2(P )).

In general, P need not have a good sparse L2 approxi-
mation: for instance if all the Fourier coefficients of P are
less than θ, then Q = 0. We say that a polynomial is t-
sparse if L1(P ) ≤ t. It is well-known that decision trees
with t leaves are t-sparse [15]. Let Kt denote the convex
set {P : L1(P ) ≤ t}. For t-sparse polynomials, most of the
Fourier mass is concentrated on a few Fourier coefficients,
and we get the following stronger guarantee:

Lemma 4. [15] If P is t-sparse, then KM(P, ε2

2t
) returns

Q s.t. ‖P −Q‖2 ≤ ε.

Let D be a distribution on X × Y for X = {−1, 1}n and
Y = {−1, 1} such that the marginal distribution on X is
uniform. A membership query oracle for D returns y ∈ Y
distributed according to D|x for a query x ∈ X. Let C be a
concept class of Boolean functions. Define the error of c ∈ C
on D as errD(c) = Pr〈x,y〉←D[c(x) 6= y] and the optimal error
of C on D as opt = minc∈C errD(c).

Definition 1. A concept class C is agnostically learnable
with queries under the uniform distribution if there is an
algorithm which when given a query oracle for D and pa-
rameters ε, δ as inputs, returns a hypothesis h : {−1, 1}n →
{−1, 1} such that Pr〈x,y〉←D[h(x) 6= y] ≤ opt + ε with prob-
ability 1− δ.

3. IDEALIZED PROJECTED SUBGRADIENT
DESCENT FOR SPARSE `1 REGRESSION

In this section we give an idealized algorithm for solving
the sparse `1 regression problem via a steepest descent op-
timization procedure. The goal of the procedure is, given a
convex function F : K → R on compact convex set K ⊆ RN ,
to find P ∈ K such that F (P ) ≤ minQ∈K F (Q) + ε. While
the method is quite old [18], we know of no simpler rate
bounds than a recent analysis due to Zinkevich [20] for a
more general online version of the algorithm.

Since the function we minimize is convex but
non-differentiable, we use the generalization of gradients to
non-differentiable functions. Formally, V ∈ RN is a subgra-
dient of convex F : K → R at P , written V ∈ ∇F P , if for
every Q ∈ K, we have F (Q) ≥ F (P ) + V · (Q−P ). Assume



that we have an oracle that computes a subgradient of F at
any point P . Also assume that the convex set K ⊂ RN is
represented by a projection oracle, projK(P ) which returns
the point in K which is closest in L2 to P . The gradi-
ent projection method (often called the projected subgradi-
ent method) chooses a sequence of points, starting with an
arbitrary P1 ∈ K and then taking Pi+1 = projK(Pi − ηVi),
where η > 0 is a step size and Vi ∈ ∇F (Pi).

One can translate this to our setting to get an algorithm
for sparse `1 regression that takes time 2O(n). We wish to op-
timize over the convex set Kt = {P : L1(P ) ≤ t}. We view
functions P : {−1, 1}n → R as vectors in 2n dimensions,
where the co-ordinates correspond to the Fourier coefficients.
The Fourier representation is used since polynomials in Kt

have sparse representations. The objective function we wish
to minimize is errf : R2n

→ R, which is defined as errf (P ) =
‖P − f‖1. It is easy to give a projection oracle for the L1

ball. We next address the sub-gradient computation. Given
a function P , define the function ∇fP : {−1, 1}n → {−1, 1}
as ∇fP (x) = sgn(P (x)−f(x)). While we have defined ∇fP

by its pointwise values, we may view it as a vector in R2n

via its Fourier expansion (though rewriting it in the Fourier
basis takes time 2n). The next claim shows that ∇fP is
indeed a sub-gradient for errf at P (∇fP ∈ ∇errf P ).

Lemma 5. For any polynomials P and Q, ∇fP ·(P−Q) ≥
errf (P )− errf (Q).

Proof: We use the inequality that |a − c| ≥ |b − c| + (a −
b) sgn(b−c) for reals a, b, c: |b−c|+(a−b) sgn(b−c) = (b−
c) sgn(b−c)+(a−b) sgn(b−c) = (a−c) sgn(b−c) ≤ |a−c|.
By applying this to Q(x), P (x), f(x), we get

|Q(x)− f(x)|
≥ |P (x)− f(x)|+ (Q(x)− P (x)) sgn(P (x)− f(x))
= |P (x)− f(x)|+ (Q(x)− P (x))∇fP (x).

Taking expectations on both sides and using A · B =
Ex[A(x)B(x)] we have,

Ex[|Q(x)−f(x)|] ≥ Ex[|P (x)−f(x)|]+ Ex[(Q(x)−P (x))∇fP (x)]

⇒ ‖Q(x)− f(x)‖1 = ‖P (x)− f(x)‖1 + (Q− P ) · ∇fP.

Hence errf (Q) ≥ errf (P ) + (Q − P ) · ∇fP . The claim
follows by rearranging terms. 2

Algorithm 1. Idealized Algorithm
Inputs: integer T ≥ 1 and real η ∈ (0, 1).

