
Agnostically Learning Halfspaces

Adam Tauman Kalai
TTI-Chicago
kalai@tti-c.org

Adam R. Klivans∗

UT-Austin
klivans@cs.utexas.edu

Yishay Mansour∗

Tel Aviv University
mansour@cs.tau.ac.il

Rocco A. Servedio∗†

Columbia University
rocco@cs.columbia.edu

January 3, 2006

Abstract

We give the first dimension-efficient algorithm that learns (under distributional assumptions)
a halfspace in the difficult agnostic framework of Kearns et al. [21], where a learner is given access
to a distribution on labelled examples but the labelling may be arbitrary (similar to malicious
noise). It constructs a hypothesis whose error rate on future examples is within an additive ε of
the optimal halfspace, in time poly(n) for any constant ε > 0, for the uniform distribution over
{−1, 1}n or unit sphere in Rn, as well as any log-concave distribution in Rn. It also agnostically
learns Boolean disjunctions in time 2Õ(

√
n) with respect to any distribution. The L1 polynomial

regression algorithm is a natural noise-tolerant arbitrary-distribution generalization of the well
known “low-degree” Fourier algorithm of Linial, Mansour, & Nisan. We observe that significant
improvements on the running time of our algorithm would yield the fastest known algorithm for
learning parity with noise, a challenging open problem in computational learning theory.

Additionally, we obtain a new algorithm for PAC learning halfspaces under the uniform
distribution on the unit sphere which tolerates more malicious noise than previous algorithms.

1 Introduction

Halfspaces have been used extensively in Machine Learning for decades. From the early work on
the Perceptron algorithm in the 50’s, through the learning of artificial neural networks in the 80’s,
and up to and including today’s Adaboost [12] and Support Vector Machines [38], halfspaces have
played a central role in the development of the field’s most important tools.

Formally, a halfspace is a Boolean function f(x) = sgn(
∑n

i=1 wixi−θ). While efficient algorithms
are known for learning halfspaces if the data is guaranteed to be noise-free, learning a halfspace from
noisy examples remains a challenging and important problem. Halfspace-based learning methods
appear repeatedly in both theory and practice, and they are frequently applied to labeled data sets
which are not linearly separable. This motivates the following natural and well-studied question:
what can one provably say about the performance of halfspace-based learning methods in the pres-
ence of noisy data or distributions that do not obey constraints induced by an unknown halfspace?

∗Some of this research done while visiting TTI-Chicago.
†Supported in part by NSF CAREER award CCF-0347282 and a Sloan Foundation fellowship.

Can we develop learning algorithms which tolerate data generated from a “noisy” halfspace and
output a meaningful hypothesis?

1.1 Agnostic Learning.

The agnostic learning framework, introduced by Kearns et al. [21], is an elegant model for studying
the phenomenon of learning from noisy data. In this model the learner receives labeled examples
(x, y) drawn from a fixed distribution over example-label pairs, but (in contrast with Valiant’s
standard PAC learning model [36]) the learner cannot assume that the labels y are generated by
applying some target function f to the examples x. Of course, without any assumptions on the
distribution it is impossible for the learner to always output a meaningful hypothesis. Kearns et al.
instead require the learner to output a hypothesis whose accuracy with respect to future examples
drawn from the distribution approximates that of the optimal concept from some fixed concept
class of functions C, such as the class of all halfspaces f(x) = sgn(v ·x−θ). Given a concept class C
and a distribution D over labeled examples (x, y), we write opt = minf∈C PrD[f(x) 6= y] to denote
the error rate of the optimal (smallest error) concept from C with respect to D.

For intuition, one can view agnostic learning as a noisy learning problem in the following way:
There is a distribution D over examples x and the data is assumed to be labeled according to a
function f ∈ C, but an adversary is allowed to corrupt an η = opt fraction of the labels given to the
learning algorithm. The goal is find a hypothesis h with error PrD[h(x) 6= y] as close as possible to
η. (We note that such a noise scenario is far more challenging than the random classification noise
model, in which an η fraction of labels are flipped independently at random and for which a range
of effective noise-tolerant learning algorithms are known [19, 4].)

Unfortunately, only few positive results are known for agnostically learning expressive concept
classes. Kearns et al. [21] gave an algorithm for agnostically learning piecewise linear functions,
and Goldman et al. [14] showed how to agnostically learn certain classes of geometric patterns. Lee
et al. [24] showed how to agnostically learn some very restricted classes of neural networks in time
exponential in the fan-in. On the other hand, some strong negative results are known: in the case
of proper learning (where the output hypothesis must belong to C), agnostic learning is known to be
NP-hard even for the concept class C of disjunctions [21]. In fact, it is known [25] that agnostically
learning disjunctions, even with no restrictions on the hypotheses used, is at least as hard as PAC
learning DNF formulas, a longstanding open question in learning theory.

Thus, it is natural to consider, as we do in this paper, agnostic learning with respect to various
restricted distributions D for which the marginal distribution DX over the example space X satisfies
some prescribed property. This corresponds to a learning scenario in which the labels are arbitrary
but the distribution over examples is restricted.

1.2 Our Main Technique.

The following two observations are the starting point of our work:

• The “low-degree” Fourier learning algorithm of Linial et al. can be viewed as an algorithm
for performing L2-norm polynomial regression under the uniform distribution on {−1, 1}n.
(See Section 2.2.)

• A simple analysis (Observation 3) shows that the low-degree algorithm has some attractive
agnostic learning properties under the uniform distribution on {−1, 1}n. (See Section 2.3.)

2

The “low-degree” algorithm, however, will only achieve partial results for agnostic learning (the
output hypothesis will be within a factor of 8 of optimal). As described in Section 3, the above
two observations naturally motivate a new algorithm which can be viewed as an L1-norm version
of the low-degree algorithm; we call this simply the polynomial regression algorithm. (At this point
it may be slightly mysterious why the L1 norm would be significantly better than the L2 norm; we
discuss this point in Section 3.)

Roughly speaking our main result about the polynomial regression algorithm, Theorem 5, shows
the following (see Section 3 for the detailed statement):

Given a concept class C and a distribution D, if concepts in C can be approximated by
low-degree polynomials in the L2-norm relative to the marginal distribution DX , then
the L1 polynomial regression algorithm is an efficient agnostic learning algorithm for C
with respect to D.

A long line of research has focused on how well the truncated Fourier polynomial over the parity
basis approximates concept classes with respect to the L2 norm; this has led to numerous algorithms
for learning concepts with respect to the uniform distribution over the Boolean hypercube {−1, 1}n

[26, 8, 16, 18, 22]. For learning with respect to the uniform distribution on the unit sphere, our
analysis uses the Hermite polynomials [35], a family of orthogonal polynomials with a weighting
scheme related to the density function of the Gaussian distribution. As such, these polynomials
are well suited for approximating concepts with respect to the L2 norm over Sn−1. We believe this
approach will find further applications in the future.

Additionally, we show that a slightly modified version of the wildly popular Support Vector
Machine (SVM) algorithm [38], with a polynomial kernel, can achieve the same result1. Unfortu-
nately, with the number of examples we require for our analysis, the SVM algorithm is no more
efficient than our simple polynomial regression algorithm (the “Kernel trick” does not help). But it
is interesting to give strong provable guarantees about the agnostic learning ability of an algorithm
that is so popular in practice.

1.3 Our Main Results.

As described below, our main result about the polynomial regression algorithm can be applied
to obtain many results for agnostic learning of halfspaces with respect to a number of different
distributions, both discrete and continuous, some uniform and some nonuniform.

Theorem 1 Let D be a distribution over Rn × {−1, 1}. The L1 polynomial regression algorithm
has the following properties: its runtime is polynomial in the number of examples it is given, and

1. If the marginal DX is (a) uniform on {−1, 1}n or (b) uniform on the unit sphere in Rn,
then with probability 1−δ the polynomial regression algorithm outputs a hypothesis with error
opt + ε given poly(n1/ε4 , log 1

δ) examples.

2. If the marginal DX is log-concave, then with probability 1 − δ the polynomial regression
algorithm outputs a hypothesis with error opt + ε given poly(nd(ε), log 1

δ) examples, where
d : R+ → Z+ is a universal function independent of DX or n.

1This was pointed out to us by Avrim Blum.

3

Part 1(a) follows from our analysis of the L1 polynomial regression algorithm combined with
the Fourier bounds on halfspaces given by Klivans et al. [22]. Part 1(b) follows from the same
analysis of the algorithm combined with concentration bounds over the n-dimensional sphere. In
proving such bounds, we use the Hermite polynomial basis in analogy with the Fourier basis used
previously. (We note that learning halfspaces under the uniform distribution on Sn−1 is a well-
studied problem, see e.g. [1, 2, 19, 27, 28].) As before, we show that a related algorithm gives a
hypothesis with error O(opt + ε) in time nO(1/ε2).

In Section 4.2, we show that algorithms for agnostically learning halfspaces with respect to
the uniform distribution on {0, 1}n can be used to solve the well-known problem of learning parity
functions with respect to random classification noise [5]. This indicates that substantially improving
the results of part (1) may be very difficult. For example, even an nO(1/ε2−β) time algorithm (β > 0)
for agnostically learning halfspaces (with respect to the uniform distribution over the hypercube)
would yield the fastest known algorithm for learning parity with noise.

As indicated by part (2) of Theorem 2, for any constant ε, We can also achieve a polynomial-
time algorithm for learning with respect to any log-concave distribution. Recall that any Gaussian
distribution, exponential distribution, and uniform distribution over a convex set is log-concave.

We next consider a simpler class of halfspaces: disjunctions on n variables. The problem of ag-
nostically learning an unknown disjunction (or learning noisy disjunctions) has long been a difficult
problem in computational learning theory and was recently re-posed as a challenge by Avrim Blum
in his FOCS 2003 tutorial [3]. By combining Theorem 5 with known constructions of low-degree
polynomials that are good L∞-approximators of the OR function, we obtain a subexponential time
algorithm for agnostically learning disjunctions with respect to any distribution (recall that since
this problem is at least as hard as PAC-learning DNF, given the current state of the art we do not
expect to achieve a polynomial-time algorithm):

Theorem 2 Let D be a distribution on X × Y where D is an arbitrary distribution over {−1, 1}n

and Y = {−1, 1}. For the class of disjunctions, with probability 1− δ the polynomial regression al-
gorithm outputs a hypothesis with error ≤ opt + ε in time 2Õ(

√
n·log(1/ε)) · poly(log 1

δ).

1.4 Extensions and Other Applications.

We believe that the polynomial regression algorithm will have many extensions and applications;
so far we have only explored a few of these which we now describe.

In Section 4.3 we show how our approach can be used to improve the algorithm due to Klivans
et al. [22] for learning intersections of halfspaces with respect to the uniform distribution over the
hypercube.

In Section 5 we give a detailed analysis of an algorithm which is essentially the same as the
degree-1 version of the polynomial regression algorithm, for agnostic learning the concept class of
origin-centered halfspaces sgn(v · x) over the uniform distribution on the sphere Sn−1. While our
analysis from Section 3 only implies that this algorithm should achieve some fixed constant error
Θ(1) independent of opt, we are able to show that in fact we do much better if opt is small:

Theorem 3 Let D be a distribution on X×Y , where Y = {−1, 1} and the marginal DX is uniform
on the sphere Sn−1 in Rn. There is a simple algorithm for agnostically learning origin-centered
halfspaces with respect to D which uses m = O(n2

ε2
log n

δ) examples, runs in poly(n, 1/ε, log 1
δ) time,

and outputs a hypothesis with error O(opt
√

log 1
opt + ε).