P0 := 0.
For k = 1, 2, . . . , T:

1. P ′k := Pk−1 − η∇fPk−1.

2. Let Pk := projK(P ′k).
Return the best Pk over k = 1, 2, . . . , T.

One can use the standard analysis of gradient descent [20]
to show that following algorithm will successfully find a poly-
nomial in K that approximately minimizes errf (P ). How-
ever, the algorithm takes time Ω(2n) since it works with
vectors in 2n dimensions.

Theorem 6. Let P∗ ∈ Kt be the polynomial that mini-
mizes errf . Let T ≥ 1 and η = t/

√
T . If we run Algorithm

1 for T steps, for some k ≤ T , Pk satisfies errf (Pk) ≤
errf (P∗) + η.

4. AN EFFICIENT IMPLEMENTATION OF
THE IDEALIZED ALGORITHM

In order to design an efficient analogue of Algorithm 1,
rather than working with polynomials with 2n coefficients,
we only compute and store sparse approximations to the var-
ious polynomials involved using KM. Computing the gradi-
ent via KM is problematic since it may not be even weakly
approximated (in L2) by sparse polynomials. We circum-
vent this by analyzing the projection operator onto the L1

ball in detail and show that it works well even with a weak
L∞ approximation given by KM. Additionally, we need to
show how to compute the sub-gradient and projection op-
erators efficiently from these approximations. We state our
efficient gradient descent algorithm using KM:

Algorithm 2. Gradient Descent using KM
Inputs: integer T ≥ 1 and reals η, θ ∈ (0, 1).

P0 := 0.
For k = 1, 2, . . . , T:

1. P ′k := Pk−1 − η KM(∇fPk−1, θ).
2. Let Pk := KM(projK(P ′k), θ).

Return the best Pk over k = 1, 2, . . . , T.

The parameter θ will be fixed later. For all k, Pk will
be a t-sparse polynomial with ` = poly(t, ε−1) non-zero co-
efficients. To compute KM(∇fPk−1, θ) we need an oracle
for ∇fPk−1 = sgn(Pk−1 − f). We can simulate this oracle,
as Pk−1 is stored as a sparse polynomial, and we are given
an oracle for f . Although Pk−1 is sparse, ∇fPk−1 could
be far from sparse, and all we can guarantee (using Lemma
3) is an L∞ approximation. Lemma 7 shows how to com-
pute projK(P ′k) from P ′k efficiently. Applying KM in step 2
maintains the invariant that | supp(Pk)| ≤ `.

In Section 4.1 we analyze the projection step in Algorithm
1 in detail, and in Section 4.2 we show that if P ′ is such that
||P −P ′||∞ is small then ||projK(P )−projK(P ′)||2 is small.
In Section 4.3 we present the full analysis of Algorithm 2.

4.1 Projecting onto the L1 Ball
The project operator projK(P ) for P : {−1, 1}n → R

maps P to the closest Q in Euclidean distance that satis-
fies L1(Q) ≤ t (we write projK rather than projKt

for sim-
plicity). Formally, projK(P ) = arg minL1(Q)≤t ‖P − Q‖2.
If we wanted | supp(Q)| = t, then truncating P to its t
largest Fourier coefficients suffices. However since we want
L1(Q) ≤ t, we need to be more careful.

Definition 2. Given a function P and ` ≥ 0, define
shrink(P, `) as the function Q where

Q̂(S) =


P̂ (S)− ` if P̂ (S) ≥ `

P̂ (S) + ` if P̂ (S) ≤ −`

0 otherwise.

(5)

Lemma 7. For any P , projK(P ) = shrink(P, `) for the
smallest ` ≥ 0 so that shrink(P, `) ∈ Kt.

Proof: If L1(P ) ≤ t, then clearly projK(P ) = P and the
claim holds. So assume that L1(P ) = t′ > t. Since ‖P −
Q‖2 = L2(P −Q), we can restate the problem as

Minimize
∑

S

(P̂ (S)− Q̂(S))2 over Q ∈ K (6)



We claim that the optimal solution Q satisfies sgn(P̂ (S)) =

sgn(Q̂(S)) for every S. If this were not true, setting Q̂(S) =
0 would simultaneously reduce L2(P −Q) and L1(Q), thus
giving a better solution to (6). Similarly, one can show that

|Q̂(S)| ≤ |P̂ (S)|. From now on, we will assume that P̂ (S) ≥
0 for all S. Let Q̂(S) = P̂ (S)−`(S) where 0 ≤ `(S) ≤ P̂ (S).
Note that the set K is convex and P lies outside this set, so
Q will lie on the surface of K, hence L1(Q) = t.

By the above conditions, we can rewrite (6) as

Minimize
∑

S

`(S)2

subject to∑
S

`(S) = t′ − t, 0 ≤ `(S) ≤ P̂ (S).