4

This result thus trades off accuracy versus runtime compared with Theorem 1. We feel that
Theorem 3 is intriguing since it suggests that a deeper analysis might yield improved runtime
bounds for Theorem 1 as well.

In Section 6 we consider the problem of learning an unknown origin-centered halfspace under
the uniform distribution on Sn−1 in the presence of malicious noise (we give a precise definition
of the malicious noise model in Section 6). Recall from Section 1.1 that we can view agnostic
learning with respect to a particular marginal distribution DX as the problem of learning under
DX in the presence of an adversary who may change the labels of an η fraction of the examples,
without changing the actual distribution DX over examples. In contrast, in the model of learning
under malicious noise with respect to DX , roughly speaking the adversary is allowed to change
an η fraction of the labels and examples given to the learner. As described in Section 6 this is a
very challenging noise model in which only limited positive results are known. We show that by
combining the algorithm of Theorem 3 with a simple preprocessing step, we can achieve relatively
high tolerance to malicious noise:

Theorem 4 There is a simple algorithm for learning origin-centered halfspaces under the uniform
distribution on Sn−1 to error ε in the presence of malicious noise when the noise rate η is at most
O(ε

n1/4 log1/4(n/ε)
). The algorithm runs in poly(n, 1/ε, log 1

δ) time and uses m = O(n2

ε2
log n

δ) many
examples.

This is the highest known rate of malicious noise that can be tolerated in polynomial time for
any nontrivial halfspace learning problem. The preprocessing step can be viewed as a somewhat
counterintuitive form of outlier removal – instead of identifying and discarding examples that lie
“too far” from the rest of the data set, we discard examples that lie too close to any other data
point. The analysis of this approach relies on classical results from sphere packing.

2 Preliminaries

Let D be an arbitrary distribution on X × {−1, 1}, for some set X. Let C be a class of Boolean
functions on X. Define the error of f : X → {−1, 1} and the optimal error of C to be

err(f) = Pr(x,y)←D[f(x) 6= y], opt = min
c∈C

err(c),

respectively. Roughly speaking, the goal in agnostic learning of a concept class C is as follows:
given access to examples drawn from distribution D, we wish to efficiently find a hypothesis with
error not much larger than opt. More precisely, we say C is agnostically learnable if there exists an
algorithm which takes as input δ, ε, and has access to an example oracle EX(D) and outputs with
probability greater than 1 − δ a hypothesis h : X → {−1, 1} such that err(h) ≤ opt + ε. We say
C is agnostically learnable in time t if its running time (including calls to the example oracle) is
bounded by t(ε, δ, n). If the above only holds for a distribution D whose margin is uniform over
X, we say the algorithm agnostically learns C over the uniform distribution. See [21] for a detailed
description of the agnostic learning framework.

A distribution is log-concave if its support is convex and it has a probability density function
whose logarithm is a concave function from Rn to R.

In all our algorithms we assume that we are given m labeled examples Z = (x1, y1), . . . , (xm, ym)
drawn independently from the distribution D over X ×{−1, 1}. The sgn : R→ {−1, 1} function is
defined by sgn(z) = 1 if z ≥ 0, sgn(z) = −1 if z < 0.

5

2.1 Fourier preliminaries and the low-degree algorithm.

For S ⊆ [n] the parity function χS : {−1, 1}n → {−1, 1} over the variables in S is simply the
multilinear monomial χS(x) =

∏
i∈S xi. The set of all 2n parity functions {χS}S⊆[n] forms an

orthonormal basis for the vector space of real-valued functions on {−1, 1}n, with respect to the inner
product (f, g) = E[fg] (here and throughout Section 2.1 unless otherwise indicated all probabilities
and expectations are with respect to the uniform distribution over {−1, 1}n). Hence every real-
valued function f : {−1, 1}n → R can be uniquely expressed as a linear combination

f(x) =
∑

S⊆[n]

f̂(S)χS(x). (1)

The coefficients f̂(S) = E[fχS] of the Fourier polynomial (1) are called the Fourier coefficients
of f ; collectively they constitute the Fourier spectrum of f . We recall Parseval’s identity, which
states that for every real-valued function f we have E[f(x)2] =

∑
S f̂(S)2. For Boolean functions

we thus have
∑

S f̂(S)2 = 1.
The “low-degree algorithm” for learning Boolean functions under the uniform distribution via

their Fourier spectra was introduced by Linial et al. [26], and has proved to be a powerful tool
in uniform distribution learning. The algorithm works by empirically estimating each coefficient
f̂(S) ≈ f̃(S) := 1

m

∑m
j=1 f(xj)χS(xj) with |S| ≤ d from the data, and constructing the degree-

d polynomial p(x) =
∑
|S|≤d f̃(S)χS(x) as an approximation to f . (Note that the polynomial

p(x) is real-valued rather than Boolean-valued. If a Boolean-valued classifier h is desired, it can
be obtained by taking h(x) = sgn(p(x)), and using the simple fact PrD[sgn(p(x)) 6= g(x)] ≤
ED[(p(x)−f(x))2] which holds for any polynomial p, any Boolean function f : {−1, 1}n → {−1, 1},
and any distribution D.)

Let α(ε, n) be a function α : (0, 1/2)×N → N. We say that concept class C has a Fourier concen-
tration bound of α(ε, n) if, for all n ≥ 1, all 0 < ε < 1

2 , and all f ∈ Cn we have
∑
|S|≥α(ε,n) f̂(S)2 ≤ ε.

The low-degree algorithm is useful because it efficiently constructs a high-accuracy approximator
for functions that have good Fourier concentration bounds (we suppress the logarithmic dependence
on the failure probability δ to improve readability):

Fact 1 ([26]) Let C be a concept-class with concentration bound α(ε/2, n). Then for any f ∈ C,
given data labeled according to f and drawn from the uniform distribution on X = {−1, 1}n, the
low-degree algorithm outputs, with probability 1− δ, a polynomial p such that E[(p(x)− f(x))2] ≤ ε
and runs in time poly(nα(n,ε), log 1

δ).

The idea behind Fact 1 is simple: if the coefficients of p were precisely f̂(S) instead of f̃(S), then the
Fourier concentration bound and Parseval’s identity would give

∑
|S|≥α(ε/2,n) = E[(p(x)−f(x))2] ≤

ε/2. The extra ε/2 is incurred because of approximation error in the estimates f̃(S).

2.2 The low-degree algorithm and L2 polynomial regression.

The main observation of this section is that the low-degree Fourier algorithm of [26] can be viewed as
a special case of least-squares polynomial regression over uniform distributions on the n-dimensional
cube.

6

Let D be a distribution over X × {−1, 1}. In least-squares (L2-norm) polynomial regression,
one attempt to minimize the following:

min
deg(p)≤d

ED
[
(p(x)− y)2

]
≈ min

deg(p)≤d

1
m

m∑
j=1

(
p(xj)− yj

)2
. (2)

Ideally, one would like to minimize the LHS, i.e. find the best degree d polynomial L2 approximation
to y over D. To do this (approximately) given a data set, we minimize the right-hand side. In
particular, we write a polynomial as a sum over all degree ≤ d monomials, p(x) =

∑
b pb

∏n
i=1(xi)bi

where the sum is over {b ∈ Zn|∑n
i=1 bi ≤ d, ∀i bi ≥ 0}. In turn, this can be viewed as a standard

linear regression problem if we expand example xj into a vector with a coordinate
∏n

i=1(x
j
i)

bi , for
each of the ≤ nd+1 different b’s. Least-squares linear regression, in turn, can be solved by a single
matrix inversion; and thus in general we can approximate the RHS of (2) in nO(d) time.

Now let us consider L2 polynomial regression in the uniform distribution scenario where X =
{−1, 1}n, y = f(x) for some function f : X → {−1, 1}, and we have a uniform distribution UX over
x ∈ {−1, 1}n. Since x2 = 1 for x ∈ {−1, 1}, we may consider only degree-d multilinear polynomials,
i.e. sums of monomials χS(x) =

∏
i∈S xi with S ⊆ [n], |S| ≤ d. Using Parseval’s identity, it is not

difficult to show that best degree d polynomial is exactly

arg min
deg(p)≤d

EUX

[
(p(x)− f(x))2

]
=

∑
S⊆[n]:|S|≤d

f̂(S)χS(x),

where f̂(S) = EUX
[f(x)χS(x)]. Thus in this uniform case, one can simply estimate each coefficient

f̂(S) ≈ 1
m

∑m
j=1 f(xj)χS(xj) rather than solving the general least-squares regression problem; and

this is precisely what the low-degree algorithm does.
In the nonuniform case, it is natural to consider running general L2 polynomial regression rather

than the low-degree algorithm. We do something similar to this in Section 3, but first we consider
the agnostic learning properties of the low-degree algorithm in the next subsection.

2.3 Using the low-degree algorithm as an agnostic learner.

Kearns et al. prove the following statement about agnostic learning with the low-degree algorithm:

Fact 2 ([21], Corollary 1) Let C be a concept class with concentration bound α(ε, n). Then the
low-degree algorithm agnostically learns C under the uniform distribution to error 1

2−(1
2−opt)2+ε =

1
4 + opt(1− opt) + ε with probability 1− δ and in time poly(nα(ε/2,n), log 1

δ).

This was termed a “weak agnostic learner” in [21] because as long as opt is bounded away from 1/2,
this resulting hypothesis has error bounded from 1/2. We now show that the low-degree algorithm
is in fact a “strong agnostic learner,” in that if opt is small it can in fact achieve very low error:

Observation 3 Let C be a concept class with concentration bound α(ε, n). Then the low-degree
algorithm agnostically learns C under the uniform distribution to error 8opt+ ε in time nO(α(ε/2,n)).

Proof: Let f ∈ C be an optimal function, i.e. Pr[y 6= f(x)] = opt. As described above, the
low-degree algorithm (approximately) finds the best degree-d approximation p(x) to the data y, i.e.

7

mindeg(p)≤d E[(p(x)− y)2], and the same term represents the mean squared error of p. This can be
bounded using the “almost-triangle” inequality (a− c)2 ≤ 2

(
(a− b)2 + (b− c)2

)
for a, b, c ∈ R.

min
deg p≤d

E[(y − p(x))2] ≤ E
[(

y −∑
|S|<df̂(S)χS(x)

)2
]

≤ 2E
[
(y − f(x))2 +

(
f(x)−∑

|S|<df̂(S)χS(x)
)2

]

= 2
(
4Pr[y 6= f(x)] +

∑
|S|≥df̂(S)2

)

The first term is 8opt and the second is at most ε/2 for d = α(n, ε/2), where an additional ε/2 is due
to the sampling. Outputting h(x) = sgn(p(x)) gives error at most 8opt + ε because Pr[sgn(p(x)) 6=
y] ≤ E[(p(x)− y)2].

Another way to state this is that if f and f̃ are two functions and f has a Fourier concentration
bound of α(ε, n), then f̃ satisfies the concentration bound

∑
|S|≥α(n,ε)

ˆ̃
f(S)2 ≤ 8Pr[f(x) 6= f̃(x)]+2ε.

3 L1 polynomial regression

Given the setup in the previous sections, it is natural to expect that we will now show that the
general L2 polynomial regression algorithm has agnostic learning properties similar to those estab-
lished for the low-degree algorithm in Observation 3. However, such an approach only yields error
bounds of the form O(opt+ε), and for agnostic learning our real goal is a bound of the form opt+ε.
To achieve this, we will instead use L1-norm, rather than L2-norm.

Analogous to (2), in L1-norm polynomial regression we attempt to minimize:

min
deg(p)≤d

ED [|p(x)− y|] ≈ min
deg(p)≤d

1
m

m∑
j=1

∣∣p(xj)− yj
∣∣ . (3)

To solve the RHS minimization problem, again each example is expanded into a vector of length
≤ nd+1 and an algorithm for L1 linear regression is applied. L1 linear regression is a well-studied
problem, and the minimizing polynomial p for the RHS of (3) can be obtained in poly(nd) time
using linear programming (see Appendix A for an elaboration on this point). For our purposes we
will be satisfied with an approximate minimum, and hence one can use a variety of techniques for
approximately solving linear programs efficiently.

How do L1 and L2 polynomial regression compare? In the noiseless case, both (2) and (3)
approach 0 at related rates as d increases. However, in the noisy/agnostic case, flipping the sign of
y = ±1 changes (p(x) − y)2 by 4p(x) which can potentially be very large; in contrast, flipping y’s
sign can only change |p(x)− y| by 2. On the other hand, it is often easier to bound the L1 error in
terms of the mathematically convenient L2 error. Thus while our polynomial regression algorithm
works only with the L1 norm, the performance bound and analysis depends on the L2 norm.

3.1 The algorithm and proof of correctness.

We now give the polynomial regression algorithm and establish conditions under which it is an ag-
nostic learner achieving error opt+ε. The algorithm takes as input m examples, Z = (x1, y1) . . . (xm, ym)
and a degree d.

8

The L1 polynomial regression algorithm(Z = (x1, y1) . . . (xm, ym), d):

1. Find polynomial p of degree ≤ d to minimize 1
m

∑m
j=1 |p(xj) − yj |. (This can be

done by expanding examples to include all monomials of degree ≤ d and then
performing L1 linear regression, as described earlier.)

2. Output h(x) = sgn (p(x)− t) where t ∈ [−1, 1] is chosen so as to minimize the
error of the hypothesis on Z.

Theorem 5 Suppose mindeg(p)≤d EDX
[(p(x)− c(x))2] ≤ ε2 for some degree d, some distribution D

over X × {−1, 1} with marginal DX , and any c in the concept class C. Then, for h output by the
degree-d L1 polynomial regression algorithm with m = poly(nd/ε) examples, EZ [err(h)] ≤ opt + ε.

If we repeat the same algorithm r = O(log(1/δ)/ε) times with fresh examples each, and let h
be the hypothesis with lowest error on an independent test set of size O(log(1/δ)/ε2), then with
probability 1− δ, err(h) ≤ opt + ε.

Remark 4 Note that using Theorem 5, a Fourier concentration bound of α(n, ε) immediately im-
plies that the L1 regression algorithm achieves error opt + ε in time nO(α(n,ε2)) for distributions D
with marginal DX that is uniform on {−1, 1}n. As we will see in the next section, Theorem 5 can
be applied to other distributions as well.

Proof of Theorem 5: Suppose the algorithm chooses polynomial p and threshold t. First, we
claim that the empirical error of h on Z is at most one half the L1 error of p:

1
m

m∑
j=1

I(h(xj) 6= yj) ≤ 1
2m

m∑
j=1

∣∣yj − p(xj)
∣∣ . (4)

To see this, note that h(xj) 6= yj if and only if the threshold t ∈ [−1, 1] lies in between the numbers
p(xj) and yj , i.e., if they are on the same side of t then sgn(p(xj)− t) = sgn(yj − t) = yj . Hence,
even if we chose a uniformly random t ∈ [−1, 1], for any j, the chance of t splitting these numbers
is at most

∣∣yj − p(xj)
∣∣ /2 because the width of [−1, 1] is 2 and the separation between the numbers

is
∣∣yj − p(xj)

∣∣. Thus, (4) holds in expectation for random t ∈ [−1, 1]. Since the algorithm chooses
t to maximize the LHS of (4), it holds with certainty. (This reduction is a general procedure for
converting an L1 bound on error to a classification error and a similar randomized threshold idea
was used by Blum et al. for the low-degree algorithm [6].)

Let c be an optimal classifier in C, and let p∗ be a polynomial with ED[(c(x) − p∗(x))2] ≤ ε2.
By the fact that E[|Z|] ≤

√
E[Z2] for any random variable Z, we have ED[|c(x)− p∗(x)|] ≤ ε. By

the algorithm’s choice of p, we have,

1
m

m∑
j=1

∣∣yj − p(xj)
∣∣ ≤ 1

m

m∑
j=1

∣∣yj − p∗(xj)
∣∣ ≤ 1

m

m∑
j=1

∣∣yj − c(xj)
∣∣ +

∣∣c(xj)− p∗(xj)
∣∣ .

The expectation of the RHS is ≤ 2opt + ε. Taking expectations and combining with (4) gives,

EZ

[
1
m

m∑
j=1

I(h(xj) 6= yj)

]
≤ opt +

ε

2
.

9

By VC theory, for m = poly(nd/ε) examples, the empirical error 1
m

∑m
j=1 I(h(xj) 6= yj) above

and generalization error err(h) will be differ by at most an expected ε/4. Hence, the first part of
the Theorem is implied by,

EZ [err(h)] ≤ opt + (3/4)ε.

The second part of the theorem is a relatively standard reduction from expected error to high-
probability guarantees. In particular, by Markov’s inequality, on any single repetition,

PrZ [err(h) ≥ opt + (7/8)ε] ≤ opt + (3/4)ε
opt + (7/8)ε

≤ 1− ε

16
.

Hence, after r = O(log(1/δ)/ε) repetitions of the algorithm, with probability 1− δ/2, one of them
will have err(h) ≤ opt + (7/8)ε. In this case, using an independent set of size O(log(1/δ)/ε2), with
probability at most δ/2, we will choose one with error > opt + ε.

As noted at the very beginning of this section, an analogous L2 algorithm could be defined
to minimize 1

m

∑m
j=1(p(xj) − yj)2 rather than 1

m

∑m
j=1 |p(xj) − yj |. Error guarantees of the form

O(opt + ε) can be shown for this L2 algorithm, following the same argument but again using the
“almost-triangle” inequality.

3.2 Relationship to SVMs

As pointed out by Avrim Blum, our algorithm is very similar to an SVM with a polynomial
kernel and can be made even more similar. The standard Support Vector Machine with a degree-d
polynomial kernel solves the following minimization problem:

min
deg(p)≤d

(1− λ)
1
m

m∑

i=1

L(yi, z) + λ(regularization term),

where L(yi, z) = max{0, 1 − yiz}. It does this using an algorithmic trick that requires time only
poly(m,n, d). In theory, this could be substantially faster than our nO(d) algorithm. However, for
our analysis, we require m = nO(d) samples, in which case the SVM algorithm is no faster.

Step 1 of our algorithm could be replaced by the above minimization problem, with λ = 0, and
the analysis would hold almost exactly as is. Intuitively, this is because, for |y| = 1, L(y, z) = |y−z|
unless yz > 1. However, if yz > 1, thresholding z with t ∈ [−1, 1] will certainly give us the correct
prediction of this y. More technically, we have that, for |y| = 1, L(y, z) ≤ |y − z|, yet we still have
that Prt∈[−1,1][y 6= sgn(z − t)] ≤ 1

2L(y, z) (we now have L(y, z) where we had |y − z|).
Hence one can use a standard SVM package to implement our algorithm, setting the regulariza-

tion parameter to 0. The only nonstandard part would be choosing an optimal threshold t rather
than using standard SVM choice of t = 0.

4 Agnostic learning halfspaces and disjunctions via polynomial
regression

In this section we show how to apply Theorem 5 to prove Theorems 1 and 2.
As noted in Remark 4, Theorem 5 implies that any concept class with a Fourier concentration

bound is in fact agnostically learnable to error opt+ε under the uniform distribution on {−1, 1}n. In

10

particular, Theorem 1 1(a) follows immediately from the Fourier concentration bound for halfspaces
of [22]:

Fact 5 [22] The concept class C of all halfspaces over {−1, 1}n has a Fourier concentration bound
of α(ε, n) = 441/ε2.

For the uniform distribution on Sn−1 and any log-concave distribution, we can prove the ex-
istence of a good low-degree polynomial as follows. Suppose we had a good degree-d univariate
approximation to the sign function pd(x) ≈ sgn(x), and say we have an n-dimensional halfspace
sgn(v · x− θ). Then, sgn(v · x− θ) ≈ pd(v · x− θ). Moreover, this latter quantity is now a degree-d
multivariate polynomial. The sense in which we measure approximations will be distributional, the
L2 error of our multivariate polynomial over the distribution D. Hence, we need a polynomial pd

that well-approximates the sign function on the marginal distribution in the direction v, i.e., the
distribution over projections onto the vector v.

For the uniform distribution on a sphere, the projection onto a single coordinate is distributed
very close to Gaussian distribution. For a log-concave distribution, its projection is distributed
log-concavely. In both of these cases, it so happens that the necessary degree to get approximation
error ε boils down to a one-dimensional problem! For the sphere, we can upper-bound the degree
necessary as a function of ε using the following for the normal distribution N(0, 1√

2
) with density

e−x2
/
√

π:

Theorem 6 For any d > 0 and any θ ∈ R, there is a degree-d univariate polynomial pd,θ such that

∫ ∞

−∞
(pd,θ(x)− sgn(x− θ))2

e−x2

√
π

dx = O

(
1√
d

)
. (5)

We note that the nO(1/ε2)-time, O(opt + ε)-error analogues of Theorem 1, part 1, mentioned
in Section 1.3 follows from Fact 5 and Theorem 6 using the L2-norm analogue of the polynomial
regression algorithm mentioned at the end of Section 3. The improved time bound comes from
the fact that we no longer need to invoke E[|Z|] ≤

√
E[Z2] to bound the square loss, since we are

minimizing the square loss directly rather than the absolute loss.
Proof of Theorem 6: We assume without loss of generality that θ ≥ 0; an entirely similar
proof works for θ < 0. First, suppose that θ >

√
d. Then we claim that the constant polynomial

p(x) = −1 will be a sufficiently good approximation of sgn(x− θ). In particular, it will have error,

∫ ∞

θ

4e−x2

√
π

dx ≤
∫ ∞
√

d

4e−x

√
π

dx =
4e−

√
d

√
π

≤ 4√
πd

.

So the case that θ >
√

d is easy, and for the remainder we assume that θ ∈ [0,
√

d].
We use the Hermite Polynomials Hd, d = 0, 1, . . . , (Hd is a degree-d univariate polynomial)

which are a set of orthogonal polynomials given the weighting e−x2
π−1/2. In particular,

∫ ∞

−∞
Hd1(x)Hd2(x)

e−x2

√
π

dx =
{

0 if d1 6= d2

2d1d1! if d1 = d2

Hence these polynomials form an orthogonal basis of polynomials with respect to the inner product
〈p, q〉 =

∫∞
−∞ p(x)q(x)e−x2

π−1/2dx. The functions H̄d(x) = Hd(x)/
√

2dd! are an orthonormal basis.