Without the upper bounds `(s) ≤ P̂ (S), the best solution
would be to take all `(S) equal. With these bounds, we claim
the best solution is to take all `(S) as equal as possible. Fix
the optimal solution to (4.1) and say that S is tight if `(S) =

P̂ (S). We claim that for any S, T both of which are not tight,
`(S) = `(T ). For contradiction, assume `(S) > `(T ). Then
increasing `(T ) and decreasing `(S) by small amounts gives
a feasible solution (since they are not tight), and decreases
the objective function. Let ` = `(S) for any non-tight set S.

Thus Q̂(S) = 0 if S is tight, and Q̂(S) = P̂ (S)−` otherwise,
which implies our claim. 2

Lemma 7 shows how to compute projK(P ) if P is written
as a sum of Fourier coefficients. We start decreasing all the
Fourier coefficients of P by equal amounts, keeping their
signs the same. If some coefficient reaches 0, it then stays
at 0. We continue this till we reach a Q where L1(Q) = t.

4.2 Projecting L∞ Approximations
Algorithm 2 uses KM to get a sparse approximation to

the gradient in Step 1. Since the gradient might be far
from sparse, in time poly(n, ε−1), KM only guarantees an
L∞ approximation (see Lemma 3). Thus, if P is the point
reached using the exact gradient, Step 1 takes us to P ′ s.t.
L∞(P − P ′) ≤ ε. However L1(P − P ′) and L2(P − P ′)
could be huge since we are in 2n dimensions. However we
will show that L2(projK(P )−projK(P ′)) ≤

√
4εt, using the

fact that projK does not change much under coordinate-wise
perturbations.

Lemma 8. Let P, P ′ be such that L∞(P − P ′) ≤ ε. Then
L∞(projK(P )− projK(P ′)) ≤ 2ε.

Proof: Let

Q = projK(P ) = shrink(P, `),

Q′ = projK(P ′) = shrink(P ′, `′).

First assume that one of the points, say P already lies in
the convex set K. Then it is clear that after reducing each
coefficient P̂ ′(S) by at most ε, we get a point Q′ such that
L1(Q

′) ≤ L1(P ) ≤ t. Thus we have L∞(P −Q′) ≤ L∞(P −
P ′) + L∞(P ′ −Q′) ≤ 2ε.

So assume that P, P ′ 6∈ K. We will show that in this
case |` − `′| < ε. The claim then follows by plugging this
into Equation 5 and some simple case analysis. For con-
tradiction, assume that ` < `′ − ε. Define the set S =

{S : |Q̂′(S)| > 0}. This set is non-empty since L1(Q
′) = t.

Note that |P̂ (S)| ≥ |P̂ ′(S)| − ε. If we shrink P by ` and

P ′ by `′ > ` + ε, we get |Q̂(S)| = |P̂ (S)| − ` > |P̂ ′(S)| −
`′ = |Q̂′(S)| ≥ 0. Summing over all sets S ∈ S, we get

L1(Q) ≥
∑

S∈S |Q̂(S)| >
∑

S∈S |Q̂′(S)| = t. But this is a
contradiction since L1(Q) = t. 2

Lemma 9. For P, P ′ such that L∞(P − P ′) ≤ ε, we have

‖projK(P )− projK(P ′)‖2 ≤ (4εt)
1
2 .

Proof: By Lemma 9,

L∞(projK(P )− projK(P ′)) ≤ 2ε.

Also,

L1(projK(P )− projK(P ′)) ≤ L1(projK(P )) + L1(projK(P ′))

≤ 2t.

By Hölder’s inequality

L2(projK(P )− projK(P ′))2 ≤
L∞(projK(P )− projK(P ′)) · L1(projK(P )− projK(P ′))

≤ 4εt.

The claim now follows from Parseval’s identity. 2

This lemma shows that given only an oracle for P (and not
its Fourier expansion), we can still project onto the L1 ball
with small L2 error, by applying projK to P ′ = KM(P, ε).
It is not clear if this is possible when K is the Lp ball for
p > 1.

4.3 Analysis of Subgradient Descent using KM
To analyze Algorithm 2, we define the polynomials Q′k =

Pk−1 − η∇fPk−1 and Qk = projK(Q′k), which correspond
to executing the kth iteration of Algorithm 2 without using
KM for sparsification. The crux of our analysis is to bound
‖Pk−Qk‖2. A bound of O(t) is trivial since both points lie in
Kt. The next lemma shows that running KM with accuracy
parameter θ actually gives ‖Pk −Qk‖2 = O(

√
θt). Thus by

running KM for poly(t) time, this distance will approach 0.

Lemma 10. The polynomials Pk and Qk satisfy ‖Pk −
Qk‖2 ≤ 4(θt)

1
2 .

Proof: We first show that L∞(P ′k −Q′k) ≤ θ. We have
P ′k −Q′k
= (Pk−1 − η KM(∇fPk−1, θ))− (Pk−1 − η∇fPk−1)
= η(∇fPk−1 −KM(∇fPk−1, θ)).

By Theorem 3, L∞(∇fPk−1−KM(∇fPk−1, θ)) ≤ θ which
implies L∞(P ′k −Q′k) ≤ θ, since η ≤ 1.

Applying Lemma 9 to P ′ and Q′, we get ‖projK(P ′k) −
projK(Q′k)‖2 < (4θt)

1
2 . Note that Pk = KM(projK(P ′k), θ),

and that projK(P ′k) is t-sparse, hence by Lemma 4, KM

gives a good `2 approximation: ‖Pk−projK(P ′k)‖2 ≤ (2θt)
1
2 .

Since Qk = projK(Q′k), by the triangle inequality,
‖Pk −Qk‖2
≤ ‖Pk − projK(P ′k)‖2 + ‖projK(P ′k)− projK(Q′k)‖2
≤ (4θt)

1
2 + (2θt)

1
2

< 4(θt)
1
2 .

2

The following lemma, which is the key to analyzing gra-
dient descent shows that as long as errf (Pk) is much larger
than errf (P∗), we move close to P∗.



Lemma 11. Let P∗ ∈ K be the polynomial that minimizes
errf . Then (for suitable choice of θ),

‖Pk − P∗‖22 − ‖Pk+1 − P∗‖22 ≥ 2η(errf (Pk)− errf (P∗))− 2η2.

Proof:
Using Lemma 10 and the triangle inequality, ‖Pk−P∗‖2 ≤

‖Qk − P∗‖2 + 4(θt)
1
2 . Now observe that ‖Qk − P∗‖2 =

L2(Qk −P∗) ≤ L1(Qk −P∗) ≤ L1(Qk) + L1(P∗) ≤ 2t where
the last inequality holds since Qk, P∗ ∈ K. Hence for all k
and C < 100,

‖Pk − P∗‖22 ≤ ‖Qk − P∗‖22 + 16t(θt)
1
2 + 16θt

≤ ‖Qk − P∗‖22 + Ct
√

θt.

Therefore, we have
‖Pk − P∗‖22 − ‖Pk+1 − P∗‖22 ≥
‖Pk − P∗‖2 − ‖Qk+1 − P∗‖22 − Ct

√
θt. (A)

We now use the fact that projecting a point onto a convex
set K reduces the distance to points in K, hence ‖Qk+1 −
P∗‖2 ≤ ‖Q′k+1 − P∗‖2. Plugging this into Equation (A),

‖Pk − P∗‖22 − ‖Pk+1 − P∗‖22
≥ ‖Pk − P∗‖2 − ‖Q′k+1 − P∗‖22 − Ct

√
θt

= (Pk − P∗)
2 − (Pk − P∗ − η∇fPk)2 − Ct

√
θt

= 2η∇fPk · (Pk − P∗)− η2∇fP 2
k − Ct

√
θt

≥ 2η(errf (Pk)− errf (P∗))− η2 − Ct
√

θt (By Lemma 5)

We will choose θ small enough that Ct
√

θt < η2, which
completes the proof. 2

Using this lemma, we can now prove Theorem 12, which
formally states the convergence properties of Algorithm 2.

Theorem 12. Let P∗ ∈ Kt be the polynomial that min-
imizes errf . Let T be any positive integer. If Algorithm 2

is run for T steps with η ≤ t√
T
, θ ≤ η2

C2t3
(for sufficiently

small C) then for some k ≤ T , errf (Pk) ≤ errf (P∗) + 2η.
The overall running time is poly(n, t, T ).

Proof: By Lemma 11, the distance from Pk to P∗ decreases
as long as

2η(errf (Pk)− errf (P∗))− 2η2 ≥ 0

and therefore implies errf (Pk) ≥ errf (P∗) + η.
Moreover, for each k where errf (Pk) ≥ errf (P∗) + 2η, we

have ‖Pk − P∗‖22 − ‖Pk+1 − P∗‖22 ≥ 2η2. Initially P0 = 0, so
‖P0 − P∗‖22 = ‖P∗‖22 ≤ L1(P∗)

2 ≤ t2. So by our choice of η,

after T = t2

2η2 steps, there must be some k ≤ T such that

‖Pk − P∗‖22 ≤ 2η2. For this Pk by Lemma 5,

errf (Pk)− errf (P∗) ≤ (Pk − P∗) · ∇fPk

≤ ‖Pk − P∗‖2‖∇fPk‖2
≤ 2η

hence the claim holds. 2

5. PROPERLY LEARNING JUNTAS
Recall that h : {−1, 1}n → {−1, 1} is a k-junta if it de-

pends on only k out of n variables. Given f : {−1, 1}n →
{−1, 1}, our goal is to find the k-junta h such that
Prx∈{−1,1}n [f(x) 6= h(x)] is minimized. Define errf (h) =
Prx[h(x) 6= f(x)]. Let η be the minimum value of errf (h)
over all k-juntas h. If h only depends on variables in K ⊆ [n],
we will call it a K-junta. We first characterize the best

K-junta for a function f . For a vector x ∈ {−1, 1}n and
K ⊆ [n], let xK denote the projection of x onto the co-
ordinates in the set K.