11

Now, the best degree d approximation to the function sgn(x− θ), in the sense of (5), for any d,
can be written as

∑d
i=0 ciH̄i(x). The ci ∈ R that minimize (5) are,

ci =
∫ ∞

−∞
sgn(x− θ)H̄i(x)

e−x2

√
π

dx

=
∫ ∞

θ
H̄i(x)

e−x2

√
π

dx−
∫ θ

−∞
H̄i(x)

e−x2

√
π

dx

= 2
∫ ∞

θ
H̄i(x)

e−x2

√
π

dx (for i ≥ 1) (6)

The last step follows from the fact that
∫∞
−∞ H̄i(x) e−x2

√
π

dx = 0 for i ≥ 1 by orthogonality of H̄i with
H̄0. Next, to calculate our error, we use Parseval’s identity,

∫ ∞

−∞

(
d∑

i=0

ciH̄i(x)− sgn(x− θ)

)2
e−x2

√
π

dx = 1−
d∑

i=0

c2
i =

∞∑

i=d+1

c2
i .

The above holds because
∫∞
−∞

e−x2

√
π

= 1 and hence
∑∞

i=0 c2
i = 1 (sgn(x) ∈ L2(R, e−x2

) and polyno-
mials are dense in this set). It thus suffices for us to bound

∑∞
i=d+1 c2

i .
It is now easy to calculate each coefficient ci using standard properties of the Hermite Polyno-

mials. It is well known [35] that the Hermite polynomials can be defined by:

Hi(x)e−x2
= (−1)i dn

dxn
e−x2

, which implies
d

dx
Hi(x)e−x2

= −Hi+1(x)e−x2
.

In turn, this and (6) imply that for i ≥ 1,

ci =
2√

π2ii!

∫ ∞

θ
Hi(x)e−x2

dx

=
2√

π2ii!

(
−Hi−1(x)e−x2

)∣∣∣
∞

θ

=
2√

π2ii!
Hi−1(θ)e−θ2

. (7)

We must show that
∑∞

i=d+1 c2
i = O(1/

√
d). To do this, it suffices to show that for each i we

have c2
i = O(i−3/2). From (7) we have, for i ≥ 1,

c2
i =

4
π2ii!

(Hi−1(θ))2e−2θ2
. (8)

Now, conveniently Theorem 1.i of [7] states that, for all i ≥ θ2,

1
2ii!

Hi(θ)2e−θ2 ≤ C√
i

where C is some absolute constant. Since we have θ ≤
√

d by assumption, we have that for i ≥ d+1,
c2
i ≤ 4C

2πi
√

i−1
, which is of the desired form O(i−3/2), and Theorem 6 is proved.

With Theorem 6 in hand it is not difficult to to establish Theorem 1 Part 1(b), which we restate
below:

12

Let D be a distribution over Rn × {−1, 1}, with DX uniform over Sn−1. With proba-
bility 1− δ, the L1 polynomial regression outputs a hypothesis with error opt + ε given
poly(n1/ε4 , log 1

δ) examples.

Proof: Let f(x) = sgn(v · x − τ) be any halfspace over the unit ball Sn−1, where without loss of
generality we may assume ‖v‖ = 1 (and thus |τ | ≤ 1). Let U denote the uniform distribution over
Sn−1. It suffices to establish the existence of a degree-d polynomial P (x), with d = O(1/ε4), which
satisfies the condition Ex∈U [(P (x) − f(x))2] ≤ ε2; given such a polynomial we apply Theorem 5
and Theorem 1 Part 1(b) immediately follows.

Let θ =
√

n−3
2 τ and let P (x) = pd,θ(

√
n−3

2 v ·x). For d = O(1/ε4), we show that the polynomial

P (x) = pd,θ

(√
n−3

2 (v · x)
)

satisfies EU [(P (x)− f(x))2] ≤ ε2.
We have (justifications are given below):

Ex∈U [(P (x)− f(x))2] = Ex∈U

[(
pd,θ

(√
n−3

2 (v · x)
)
− sgn

(√
n−3

2 (v · x)− θ
))2

]

=
An−2

An−1

∫ 1

−1
(1− z2)(n−3)/2

(
pd,θ

(√
n−3

2 z
)
− sgn(

√
n−3

2 z − θ)
)2

dz (9)

≤ An−2

An−1

∫ ∞

−∞
e−z2(n−3)/2

(
pd,θ

(√
n−3

2 z
)
− sgn(

√
n−3

2 z − θ)
)2

dz (10)

=
An−2

An−1

∫ ∞

−∞
e−y2

(pd,θ(y)− sgn(y − θ))2 dy√
(n−3)/2

(11)

≤ ε2 (12)

where (9) follows from Fact 10 on the pdf of the uniform distribution over Sn−1; (10) follows
from 1 − z ≤ exp(−z) and the fact that the integrand is nonnegative; (11) follows from a change

of variable y =
√

n−3
2 · z; and (12) follows from An−2

An−1
= Θ(

√
n), Theorem 6, and our choice of

d = O(1/ε4). This concludes the proof of Theorem 1 Part 1(b).

Since we have proven Theorem 1 Part 1(a) in Section 4, we are now ready to move on to
the log-concave part. The first thing to notice is that, just as the normal distribution served as a
prototypical distribution for all spheres, there is a log-concave distribution that is not much smaller
than any other:

Lemma 6 Let ν be the distribution on R with density dν(x) = e−|x|/16/32. Let µ be any log-concave
distribution on R with mean 0 and variance 1. Then, for all x ∈ R, dµ(x) ≤ (32e)dν(x).

In the above, we necessarily chose a distribution ν that did not have variance 1.

Proof: To prove this lemma, we will use the properties of log-concave functions given by Lovasz and
Vempala [29]. Specifically, for any log-concave density dµ with mean 0 and variance 1, ∀x dµ(x) ≤ 1,
and dµ(0) ≥ 1/8. From the latter fact, we next argue that dµ(x) ≤ e−|x|/16 for |x| > 16. It suffices
to show this for x > 16 by symmetry. Suppose not, i.e., suppose ∃r > 16 dµ(r) ≥ e−r/16. Then
log-concavity implies that dµ(x) ≥ (1/8)1−x/r(e−r/16)x/r for x ∈ [0, r]. In turn, this means,

∫ 16

0
dµ(x) ≥

∫ 16

0

1
8
e−x/16dx > 1,

13

which is a contradiction. Hence, dµ(x) ≤ e−|x|/16 = 32dν(x) for |x| > 16. (These bounds are far
from tight.) Also, for |x| < 16, dµ(x) ≤ 1 ≤ (32e)dν(x).

This lemma will enable us to transfer a bound on the error of a fixed log-concave function such
as e−2|x| to all log-concave functions.

Lemma 7 There exists a fixed function d : R → R, such that, for any log-concave distribution µ,
and any θ ∈ R, there exists a degree-d(ε) polynomial p, such that

∫ ∞

−∞
(p(x)− sgn(x− θ))2dµ(x) ≤ ε.

Proof: It suffices to show it for any log-concave distribution µ with mean 0 and variance 1. This
is because we can always apply an affine transformation to x, x → ax + b which puts it in such
standard position and maintains the properties of the lemma (for a suitably transformed polynomial
p and θ). Thus, we assume that µ has mean 0 and variance 1.

Next, we claim it suffices to show the lemma for the log-concave density dν(x) = e−|x|/16/32,
which has mean 0 but variance > 1. To see this, suppose it holds for dν and p, and we have some
mean 0 variance 1 log-concave density dµ. Then by Lemma 6,

∫ ∞

−∞
(p(x)− sgn(x− θ))2dµ(x) ≤ 32e

∫ ∞

−∞
(p(x)− sgn(x− θ))2dν(x) ≤ 32eε.

Hence it would hold for mean-0 variance-1 dµ with function d′ : R → R where d′(ε) = d(ε/(32e)).
By a similar stretching argument, it suffices to show it for dν(x) = e−2|x|.

Next, again WLOG, it suffices to show it for |θ| < log 1/ε. For if |θ| > 2 log 1/ε, then the
constant polynomial p(x) = −sgn(θ) has error less than ε under dν(x) = e−2|x|. Continuing on the
seemingly endless chain of WLOGs, we next that it suffices to show it for θ = 0. Suppose it holds
for dν(x) = e−2|x|, a particular p and ε, and sgn(x). That is,

∫ ∞

−∞
(p(x)− sgn(x))2dν(x) ≤ ε (13)

Then consider the function sgn(x− θ) and the density dρ(x) = e−2|x−θ|/ log(1/ε)/ log(1/ε). For this
density, by (13) and change of variable z = log(1/ε)(x− θ),

∫ ∞

−∞
(p(z)− sgn(z))2dν(z) =

∫ ∞

−∞
(p(log(1/ε)(x− θ))− sgn(x− θ))2dρ(x) ≤ ε (14)

Now, observe that as long as log(1/ε) > 1, (ε ≤ 1/e)

dν(x)
dρ(x)

= log(1/ε)e2(
|x−θ|

log(1/ε)
−|x|) ≤ log(1/ε)e2(

|x−θ|−|x|
log(1/ε)

) ≤ log(1/ε)e2
|θ|

log(1/ε) ≤ log(1/ε)e2.

By this and (14),
∫ ∞

−∞
(p(log(1/ε)(x− θ))− sgn(x− θ))2dµ(x) ≤ e2ε log(1/ε).

14

Hence a bound of ε on the error of p for sgn(x) implies a bound of e2ε log(1/ε) on the error of
p(log(1/ε)(x− θ)). So, it suffices to show we can achieve such a bound for sgn(x), dν(x) = e−2|x|,
and arbitrarily small ε.

At this point we have a single function sgn(x), a single density e−2|x|, and we must establish
that for any ε there is some d = d(ε) for which there is a degree-d polynomial p for which (13) holds.
But sgn(x) ∈ L2(R, e−2|x|) because

∫∞
−∞ sgn(x)2e−2|x|dx = 1 < ∞ and it is known that polynomials

are dense in L2(R, e−2|x|) [35].

4.1 Agnostically Learning Disjunctions under Any Distribution.

We can use the polynomial regression algorithm to learn disjunctions agnostically with respect to
any distribution in subexponential time. We make use of the existence of low-degree polynomials
which strongly approximate the OR function in the L∞ norm:

Theorem 7 [33, 31, 22] Let f(x1, . . . , xn) compute the OR function on some subset of (possibly
negated) input variables. Then there exists a polynomial p of degree O(

√
n log(1/ε)) such that for

all x ∈ {−1, 1}n, we have |f(x)− p(x)| ≤ ε.

For ε = Θ(1) this fact appears in [33, 31]; an easy extension to arbitrary ε is given in [22].
Theorem 2 follows immediately from Theorems 7 and Theorem 5, since for any distribution D the
L∞ bound given by Theorem 7 clearly implies the bound on expectation required by Theorem 5.

We note that low-degree L∞-approximators are know for richer concept classes than just dis-
junctions. For example, results of O’Donnell and Servedio [32] show that any Boolean function
f : {−1, 1}n → {−1, 1} computed by a Boolean formula of linear size and constant depth is
ε-approximated in the L∞ norm by a polynomial of degree Õ(

√
n) · poly log 1

ε . By combining The-
orem 5 with such existence results, one can immediately obtain arbitrary-distribution agnostic
learning results analogous to Theorem 2 for those concept classes as well.

4.2 Hardness results for agnostically learning halfspaces over the hypercube

In this section we show that the challenging “learning noisy parity” problem reduces to the problem
of agnostically learning halfspaces with respect to the uniform distribution over the hypercube.
Recall that a vector c ∈ {0, 1}n induces a parity function c : {0, 1}n → {0, 1} as follows: c(x) =
c ·x mod 2 (the indices of c equal to 1 are the relevant variables). The noisy parity learning problem
is the problem of PAC learning an unknown parity function with respect to the uniform distribution
on {0, 1}n where the label of each example is flipped (independently) with probability η. The fastest
known learning algorithm for this well-known problem is due to Blum et al. [5] and runs in time
2O(n/ log n).

An algorithm for agnostically learning halfspaces can be easily transformed into an algorithm
for learning parity with noise:

Theorem 8 Let A be an algorithm for agnostically learning halfspaces to accuracy opt + ε with
respect to the uniform distribution over {0, 1}n running in time t = t(1/ε, n). Then there exists an
algorithm B for learning parity with noise which runs in time poly(n, t).

15

Proof: Assume that the unknown parity function c has k relevant variables (and for simplicity
assume k is even). Note that for a set S of k variables, the majority function on S (equal to 1 if
bk/2c+1 or more of the variables in S are set to 1) agrees with the parity function on all variables
in S for a 1/2 + 1/

√
k fraction of inputs of {0, 1}n. This is because the majority function equals

parity for all inputs of hamming weight equal to k/2 and agrees with parity on half of all other
inputs.

Now choose a random example (labeled by c) and flip its label with probability η. The probabil-
ity that the majority function on S correctly labels the example equals η +(1− 2η)(1/2− 1/

√
k) =

1/2 − (1 − 2η)/
√

k. That is, the error rate of the majority function on S with respect to noisy
examples is bounded away from 1/2 by (1− 2η)/

√
k.

We can now use an algorithm for agnostically learning halfspaces to identify the relevant
variables of the unknown parity function c. To determine if the variable xi is relevant, set
ε = (1/2)(1− 2η)/

√
k and take a number of random examples as specified by the agnostic learner.

Feed the examples to the agnostic learner with the ith bit removed from every example. If xi is a rel-
evant variable, then the labels will be totally uncorrelated with the examples (now of length n−1),
and the agnostic learner will not produce a hypothesis with error rate bounded away from 1/2. If xi

is irrelevant, then the majority function on the relevant variables has error rate bounded away from
1/2, and the agnostic learner will output a hypothesis with error less than 1/2− (1/2)(1− 2η)/

√
k.

If the error rate η is Θ(1) and the agnostic learning algorthm runs in time nO(1/ε2−β), then the
above algorithm will learn a noisy parity in time 2O(nγ) for some 0 < γ < 1.

4.3 An application to learning intersections of halfspaces

Learning an intersection of halfspaces is a challenging and well-studied problem even in the noise-
free setting. Klivans et al. [22] showed that the standard low-degree algorithm can learn the
intersection of k halfspaces with respect to the uniform distribution on {−1, 1}n to error ε in time
nO(k2/ε2), provided that ε < 1/k2. Note that because of the requirement on ε, the algorithm always
takes time at least nΩ(k6) even if the desired final error is ε = Θ(1) independent of k.

We can use the idea of learning halfspaces agnostically to obtain the following runtime bound
which is better than [22] for ε > 1

k :

Theorem 9 Let f = h1 ∧ . . . ∧ hk be an intersection of k halfspaces over {−1, 1}n. Then f is
learnable with respect to the uniform distribution over {−1, 1}n in time nO(k4/ε2) for any ε > 0.

We note that a comparable bound can be proved via techniques from recent work due to
Jackson et al. [18] which does not involve agnostic learning. The presentation here, however, is
more straightforward and shows how agnostic learning can have applications even in the non-noisy
framework.

The approach that establishes Theorem 9 is similar to Jackson’s Harmonic Sieve [17]: we apply a
boosting algorithm, using the polynomial regression algorithm at each stage to identify a low-degree
polynomial which, after thresholding, has advantage at least Ω(1/k) on the target function.

We begin with the following easy fact which follows directly from the “discriminator lemma”
[15]:

Fact 8 Let f = h1 ∧ . . . ∧ hk be an intersection of k halfspaces. Then for any distribution D on
{0, 1}n either there exists an hi such that |ED[fhi]| ≥ 1/k or we have |ED[f]| ≥ 1/k.

16

Hence for any distributionD there exists a single halfspace which has accuracy at least 1/2+1/2k
with respect to f and D. We will be concerned only with distributions that are c-bounded (c will
be chosen later), i.e. distributions D such that D(x) ≤ c/2n for all x. Fix such a c-bounded
distribution D and let hD denote the halfspace obtained from Fact 8. Applying Fact 5 it is not
difficult to see that for any halfspace (and in particular hD) and sufficiently large constant a,

∑

S,|S|≥a·k4c2

ĥD(S)2 ≤ c/16k2.

By setting g =
∑

S,|S|≤a·k4c2 ĥD(S)χS(x), we have ED[|g − hD|] ≤ 1/4k for any c-bounded
distribution D.

We now show that the polynomial regression algorithm can be used as a weak learning algorithm
for f :

Lemma 9 There exists an algorithm A such that for any c-bounded distribution D and 0 < δ <
1, if A is given access to examples drawn from D labeled according to f , then A runs in time
poly(nk4c2 , 1/δ) and with probability at least 1− δ, A outputs a hypothesis h such that PrD[f(x) =
h(x)] ≥ 1/2 + 1/8k.

Proof: Let ` = ak4c2 for a sufficiently large constant a. Apply the polynomial regression algorithm
from Section 3 to obtain a hypothesis g∗ = sgn

(∑
|S|≤`wSχS(x)− t

)
. For ξ > 0, we claim that g∗

has error less than 1/2− 1/4k + ξ as long as m ≥ poly(n`, 1/ξ2, log(1/δ)) as in Theorem 5. To see
this note that

ED[|f(x)− g∗|] ≤ ED[|f(x)− hD(x)|] + ED[|hD(x)− g∗|]
and recall that the first term on the right hand side is at most 1/2 − 1/2k. For the second
term, recall that minw ED[|hD(x) − ∑

|S|≤` wSχS |] ≤ 1/4k. But g∗ is an approximation to the
truncated Fourier polynomial for hD(x) and as in the proof of Theorem 5, for our choice of m,
ED[|hD(x) − g∗(x)|] ≤ minw ED[|hD(x) − ∑

|S|≤` wSχS |] + ξ with probability greater than 1 − δ.
Hence with probability 1− δ we have ED[|f(x)− g∗(x)|] ≤ 1/2− 1/4k + ξ. Taking ξ = 1/(8k) gives
the lemma.

At this point we will need to recall the definition of a boosting algorithm, see e.g. [13]. Roughly
speaking, a boosting algorithm iteratively applies a weak learning algorithm as a subroutine in
order to construct a highly accurate final hypothesis. At each iteration, the boosting algorithm
generates a distribution D and runs the weak learner to obtain a hypothesis which has accuracy
1/2 + γ with respect to D. After t = poly(1/γ, 1/ε) iterations, the boosting algorithm outputs
a hypothesis with accuracy greater than 1 − ε. The following fact from [23] is sufficient for our
purposes:

Theorem 10 There is a boosting algorithm which runs in t = O(1/ε2γ2) iterations and at each
stage generates an O(1/ε)-bounded distribution D.

By combining this boosting algorithm with the weak learning algorithm from Lemma 9 we
obtain Theorem 9:

Proof of Theorem 9: Run the boosting algorithm to learn f using the weak learner from Lemma
9 as a subroutine. The boosting algorithm requires at most O(1/ε2k2) iterations since the distribu-
tions are all O(1/ε) bounded and the weak learner outputs a hypothesis with accuracy 1/2+Ω(1/k).

17

The running time of the weak learning algorithm is at most nO(k4/ε2) since each distribution is
c = O(1/ε) bounded.

5 Learning halfspaces over the sphere with the degree-1 version
of the polynomial regression algorithm

Let us return to the case, where the marginal distribution DX is uniform over Sn−1, and now
consider the homogeneous d = 1 version of the polynomial regression algorithm. In this case, we
would like to find the vector w ∈ Rn that minimizes EDX

[(w · x − y)2]. By differentiating with
respect to wi and using the fact that E[xi] = E[xixj] = 0 for i 6= j and E[x2

i] = 1
n , we see that the

minimum is achieved at wi = 1
nE[xiyi].

This is essentially the same as the simple Average algorithm which was proposed by Servedio in
[34] for learning origin-centered halfspaces under uniform in the presence of random misclassification
noise. The Average algorithm draws examples until it has a sample of m positively labeled examples
x1, . . . , xm, and then it returns the hypothesis h(x) = sgn(v · x) where v = 1

m

∑m
i=1 xi is the vector

average of the positive examples. The intuition for this algorithm is simple: if there were no noise
then the average of the positive examples should (in the limit) point exactly in the direction of the
target normal vector.

A straightforward application of the bounds from Section 3 and Section 4 implies only that the
degree-1 polynomial regression algorithm should achieve some fixed constant accuracy Θ(1) inde-
pendent of opt for agnostic learning halfspaces under the uniform distribution on Sn−1. However,
a more detailed analysis shows that the simple Average algorithm does surprisingly well, in fact
obtaining a hypothesis with error rate O(opt

√
log(1/opt)) + ε; this is Theorem 3. We give useful

preliminaries in Section 5.1 and prove Theorem 3 in Section 5.2.

5.1 Learning Halfspaces on the Unit Sphere: Preliminaries

We write Sn−1 to denote the n-dimensional Euclidean sphere Sn−1 = {x ∈ Rn :
∑n

i=1 x2
i = 1}.

Given two nonzero vectors u, v ∈ Rn we write α(u, v) to denote arccos(u·v
‖u‖·‖v‖), the angle between

u and v. If the target halfspace is sgn(u · x) and sgn(v · x) is a hypothesis halfspace, then it is easy
to see that we have Prx∈U [sgn(u · x) 6= sgn(v · x)] = α(u, v)/π.

We write An−1 to denote the surface area of Sn−1. It is well known (see e.g. [1]) that An−2/An−1 =
Θ(n1/2). The following fact (see e.g. [1]) is useful:

Fact 10 For any unit vector v ∈ Rn and any −1 ≤ α < β ≤ 1, we have

Pr
x∈U

[α ≤ v · x ≤ β] =
An−2

An−1
·
∫ β

α
(1− z2)(n−3)/2dz.

The following straightforward result lets us deal easily with sample error:

Fact 11 Let D be any distribution over Sn−1. Let v denote the expected location Ex∈D[x] of a
random draw from D, and suppose that ‖v‖ ≥ ξ. Then if v = 1

m

∑m
i=1 xi is a sample estimate

of Ex∈D[x] where each xi is drawn independently from D and m = O(n
ε2ξ2 log n

δ), we have that
Prx∈U [sgn(v · x) 6= sgn(v · x)] ≤ ε with probability at least 1− δ.

18

Proof: We define an orthonormal basis for Rn by letting vector u1 denote v
‖v‖ and letting u2, . . . , un

be an arbitrary orthonormal completion. Given a vector z ∈ Rn, we may write z1 for z · u1 and
z2, . . . , zn for z · u2, . . . , z · un respectively. We have Ex∈D[x1] = ξ so standard additive Chernoff
bounds imply that taking m = O(1

ξ2 log 1
δ) many draws will result in |v1−ξ| ≤ ξ

2 with probability at
least 1− δ

2 . For i = 2, . . . , n we have Ex∈D[xi] = 0; again standard additive Chernoff bounds imply
that taking m = O(n

ε2ξ2 log n
δ) many draws will result in |vi| ≤ εξ

2
√

n
for each i with probability at

least 1− δ
2 . Thus, with overall probability at least 1− δ we have

α(v, v) = arctan

(√
v2

2 + · · ·+ v2
n

v1

)
≤ arctan (ε) ≤ ε

and thus Prx∈U [sgn(v · x) 6= sgn(v · x)] ≤ α(v, v)/π < ε/π < ε.