Lemma 13. Given K ⊂ [n], and f : {−1, 1}n → {−1, 1},
let fK(x) =

∑
S⊆K f̂(S)χS(x). The K-junta that minimizes

errf is given by hK(x) = sgn(fK(x)). Further, errf (hK) =
1
2
(1− ‖fK(x)‖1).

Proof. Firstly, observe that hK is really a K-junta since
fK depends only on xK . Let us fix a value u ∈ {−1, 1}k.
By x|xK = u we denote the random variable x where the
indices in K are set according to u and the rest are uniformly
random. This identifies a sub-cube CK(u) of {−1, 1}n. A
K-junta will evaluate to the same value at every point in
this sub-cube. Hence the agreement with f is maximized by
the function gK : {−1, 1}k → {−1, 1} defined as

gK(u) = Majx∈CK(u) f(x) = sgn(E[f(x)|xK = u])

=
∑

S⊆[n]

f̂(S) E[χS(x)|xk = u].

Since xi is an unbiased {−1, 1} variable when i 6∈ K,

E[χS(x)|xk = u] =

{
χS(u) if S ⊆ K

0 otherwise

Hence E[f(x)|xK = u] =
∑

S⊆K f̂SχS(u) ⇒ gK(u) =

sgn(fK(u)) = hk(u).
Since E[f(x)|xK = u] = fK(x), and f(x) ∈ {−1, 1}, we

have

Pr[f(x) = sgn(fK(x))|xK = u] = 1
2

+ |fK(u)|
2

(7)

Pr[f(x) 6= sgn(fK(x))|xK = u] = 1
2
− |fK(u)|

2

Averaging this over all u ∈ {−1, 1}k, and observing that the
uniform distribution on x induces the uniform distribution
on xK , we obtain errf (hK) = Pr[hK(x) 6= f(x)] = 1

2
−

Ex |fK(x)|
2

= 1
2
(1− ‖fK(x)‖1).

Thus our goal is to find the k-subset K ⊆ [n] such that
Ex[|fK(x)|] is maximized (which need not be the k-subset
with the most Fourier mass). One can show that any func-
tion gK which is close to fK in `1 distance gives a good
predictor.

Lemma 14. Let gK : {−1, 1}k → R be such that ‖fK(x)−
gK(x)‖1 < ε, and let h′K = sgn(gK). Then errf (h′K) <
errf (hK) + 2ε.

Proof. Let us fix xk = u. Then by equation 7, we have

errf (h′K |xk = u] =


errf (hK |xk = u) if sgn(g(u)) = hK(u)

errf (hK |xK = u) + 2|fK(u)|
if sgn(g(u)) 6= hK(u)

In either case,

errf (h′K |xK = u) ≤ errf (hK |xK = u) + 2|fK(u)− gK(u)|

Averaging over all choices of u,

errf (h′K) ≤ errf (hK)+2 Ex |fK(x)−gK(x)| ≤ errf (hK)+2ε



Our algorithm first uses KM to identify all large Fourier
coefficients in f . We retain only those variables which have
large low-degree influence on g: let I≤k

i (g) =
∑

i∈S,|S|≤k ĝ(S)2

and discard variables where I≤k
i (g) ≤ ε2

2k
. The effect of

this is to reduce the number of surviving variables to O(k2),
while ensuring that the Fourier mass associated with the
best set K does not reduce by much. We then return the
best k-junta found by brute-force search.

Algorithm 3. Agnostic Junta Learner
1. Run KM on f with θ = ε2−k/2 to get

g(x) =
∑

S

ĝ(S)χS(x).

2. Let R = {i | I≤k
i (g) ≥ ε2

k
} and let

g′(x) =
∑
S⊆R

ĝ(S)χS(x).

3. For every K ⊆ R of size k, let h′K =
sgn(g′K) and estimate errf (h′K).
4. Return h′K which minimizes errf (h′K).

Theorem 15. Algorithm 3 finds a k-junta h′ such that
errf (h′) ≤ η + 5ε in time poly(n, kk, ε−k).

Proof: Let K be the set such that hK = sgn(fK) has the

least error η. In Step 1, we have |ĝ(S) − f̂(S)| < θ for

all S ⊆ K. Hence Ex |gK(x) − fK(x)|2 =
∑

S⊆K |f̂(S) −
ĝ(S)|2 ≤ 2kθ2 ≤ ε2.

In Step 2, we drop those variables i from g where I≤k
i (g) <

ε2

k
. Assume that we drop k′ ≤ k variables from the set K.

The total Fourier mass on the coefficients involving these

variables is bounded by k′ ε
2

k
≤ ε2. Hence Ex |gK(x) −

g′K(x)|2 ≤ ε2, so
Ex |fK(x)− g′K(x)|
≤ Ex |fK(x)− gK(x)|+ Ex |gK(x)− g′K(x)|
≤ (Ex |fK(x)− gK(x)|2)1/2 + (Ex |gK(x)− g′K(x)|2)1/2

≤ ε + ε
= 2ε.