5.2 Proof of Theorem 3

We have that D is a distribution over X × {−1, 1} whose marginal is the uniform distribution U
on Sn−1. Without loss of generality we may suppose that the optimal origin-centered halfspace is
f(x) = sgn(x1), i.e. the normal vector to the separating hyperplane is e1 = (1, 0, . . . , 0). We write
S+ to denote the “positive hemisphere” {x ∈ Sn−1 : x1 ≥ 0} and write S− to denote Sn−1 \ S+.
We may also suppose without loss of generality that the optimal halfspace’s error rate opt is such
that O(opt

√
log 1

opt) is less than 1
4 , i.e. opt is less than some fixed absolute constant that we do

not specify here.
Let p : Sn−1 → [0, 1] be the function

p(z) = Pr
(x,y)∈D

[y 6= f(z) | x = z] (15)

so intuitively p(z) is the probability of getting a “noisy label” y on instance z. (We assume the
joint distribution D on X ×Y is sufficiently “nice” in terms of measurability, etc. so that p is well-
defined as specified above.) Let v denote the true vector average of all positively labeled examples
generated by D, i.e.

v =
∫

x∈S+

x(1− p(x))U(x) +
∫

x∈S−
xp(x))U(x).

If the number m of examples used by Average went to infinity, the vector average v that Average
computes would converge to v. We prove Theorem 3 by first establishing bounds on v, and then
using Fact 11 (in Appendix 5.1) to deal with sample error.

Let u denote the vector average of all points in S+. It is clear from symmetry that u =
(u1, 0, . . . , 0) for some u1 > 0; in fact we have

Claim 12 u1 = 2 · An−2

An−1
· ∫ 1

0 z(1− z2)(n−3)/2dz = Θ(1√
n
).

Proof: The first equality follows immediately from Fact 10 (the factor of 2 is present because u
is the vector average of half the points of Sn−1). For the second equality, since An−2

An−1
= Θ(

√
n)

we need to show that
∫ 1
0 z(1 − z2)(n−3)/2dz is Θ(1/n). For each z ∈ [1/

√
n, 2/

√
n] the value of

the integrand z(1 − z2)(n−3)/2 is at least (1/
√

n)(1 − 4
n)(n−3)/2 = Θ(1/

√
n), so this implies that

19

the whole integral is Ω(1/n). The integrand is clearly at most 1/
√

n for all z ∈ [0, 1/
√

n], so we
have

∫ 2/
√

n
0 z(1 − z2)(n−3)/2dz = Θ(1/n); to finish the proof we need only show that

∫ 1
2/
√

n z(1 −
z2)(n−3)/2dz = O(1/n). We can piecewise approximate this integral (in increments of 1/

√
n) as

∫ 1

2/
√

n
z(1− z2)(n−3)/2dz ≈

√
n∑

j=2

j√
n

e−j2/2 · 1√
n

=
1
n

√
n∑

j=2
je−j2/2 <

1
n

∞∑
j=2

je−j2/2 = O(1/n)

and this gives the claim.

If there were no noise then then the vector average v would equal u; since there is noise we must
add in a contribution from true negative examples that are falsely labeled as positive, and subtract
off a contribution from true positive examples that are falsely labeled as negative.

Let opt− and opt+ be defined as

opt− =
∫

x∈S−
p(x)U(x) and opt+ =

∫

x∈S+

p(x)U(x),

so opt− is the overall probability of receiving an example that is truly negative but falsely labeled
as positive, and vice versa for opt+. Clearly opt = opt− + opt+. Let u− and u+ be the vectors

u− =

∫
x∈S− xp(x)U(x)

opt−
and u+ =

∫
x∈S+ xp(x)U(x)

opt+

so u− (u+ respectively) is the vector average of all the false positive (false negative respectively)
examples generated by p. Then the vector average v of all positively labeled examples is

v =
u/2 + opt−u− − opt+u+

1/2 + opt− − opt+
= C1 · v′

where v′ = u/2 + opt−u− − opt+u+ and 4
3 ≤ C1 = 1

1/2+opt−−opt+
≤ 4; the bounds on C1 hold since

by assumption we have opt ≤ 1
4 . So v′ is a constant multiple of v, and it suffices to analyze v′.

We have v′ = (v′1, . . . , v
′
n), where v′1 is the component parallel to e1. In the rest of this subsection

we will establish the following bounds on v′:

Theorem 11 (i) The component of v′ that is parallel to the target vector e1 is v′1 ≥ u1(1
2 −

O(opt
√

log 1
opt)) > u1

4 . (ii) The component of v′ that is orthogonal to e1, namely v′⊥ = v′ − v′1e1 =

(0, v′2, . . . , v
′
n), satisfies ‖v′⊥‖ = O(opt

√
log 1

opt)u1.

Given Theorem 11, the error rate of the hypothesis sgn(v · x) under U is

Pr[sgn(v′ · x) 6= sgn(x1)] =
arctan

(‖v′⊥‖
v′1

)

π
≤

arctan(O(opt
√

log 1
opt))

π
= O(opt

√
log 1

opt).

By Fact 11 the sample average vector v has Prx∈U [sgn(v · x) 6= sgn(v · x)] ≤ ε with probability at
least 1− δ, and we obtain Theorem 3.

Now we prove Theorem 11. Note that if opt−u− − opt+u+ is the zero vector then the theorem
clearly holds, so we henceforth assume that opt−u− − opt+u+ is not the zero vector.

20

Fix any unit vector w ∈ Sn−1. Suppose that p is such that the vector opt−u−−opt+u+ points in

the direction of w, i.e. w = opt−u−−opt+u+

‖opt−u−−opt+u+‖ ; let τ > 0 denote ‖opt−u−−opt+u+‖, so v′ = u/2+τw.

To establish Theorem 11, it suffices to show that the desired bounds hold for any function p which
satisfies (15) and is such that: (a) the vector opt−u−−opt+u+ points in the direction of w, and (b)
the magnitude of τ = ‖opt−u−−opt+u+‖ is as large as possible. (Since u/2 contributes zero to v′⊥,
we have that ‖v⊥‖ scales with τ and thus condition (ii) only becomes harder to satisfy as τ increases.
If w1 > 0 then condition (i) holds for any τ > 0, and if w1 < 0 then the larger τ is the more difficult
it is to satisfy condition (i).) We let τmax denote this maximum possible value of τ ; if we can show
that |τmax| = O(opt

√
log 1

opt)u1, then since v′1 = u1
2 + τw1 and v′⊥ = τ(0, w2, w3, . . . , wn), this gives

Theorem 11.
We upper bound τmax by considering an even more relaxed scenario. Let w be any unit vector

in Sn−1. Let A be any subset of Sn−1 and let B be any subset of Sn−1 \ A such that optA +

optB = opt, where optA =
∫
x∈A p(x)U(x) and optB =

∫
x∈B p(x)U(x). Let uA =

R
x∈A xp(x)U(x)

optA
and

uB =
R

x∈B xp(x)U(x)

optB
. Let p : Sn−1 → [0, 1] be any function such that (i) equation (15) holds, and (ii)

the vector optAuA − optBuB points in the direction of w. If we can upper bound the magnitude of
optAuA−optBuB, then this gives an upper bound on τmax. (This is a more relaxed scenario because
we are not requiring that A ⊆ S− and B ⊆ S+.) But now a simple convexity argument shows
that ‖optAuA − optBuB‖ is maximized by taking A to be {x ∈ Sn−1 : x ·w ≥ y} where y is chosen
so that

∫
x∈A U(x) = opt

2 ; taking B to be −A; and taking p(x) to be 1 on x ∈ (A ∪ B) and 0 on
x /∈ (A∪B) (note that this gives optA = optB = opt

2). Let τMAX be the value of ‖optAuA−optBuB‖
that results from taking A,B, optA, optB and p as described in the previous sentence; we will show
that τMAX = O(opt

√
log 1

opt)u1 and thus prove Theorem 11.

It is clear that optAuA = −optBuB, so it suffices to bound ‖optAuA‖ = τMAX
2 . Let y ∈ [0, 1] be

the value specified above, so

opt

2
= Pr

x∈U
[x · w ≥ y] =

An−2

An−1
·
∫ 1

y
(1− z2)(n−3)/2dz. (16)

We have

optAuA =
∫

x∈A
xp(x)U(x) =

(
An−2

An−1
·
∫ 1

y
z(1− z2)(n−3)/2dz

)
w,

so it remains to show that γ = O(opt
√

log 1
opt) where γ > 0 is such that

An−2

An−1
·
∫ 1

y
z(1− z2)(n−3)/2dz = γu1 (17)

where y satisfies (16). We do this in the following two claims.

Claim 13 Let ` be such that y = √̀
n
. Then e−`2/2 = Θ(opt).

Proof: We have
∫ 1
y (1 − z2)(n−3)/2dz = opt

2An−2/An−1
= Θ(opt√

n
). Write y = √̀

n
. Piecewise approxi-

mating the integral in increments of 1/
√

n we have
∫ 1

y
(1− z2)(n−3)/2dz ≈

√
n∑

j=`

e−j2/2 · 1√
n

= Θ(e−`2/2) · 1√
n

.

21

Since this equals Θ(opt√
n
), we have that e−`2/2 = Θ(opt), which gives the claim. (Note that we have

` = Θ(
√

log 1
opt) À 1, which is compatible with approximatingS the integral with a sum as done

above.)

Claim 14 We have γ = Θ(opt
√

log(1/opt)).

Proof: From Claim 12 we have u1 = Θ(1√
n
). Since An−2

An−1
= Θ(

√
n), by Equation (17) we have that

γ = Θ(n · ∫ 1
y z(1 − z2)(n−3)/2dz). Since y = `/

√
n where ` = Θ(

√
log(1/opt)) (and more precisely

e−`2/2 = Θ(opt)) by Claim 13, again a piecewise approximation with pieces of length 1/
√

n gives
us ∫ 1

y
z(1− z2)(n−3)/2dz ≈

√
n∑

j=`

j√
n
· e−j2/2 · 1√

n
<

1
n

∞∑
j=`

je−j2/2 = Θ(
`e−`2/2

n
)

and thus γ = Θ(opt
√

log 1/opt) as desired.

6 Learning halfspaces in the presence of malicious noise

We now consider the problem of PAC learning an unknown origin-centered halfspace, under the
uniform distribution on Sn−1, in the demanding malicious noise model introduced by Valiant [37]
and subsequently studied by Kearns and Li [20] and many others.

We first define the malicious noise model. Given a target function f and a distribution D over
X, a malicious example oracle with noise rate η is an oracle EXη(f,D) that behaves as follows. Each
time it is called, with probability 1− η the oracle returns a noiseless example (x, f(x)) where x is
drawn from D, and with probability η it returns a pair (x, y) about which nothing can be assumed;
in particular such a “malicious” example may be chosen by a computationally unbounded adversary
which has complete knowledge of f, D, and the state of the learning algorithm when the oracle is
invoked. We say that an algorithm learns to error ε in the presence of malicious noise at rate η
under the uniform distribution if it satisfies the following condition: given access to EXη(f,U) with
probability 1− δ the algorithm outputs a hypothesis h such that Prx∈U [h(x) 6= f(x)] ≤ ε.