Thus by Lemma 14, errf (g′K) ≤ η + 4ε. It is easy to show
using Chernoff bounds that the predictor h′K returned in
Step 4 is not much worse, errf (h′K) ≤ η + 5ε.

To bound the time taken in Step 3, we show that |R| =

O(k2). Note that
∑

i∈[n] I
≤k
i (g) =

∑
S:|S|≤k |S|ĝ(S)2 ≤

k
∑

S ĝ(S)2 ≤ k. So at most k2ε−2 variables satisfy I≤k
i (g) ≥

ε2/k. Hence |R| ≤ k2ε−2. Thus the number of choices in

Step 3 is bounded by
(|R|

k

)
≤ (ekε−2)k. Thus the running

time is bounded by poly(n, kk, ε−k). 2

6. FURTHER EXTENSIONS
Our results show that for the uniform distribution with-

out queries, agnostically learning sparse polynomials reduces
to learning parities with random noise aka the noisy parity
problem. This generalizes a result of [6] who showed such a
reduction in the random noise setting.

A natural question to ask is whether one can come with an
agnostic analog of Jackson’s celebrated algorithm for DNFs

[11]. An agnostic learner for DNFs will give a weak learner
for depth-3 AC0 circuits with queries under the uniform
distribution in the noiseless setting; there is no known poly-
nomial time algorithm for this problem. We note that Al-
gorithm 2 will not solve this problem; one can construct a
function f where Algorithm 2 gives a hypothesis with accu-
racy 1/2, whereas there is a polynomial size DNF formula
with correlation at least 1/poly(n) with f .

Is it possible to agnostically learn decision trees with queries
in polynomial time for other distributions? Decision trees
are known to be learnable in polynomial time in the exact
model of learning with membership and equivalence queries
[3, 1]. It would be interesting to find analogues of these
algorithms for the agnostic setting.
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APPENDIX
A. AGNOSTIC LEARNING VIA `1

MINIMIZATION
In this section, we show how to use the algorithm for solv-

ing the `1 minimization problem described in the introduc-
tion for agnostic learning. We first give an algorithm for
agnostic learning assuming that the examples given to the
learner are labeled by an arbitrary deterministic function.
We then show how to extend this solution to the full ag-
nostic setting where the learner receives examples labeled
according to an arbitrary distribution on {−1, 1}n×{−1, 1}.

Recall the definition of the sparse `1 regression problem:

Definition 3. The sparse `1 regression problem takes as
input an oracle encoding an arbitrary (deterministic) func-
tion f : {−1, 1}n → [−1, 1], parameters t and ε, and with
high probability outputs a polynomial P such that L1(P ) ≤
t and Ex∈D[|P (x) − f(x)|] ≤ minQ,L1(Q)≤t Ex∈D[|Q(x) −
f(x)|] + ε.

Theorem 16. Let C be a concept class such that for every
c ∈ C, there exists a Real polynomial p(x) such that L1(p) ≤
t and Ex∈D[|p(x) − c(x)|] ≤ 2ε/3. Let A be an algorithm
that solves the sparse `1 regression problem with respect to
D in time r(t, 1/ε, n). Then there exists an algorithm for
agnostically learning C that runs in time polynomial in r.

Let I(A) be the function that is 1 if predicate A holds
and 0 otherwise. To prove Theorem 16, we need the fol-
lowing lemma, which is implicit in the analysis of the main
theorem in Kalai et al. [13]. It gives a way to convert
from P : {−1, 1}n → R which is close to f in terms of
Ex[|P (x) − f(x)|] to binary h : {−1, 1}n → {−1, 1} with
low Pr[h(x) 6= f(x)]. One takes h(x) = I(x ≥ θ), where θ
is chosen by picking a number of random labeled examples

(x1, f(x1)), . . . , (xm, f(xm)) and then solves
minθ∈[0,1] |{i ∈ [m] | f(xi) 6= I(P (xi) ≥ θ)}|. This minimiza-
tion can be performed in time O(m log m) by first sorting
the examples based on P (xi).

Lemma 17. For any functions f : {−1, 1}n → {−1, 1},
P : {−1, 1}n → R, and parameters ε, δ > 0, take m =
O(ε−2 log(1/δε)) uniformly random examples from {−1, 1}n

and let θ ∈ [−1, 1] be such that it minimizes the number
of disagreements between f(x) and h(x) = I(P (x) ≥ θ) on
the m examples. Then, with probability 1 − δ over the m
examples, the resulting h satisfies,

Prx[h(x) 6= f(x)] ≤ Ex[|P (x)− f(x)|]
2

+ ε.

Proof: The proof follows that of Theorem 5 of [13]. Let
Z = 〈x1, . . . , xm〉 ∈ {−1, 1}n×m be the uniformly random
examples chosen, and θ ∈ [−1, 1] minimize the empirical
error errZ(h) = 1

m
|{i ∈ [m] | f(xi) 6= I(P (xi) ≥ θ)}|. Let

x′ = P (x) and y′ = f(x). The uniform distribution on x
induces a distribution on (x′, y′) ∈ R×{−1, 1}, to which we
can apply VC theory. Since the VC dimension of thresholds
on the line is 1, and the hypothesis h, viewed in terms of x′,
is simply a threshold, for m = O(log(δ−1ε−1)ε−2),

PrZ [err(h) ≥ errZ(h) + ε/2] ≤ δ/2.