Few positive results are known for learning in the presence of malicious noise. Improving on
[37, 20] Decatur [10] gave an algorithm to learn disjunctions under any distribution that tolerates
a noise rate of O(ε

n ln 1
ε). More recently, Mansour and Parnas studied the problem of learning

disjunctions under product distributions in an “oblivious” variant of the malicious noise model [30],
giving an algorithm that can tolerate a noise rate of O(ε5/3/n2/3). We note that the Perceptron
algorithm can be shown to tolerate malicious noise at rate O(ε/

√
n) when learning an origin-centered

halfspace under the uniform distribution U on Sn−1.
It is not difficult to show that the simple Average algorithm can also tolerate malicious noise

at rate O(ε/
√

n):

Theorem 12 For any ε > 0, algorithm Average (with m = O(n2

ε2
· log n

δ)) learns the class of
origin-centered halfspaces to error ε in the presence of malicious noise at rate η = O(ε√

n
) under

the uniform distribution.

22

Proof: If there were no noise the true average vector (average of all positive examples) would be
(u1, 0, . . . , 0) where by Claim 12 we have u1 = Θ(1/

√
n). By Chernoff bounds, we may assume that

the true frequency η′ of noisy examples in the sample is at most 2η = O(ε/
√

n). Let v denote
the average of the noiseless vectors in the sample; Chernoff bounds are easily seen to imply that
we have v1 = Θ(1/

√
n) and |vi| ≤ ε

n for each i = 2, . . . , n. Let z denote the average location
of the malicious examples in the sample; since even malicious example must lie on Sn−1 (for
otherwise we could trivially identify and discard them), it must be the case that ‖z‖ ≤ 1. From
this it is easy to see that the average v of the entire sample must satisfy v1 = Θ(1/

√
n)− ε/

√
n =

Θ(1/
√

n) and
√

v2
2 + · · ·+ v2

n = O(ε/
√

n). We thus have Prx∈U [sgn(v ·x) 6= sgn(x1)] = α(v, e1)/π =
arctan(O(ε/

√
n)

Θ(1/
√

n)
)/π ≤ ε.

As the main result of this section, in Section 6.1 we show that by combining the Average
algorithm with a simple preprocessing step to eliminate some noisy examples, we can handle a
higher malicious noise rate of O(ε

(n log n)1/4); this is Theorem 4. This algorithm, which we call
TestClose, is the following:

1. Draw examples from EXη(f,U) until m = O(n2

ε2
log n

δ) positively labeled examples have been
received; let S = {x1, . . . , xm} denote this set of examples.

2. Let ρ =
√

C
n log m

δ , where C is a fixed constant (specified later in Section 6.1). If any pair of
examples xi, xj with i 6= j has ‖xi − xj‖ <

√
2− ρ, remove both xi and xj from S. (We say

that such a pair of examples is too close.) Repeat this until no two examples in S are too
close to each other. Let S′ denote this “reduced” set of examples.

3. Now run Average on S′ to obtain a vector v, and return the hypothesis h(x) = sgn(v · x).

The idea behind this algorithm is simple. If there were no noise, then all examples received by
the algorithm would be independent uniform random draws from the positive half of Sn−1, and
it is not difficult to show that with high probability no two examples would be too close to each
other. Roughly speaking, the adversary controlling the noise would like to cause v to point as
far away from the true target vector as possible; in order to do this his best strategy (if we were
simply running the Average algorithm on the original data set S without discarding any points)
would be to have all noisy examples be located at some single particular point x? ∈ Sn−1. However,
our “closeness” test rules out this adversary strategy, since it would certainly identify all these
collocated points as being noisy and discard them. Thus intuitively, in order to fool our closeness
test, the adversary is constrained to place his noisy examples relatively far apart on Sn−1 so that
they will not be identified and discarded. But this means that the noisy examples cannot have a
very large effect on the average vector v, since intuitively placing the noisy examples far apart on
Sn−1 causes their vector average to have small magnitude and thus to affect the overall average
v by only a small amount. The actual analysis in the proof of Theorem 4 uses bounds from the
theory of sphere packing in Rn to make these intuitive arguments precise.

6.1 Proof of Theorem 4

Let Sbad ⊆ S denote the set of “bad” examples in S that were chosen by the adversary, and let Sgood

be S \ Sbad, the set of “good” noiseless examples. Let S′bad (S′good, respectively) denote Sbad ∩ S′

23

(Sgood∩S′, respectively), i.e. the set of bad (good, respectively) examples that survive the closeness
test in Step 2.

Let us write v′good to denote the vector average of all points in S′good and v′bad to denote the

vector average of all points in S′bad. If we let η′ denote |S′bad|
|S′| , then we have that the overall vector

average v of all examples in S′ is (1− η′)v′good + η′v′bad.
We first show that our closeness test does not cause us to discard any good examples:

Lemma 15 With probability at least 1− δ
4 we have S′good = Sgood.

Proof: Let x′ be any fixed point on Sn−1. We will show that a uniform example drawn from U lies
within distance

√
2− ρ of x′ with probability at most δ

4m2 . Since there are at most m examples in
Sgood, this implies that for any individual example xi ∈ S, the probability that xi lies too close to
any example in Sgood is at most δ

2m ; taking a union bound gives the lemma.
Without loss of generality we may take x′ = (1, 0, . . . , 0). It is easy to see that for any y =

(y1, . . . , yn) ∈ Sn−1, we have ‖y − x′‖ =
√

2− 2y1 and thus ‖y − x′‖ <
√

2− ρ if and only if
y > ρ/2. But by Fact 10, we have that if y is drawn from U , then

Pr
y∈U

[y > ρ/2] =
An−2

An−1
·
∫ 1

ρ/2
(1− z2)(n−3)/2dz. (18)

It is easy to verify from the definition of ρ that for a suitable absolute constant C, the integrand
(1 − z2)(n−3)/2 is at most (1 − (ρ/2)2)(n−3)/2 ≤ δ

4m3 over the interval [ρ/2, 1], and thus (since
An−2/An−1 = Θ(

√
n) < m) we have that (18) is at most δ

4m2 as required.

The true noise rate is η, and the previous lemma implies that with probability 1− δ
4 we do not

throw away any good examples from S. Using Chernoff bounds, it is easy to show that with overall
probability at least 1− δ

2 we have η′ < 2η.
Let vgood denote 1

|Sgood|
∑

x∈Sgood
x, the average location of the vectors in Sgood. We have that

the expected value of vgood is (u1, 0, . . . , 0) where u1 = Θ(1√
n
) is as defined in Claim 12. For

m = O(n2

ε2
log n

δ), as in the proof of Fact 11, Chernoff bounds imply that with probability at least
1 − δ

4 we have that (vgood)1 = Θ(1√
n
) while (vgood)i = O(ε

n) for each i = 2, . . . , n. By Lemma 15,

with probability at least 1− δ
4 we have v′good = vgood, so with overall probability at least 1− δ

2 we
have (v′good)1 = Θ(1√

n
) while (v′good)i = O(ε

n) for each i = 2, . . . , n.
We now show that ‖v′bad‖must be small; once we establish this, as we will see it is straightforward

to combine this with the bounds of the previous two paragraphs to prove Theorem 4. The desired
bound on ‖v′bad‖ is a consequence of the following lemma:

Lemma 16 Let T be any set of M = ω(n3/2/
√

ρ) many examples on Sn−1 such that no two

examples in T lie within distance
√

2− ρ of each other (recall that ρ =
√

C
n log m

δ). Then the vector

average t = 1
|T |

∑
x∈T x of T satisfies ‖t‖ = O

(
(log m

δ
)1/2

n1/4

)
.

Proof: Without loss of generality we may suppose that t = (c, 0, . . . , 0) for some c > 0 (by
rotating the set T); our goal is to upper bound c. We consider a partition of T based on the
value of the first coordinate as follows. For τ = 1, 1 − 1√

n
, 1 − 2√

n
, . . . we define the set Tτ to be

24

{x ∈ T : τ − 1
2
√

n
≤ xi < τ + 1

2
√

n
}. The idea of the proof is that for any value of τ which is

not very small, the set Tτ must be small because of sphere-packing bounds. This implies that the
overwhelming majority of the M examples in T must have a small first coordinate, which gives the
desired result.

More precisely, we have the following claim:

Claim 17 There is a fixed constant K > 0 such that if τ > K
√

ρ, then |Tτ | ≤ n.

Proof: We first give a crude argument to show that that if τ > 0.1 then |Tτ | ≤ n. (It will be clear
from the argument that any positive constant could be used in this argument instead of 0.1.) This
argument uses the same basic ideas as the general case of τ > K

√
ρ but is simpler because we do

not need our bounds to be as precise; later for the general case it will be useful to be able to assume
that τ < 0.1.

Fix some τ > 0.1. We first note that if τ is greater than (say) 4/5 then Tτ can contain at
most one point (since any two points of Sn−1 which both have first coordinate 4/5± o(1) can have
Euclidean distance at most 6/5 + o(1) <

√
2− ρ from each other). Thus we may assume that

0.1 < τ < 4/5 (the key aspect of the upper bound is that τ is bounded away from 1).
For x ∈ Rn let x′ denote (x2, . . . , xn). Since each x ∈ Tτ has x1 ∈ [τ − 1

2
√

n
, τ + 1

2
√

n
), we have

that each x ∈ Tτ satisfies ‖x′‖ =
√

1− τ2 · (1± o(1)). Let x̃′ ∈ Rn−1 denote the rescaled version of
x′ so that ‖x̃′‖ equals

√
1− τ2 exactly, and let T̃ ′τ denote {x̃′ : x ∈ Tτ}. Since the first coordinates

of any two points in Tτ differ by at most 1√
n
, it is not difficult to see that that the minimum

pairwise distance condition on Tτ implies that any pair of points in T̃ ′τ must have distance at least
(
√

2− ρ− 1√
n
) · (1− o(1)) =

√
2 · (1− o(1)) from each other.

We now recall Rankin’s second bound on the minimum pairwise distance for point sets on
Euclidean spheres (see e.g. Theorem 1.4.2 of [11]). This bound states that for any value κ >

√
2,

at most n + 1 points can be placed on Sn−1 if each point is to have distance at least κ from all
other points. By rescaling, this immediately implies that at most n points can be placed on the
Euclidean sphere of radius

√
1− τ2 in Rn−1 if all pairwise distances are at least κ

√
1− τ2. Now

recall from the previous paragraph that all points in T̃ ′τ lie on the sphere of radius
√

1− τ2, and
all pairwise distances in in T̃ ′τ are at least

√
2 · (1− o(1)). It follows by a suitable choice of κ >

√
2

that |T̃ ′τ |, and thus |Tτ |, is at most n.

We henceforth assume that K
√

ρ < τ < 0.1, and give a more quantitatively precise version of
the above argument to handle this case. We consider the following transformation f that maps
points in Tτ onto the ball of radius

√
1− τ2 in Rn−1: given x = (x1, . . . , xn) ∈ Tτ , let

f(x) =
√

1− τ2 · x′

‖x′‖
i.e. f(x) is obtained by removing the first coordinate and normalizing the resulting (n − 1)-
dimensional vector to have magnitude

√
1− τ2.

We now claim that if x 6= y, x, y ∈ Tτ , then we have ‖f(x) − f(y)‖ >
√

2− ρ − 1√
n
− 3τ2

5 . To
see this, fix any x, y ∈ Tτ . By the triangle inequality we have

‖f(x)− f(y)‖ ≥ ‖x′ − y′‖ − ‖f(x)− x′‖ − ‖f(y)− y′‖, (19)

so it suffices to bound the terms on the right hand side.