Hence, it suffices to show that with probability ≥ 1 − δ/2,

errZ(h) ≤ E[|P (x)−f(x)|]
2

+ ε/2.
Next we make the following claim about the empirical

error errZ(h), for all Z ∈ {−1, 1}n×m

1

m
|{i ∈ [m] | f(xi) 6= I(P (xi) ≥ θ)}|

≤ 1

m

m∑
i=1

min
{ |P (xi)− f(xi)|

2
, 1

}
.

Note that in the above, θ is a function of Z. To see why
the above inequality holds, suppose for a moment that in-
stead we had independently chosen θ uniformly at random
in [−1, 1]. Then, ∀ x ∈ {−1, 1}n Prθ∈[0,1][I(P (x) ≥ θ) 6=
f(x)] ≤ min{ |P (x)−f(x)|

2
, 1}. The reason is that I(P (xi) ≥

θ) 6= f(x) if and only if θ lies between P (xi) and f(xi). In
other words, let A = [min{P (x), f(x)}, max{P (x), f(x)}].
Then h(x) 6= f(x) iff θ ∈ A. Since θ is uniform over
[−1, 1], this happens with probability equal to the width of

A∩ [−1, 1], which is upper-bounded by both |P (x)−f(x)|
2

and
1. Thus the expectation of the left hand side of the inequal-
ity, over random θ, is less than the right hand side. Hence,
the inequality holds for the θ chosen to minimize empirical
error as well.

Next, by Chernoff bounds, for m = O(log(δ−1ε−1)ε−2),

with probability ≥ 1− δ/2, 1
m

∑m
i=1 min

{ |P (xi)−f(xi)|
2

, 1
}
≤

Ex

[
min

{ |P (x)−f(x)|
2

, 1
}]

+ ε/2 ≤ Ex[|P (x)−f(x)|]
2

+ ε/2. Com-

bining this with (8), gives that with probability ≥ 1 − δ/2,

errZ(h) ≤ E[|P (x)−f(x)|]
2

+ ε/2, which completes the proof. 2

Proof Proof of Theorem 16. Fix an arbitrary func-
tion f(x) and let c(x) be the optimal concept for f(x) with
respect to D. Let P (x) be the polynomial output by run-
ning A with oracle access to f(x) and parameters t and ε/3.
Take m new examples (x1, f(x)1), . . . , (xm, f(xm)) chosen



at random from {0, 1}n according to D (m will be chosen
later). Compute θ to minimize the classification error of the
function h(x) = sgn(P (x)−θ) with respect to the m new ex-
amples (there are only m+1 choices for θ). We now analyze
the error of h(x), our output hypothesis.

Let p∗ be the polynomial such that Ex[|p∗(x) − c(x)|] ≤
2ε/3. Since P (x) is a solution to the sparse `1 regression
problem, we have with high probability that Ex[|P (x) −
f(x)|] ≤ Ex[|p∗(x) − f(x)|] + ε/3. Choosing m sufficiently
large according to Lemma 17 and applying the triangle in-
equality we have

Prx[h(x) 6= f(x)] ≤ Ex[|p∗(x)− c(x)|]
2

+
Ex[|c(x)− f(x)|]

2

+2ε/3.

Recall that Ex[|c(x)− f(x)|] is precisely 2opt. Therefore,
by setting m = O(log(1/δε)/ε2), with probability at least
1− δ, the classification error of h is at most opt + ε.

As stated earlier, Theorem 16 holds in the setting where
the learner has access to examples labeled by a fixed de-
terministic function. We can remove this restriction and
learn in the“true”agnostic setting where the learner receives
examples labeled according to an arbitrary distribution on
{−1, 1}n × {−1, 1} whose marginal on {−1, 1}n is uniform.
We defer the details of this reduction to Appendix A.1.

It is well known that for every decision tree T , there ex-
ists a polynomial p computing T with L1(p) equal to the
number of leaves of T [15]. Combining Theorem 16 with the
polynomial-time solution to the sparse `1 regression problem
from Section 4 we obtain our main result:

Theorem 18. The class of polynomial-size decision trees
can be agnostically learned (using queries) to accuracy ε in
time poly(n, 1/ε) with respect to the uniform distribution.

A.1 From Fixed Functions to Distributions
In Section A, we described an algorithm for agnostically

learning decision trees in a setting where the learner has
access to an arbitrary but fixed deterministic functions. In
this section, we give a more general agnostic learner that
works with respect to distributions on {−1, 1}n × {−1, 1}
whose marginal distribution on {−1, 1}n is uniform. The
statements in this subsection may be folklore, but we have
been unable to find a proof.

Define

opt = arg min
c∈C

Prx,y∈D[c(x) 6= y].

For a hypothesis h and a function f let errf (h) = Prx[h(x) 6=
f(x)] and for a distribution D let errD(h) = Prx,y∈D[h(x) 6=
y].

Fix D on {−1, 1}n×{−1, 1}. Define the distribution F (D)
over deterministic functions f : {−1, 1}n → {−1, 1} to be
the distribution where, for each x ∈ {−1, 1}n independently,
f(x) is chosen to be -1 or 1 with probabilities PD[y = 1|x]
and PD[y = −1|x]. Running an algorithm A with oracle
access to D is equivalent1 to running A with oracle access
to a random f chosen according to F (D).
1Note that we need that A never queries the same x twice,
which is a reasonable requirement since A is designed for a
deterministic query function.

We will need the following lemma relating errf (h) for a
randomly chosen f and errD(h):

Lemma 19. Let Af be any algorithm that makes q dis-
tinct queries to some fixed function f : {−1, 1}n → {−1, 1}
and outputs h : {−1, 1}n → {−1, 1}. (If A is randomized,
we may think of it as being deterministic by fixing its ran-
dom bits). Imagine running A after choosing f according to
F (D). Then

Ef←F (D) [errD(h)] ≤ Ef←F (D) [errf (h)] + q2−n.

Proof. Let f be drawn according to F (D) and let the
points queried by A be Q ⊆ {−1, 1}n, with |Q| = q. Let h
be the resulting hypothesis. Then we have

errD(h) = Prx[h(x) 6= y] = Ef ′←F (D)[Prx[h(x) 6= f ′(x)]],

where f ′ is an independent function chosen according to
F (D). How do the quantities errf (h) and errf ′(h) differ, in
expectation? Note that h was constructed only based on the
results of the queries to q different x’s. On the remaining
2n − q points, f and f ′ are identically distributed (and un-
known). Hence, in expectation, the two quantities differ by
at most q2−n.

Theorem 20. Let C be a concept class of c : {−1, 1}n →
{−1, 1} and let q > 0. Suppose that algorithm Af (r, ε, δ)
(using random bits r) has the following property: for any
ε, δ > 0, for any c ∈ C, f : {−1, 1}n → {−1, 1}, A makes
polynomially many queries to f , outputting h : {−1, 1}n →
{−1, 1} such that

Er [errf (h)] ≤ min
c∈C

errf (c) + ε.

Then there is an algorithm that has the following guaran-
tee for any distribution D over {−1, 1}n×{−1, 1}, when the
oracle to f is replaced by an oracle to D: A makes polynomi-
ally many queries to D and outputs h : {−1, 1}n → {−1, 1}
such that, with probability ≥ 1− δ,

Ef←F (D),r [errD(h)] ≤ min
c∈C

errD(c) + ε.

Proof. First, we claim that,

Ef←F (D)

[
min
c∈C

errf (c)

]
≤ min

c∈C
errD(c).

To see this, let c∗ ∈ C be a function such that errD(c∗) =
minc∈C errD(c). Then note that

Ef←F (D)

[
min
c∈C

errf (c)

]
≤ Ef←F (D) [errf (c∗)] = errD(c∗).

Next note that since with probability 1− δ, A is within ε
of opt, we have the following:

Er [errf (h)] ≤ errD(c∗) + ε + δ.

By the previous lemma, we have,

Ef←F (D),r [errD(h)] ≤ errD(c∗) + ε + δ + q2−n.

It is straightforward to transform this into a learning al-
gorithm that achieves error opt + ε by repeatedly running
the algorithm several times on independent test sets and
choosing the hypothesis with lowest error.



B. RELATION TO COMPRESSED SENSING
While problems of similar flavor have been investigated

in the compressed sensing literature, there seem to be some
important differences between their settings and ours. A
typical CS scenario is one where a learner is allowed to make
measurements of a signal f with N = 2n entries and asked
to find the “best” sparse representation P of this signal with
respect to the `1 or `2 norm. The best sparse approximation
is obtained by taking the largest co-ordinates of the signal f .
There are numerous algorithm that give strong guarantees
in this setting (see for instance [9]).

In our setting, let f̂ = {f̂(S)}S⊆n denote P written in the
Fourier basis, while f = {f(x)}x∈{−1,1}n denotes f written
pointwise. Our goal is to find a good approximation P which
minimizes the `1 distance Ex[|P (x)− f(x)|] in the function
domain but which is sparse in the Fourier domain. It is
no longer clear that picking the largest Fourier coefficients
of f gives the best approximation. In contrast, if we were
working with respect to the `2 norm, then by Parseval’s
identity, this would be the best sparse approximation.

Another difference in the settings is that we only have
black-box access to f(x), hence we need to design a sampling
algorithm that makes local measurements involving only a
few co-ordinates of a 2n dimensional vector. In contrast,
locality is usually not generally required in the CS scenario.
The sparse Fourier sampling algorithm of [8], which gives
a generalization of KM over other domains is local, but it
minimizes the `2 error. We are unaware of an analogous
algorithm in the CS literature for `1 error.