25

For the first term, we have

√
2− ρ ≤ ‖x− y‖ ≤ 1√

n
+

√
(x2 − y2)2 + · · ·+ (xn − yn)2,

where the first inequality holds since x, y ∈ T and the second inequality holds since the first
coordinates of x and y differ by at most 1√

n
. This immediately gives ‖x′ − y′‖ ≥ √

2− ρ− 1√
n
.

For the second term, since x1 ∈ [τ − 1
2
√

n
, τ + 1

2
√

n
), it must be the case that

‖x′‖2 = x2
2 + · · ·+ x2

n ∈
(

1− (τ +
1

2
√

n
)2, 1− (τ − 1

2
√

n
)2

]
. (20)

We have

‖f(x)− x′‖ =

∥∥∥∥∥
(1− τ2)1/2

‖x′‖ x′ − x′
∥∥∥∥∥ =

∣∣∣∣∣
(1− τ2)1/2

‖x′‖ − 1

∣∣∣∣∣ · ‖x
′‖ ≤

∣∣∣∣∣
(1− τ2)1/2

‖x′‖ − 1

∣∣∣∣∣ (21)

where the last inequality uses ‖x′‖ ≤ 1. A tedious but straightforward verification (using the fact
that τ < 0.1) shows that condition (20) implies that the right side of (21) is at most τ2

10 (see
Section 6.1.1 for the proof). The third term ‖f(y)− y′‖ clearly satisfies the same bound.

Combining the bounds we have obtained, it follows from (19) that ‖f(x) − f(y)‖ ≥ √
2− ρ −

1√
n
− τ2

5 . For some fixed absolute constant K > 0, we have that if τ2 > K2ρ (i.e. τ > K
√

ρ), then

the right side of this last inequality is at least
√

2− τ2

2 . So we have established that the transformed
set of points f(Tτ) have all pairwise distances at least

√
2− τ2

2 . But just as in the crude argument
at the beginning of the proof, Rankin’s bound implies that any point set on the radius-

√
1− τ2

ball in Rn−1 with all pairwise distances strictly greater than
√

2 · √1− τ2 must contain at most
n points. Since (as is easily verified)

√
2 − τ2

2 >
√

2 · √1− τ2, it must be the case that |Tτ | ≤ n.
(Claim 17)

With Claim 17 in hand, it is clear that at most n3/2 examples x ∈ T can have x1 ≥ K
√

ρ. Since
certainly each point in T has first coordinate at most 1, the average value of the first coordinate of
all M points in T must be at most

n3/2 + MK
√

ρ

M
≤ 2K

√
ρ = Θ

(
(log m

δ)1/4

n1/4

)

(where we used M = ω(n3/2/
√

ρ) for the inequality above), and Lemma 16 is proved.

Lemma 16 implies that ‖v′bad‖ = O((log m
δ

)1/4

n1/4). (Note that if S′bad is not of size M , we can
augment it with examples from S′good in order to make it large enough so that we can apply the
lemma. This can easily be done since we only need M = ω̃(n7/4) for the lemma and we have
|Sgood| = Θ̃(n2

ε2
).) Putting all the pieces together, we have that with probability 1 − δ all the

following are true:

• (v′good)1 = Θ(1√
n
);

• (v′good)i = O(ε
n) for i = 2, . . . , n;

26

• ‖v′bad‖ = O((log m
δ

)1/4

n1/4);

• η′ ≤ 2η, where v = (1− η′)v′good + η′v′bad.

Combining all these bounds, a routine analysis shows that the angle between v and the target
(1, 0, . . . , 0) is at most ε provided that

(2η) log1/4(m/δ)

n1/4

1√
n

≤ c · ε

for some sufficiently small constant c. Rearranging this inequality, Theorem 4 is proved.

6.1.1 Proof that (21) is at most τ2

10

We have that (21) ≤
∣∣∣ (1−τ2)1/2

‖x′‖ − 1
∣∣∣. To bound this quantity we will consider the largest value

greater than 1 and smallest value less than 1 that (1−τ2)1/2

‖x′‖ can take. Throughout the following
bounds we repeatedly use the fact that 0 < τ < 0.1.

We have that

‖x′‖ >

√
1− (τ +

1
2
√

n
)2 > 1− 9τ2

16

where the first inequality is from (20) and the second is easily verified (recall that τ > K
√

ρ > 1
n1/4).

Since (1− τ2)1/2 < 1− τ2

2 , we have (1−τ2)1/2

‖x′‖ < 1−τ2/2
1−9τ2/16

= 1 + τ2/16
1−9τ2/16

< 1 + τ2

10 .

On the other hand, from (20) we also have that ‖x′‖ ≤
√

1− (τ − 1
2
√

n
)2, so consequently we

have (writing b for 1
2
√

n
for readability below):

(1− τ2)1/2

‖x′‖ ≥
√

1− τ2

1− (τ − b)2
=

√
1− 2bτ − b2

1− (τ − b)2
> 1− 3

5
· 2bτ − b2

1− (τ − b)2
.

Recalling that b = 1
2
√

n
whereas 1

n1/4 < τ < 0.1, we see that 3
5 · 2bτ−b2

1−(τ−b)2
is greater than 0 but is

easily less than τ2

10 .

We thus have that
∣∣∣ (1−τ2)1/4

‖x′‖ − 1
∣∣∣ < τ2

10 as claimed.

7 Directions for Future Work

There are many natural ways to extend our work. One promising direction is to try to develop
a broader range of learning results over the sphere Sn−1 using the Hermite polynomials basis, in
analogy with the rich theory of uniform distribution learning that has been developed for the parity
basis over {−1, 1}n. Another natural goal is to gain a better understanding of the distributions and
concept classes for which we can use the polynomial regression algorithm as an agnostic learner.
Is there a way to extend the analysis of the d = 1 case of the polynomial regression algorithm
(establishing Theorem 3) to obtain a stronger version of Theorem 1, Part 1(b)? Another natural
idea would be to use the “kernel trick” with the polynomial kernel to speed up the algorithm.
Finally, we intend to explore whether the polynomial regression algorithm can be used for other
challenging noisy learning problems beyond agnostic learning, such as learning with malicious noise.

27

References

[1] E. Baum. The Perceptron algorithm is fast for nonmalicious distributions. Neural Computa-
tion, 2:248–260, 1990.

[2] E. B. Baum and Y-D. Lyuu. The transition to perfect generalization in perceptrons. Neural
Computation, 3:386–401, 1991.

[3] A. BLum. Machine learning: a tour through some favorite results, direc-
tions, and open problems. FOCS 2003 tutorial slides, available at http://www-
2.cs.cmu.edu/~avrim/Talks/FOCS03/tutorial.ppt, 2003.

[4] A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning
noisy linear threshold functions. Algorithmica, 22(1/2):35–52, 1997.

[5] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. J. ACM, 50(4):506–519, 2003.

[6] Avrim Blum, Merrick L. Furst, Jeffrey Jackson, Michael J. Kearns, Yishay Mansour, and
Steven Rudich. Weakly learning DNF and characterizing statistical query learning using
Fourier analysis. In Proc. 26th Annual ACM Symposium on Theory of Computing (STOC),
pages 253–262. ACM Press, 1994.

[7] S. Bonan and D. Clark. Estimates of the hermite and the freud polynomials. Journal of
Approximation Theory, 63:210–224, 1990.

[8] N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions. Journal of the
ACM, 43(4):747–770, 1996.

[9] Kenneth L. Clarkson. Subgradient and sampling algorithms for l1 regression. In Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 257–266, 2005.

[10] S. Decatur. Statistical queries and faulty PAC oracles. In Proceedings of the Sixth Workshop
on Computational Learning Theory, pages 262–268, 1993.

[11] T. Ericson and V. Zinoviev. Codes on Euclidean Spheres. North-Holland Mathematical Library,
2001.

[12] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

[13] Y. Freund and R. Schapire. A short introduction to boosting. Journal of the Japanese Society
for Artificial Intelligence, 14(5):771–780, 1999.

[14] S. Goldman, M. Kearns, and R. Schapire. On the Sample Complexity of Weakly Learning.
Information and Computation, 117(2):276–287, 1995.

[15] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of bounded
depth. Journal of Computer and System Sciences, 46:129–154, 1993.

[16] J. Jackson. The Harmonic sieve: a novel application of Fourier analysis to machine learning
theory and practice. PhD thesis, Carnegie Mellon University, August 1995.

28

[17] J. Jackson. An efficient membership-query algorithm for learning DNF with respect to the
uniform distribution. Journal of Computer and System Sciences, 55:414–440, 1997.

[18] J. Jackson, A. Klivans, and R. Servedio. Learnability beyond AC0. In Proceedings of the 34th
ACM Symposium on Theory of Computing, pages 776–784, 2002.

[19] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

[20] M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal on Com-
puting, 22(4):807–837, 1993.

[21] M. Kearns, R. Schapire, and L. Sellie. Toward Efficient Agnostic Learning. Machine Learning,
17(2/3):115–141, 1994.

[22] A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections and thresholds of halfspaces.
Journal of Computer & System Sciences, 68(4):808–840, 2004. Preliminary version in Proc. of
FOCS’02 .

[23] A. Klivans and R. Servedio. Boosting and hard-core sets. In Proceedings of the Fortieth Annual
Symposium on Foundations of Computer Science, pages 624–633, 1999.

[24] W. Lee, P. Bartlett, and R. Williamson. Efficient agnostic learning of neural networks with
bounded fan-in. IEEE Transactions on Information Theory, 42(6):2118–2132, 1996.

[25] Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson. On efficient agnostic learning
of linear combinations of basis functions. In Proceedings of the Eighth Annual Conference on
Computational Learning Theory, pages 369–376, Santa Cruz, California, 5–8 July 1995. ACM
Press.

[26] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and learn-
ability. Journal of the ACM, 40(3):607–620, 1993.

[27] P. Long. On the sample complexity of PAC learning halfspaces against the uniform distribution.
IEEE Transactions on Neural Networks, 6(6):1556–1559, 1995.

[28] P. Long. An upper bound on the sample complexity of pac learning halfspaces with respect to
the uniform distribution. Information Processing Letters, 87(5):229–234, 2003.

[29] L. Lovász and S. Vempala. Logconcave functions: Geometry and efficient sampling algorithms.
In Prooceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science,
pages 650–659, 2003.

[30] Y. Mansour and M. Parnas. Learning conjunctions with noise under product distributions.
Information Processing Letters, 68(4):189–196, 1998.

[31] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. In Pro-
ceedings of the Twenty-Fourth Annual Symposium on Theory of Computing, pages 462–467,
1992.

29

[32] R. O’Donnell and R. Servedio. New degree bounds for polynomial threshold functions. In
Proceedings of the 35th ACM Symposium on Theory of Computing, pages 325–334, 2003.

[33] R. Paturi. On the degree of polynomials that approximate symmetric Boolean functions. In
Proceedings of the 24th Symposium on Theory of Computing, pages 468–474, 1992.

[34] R. Servedio. On PAC learning using Winnow, Perceptron, and a Perceptron-like algorithm.
In Proceedings of the Twelfth Annual Conference on Computational Learning Theory, pages
296–307, 1999.

[35] Gabor Szegö. Orthogonal Polynomials, volume XXIII of Americam Mathematical Society Col-
loquium Publications. A.M.S, Providence, 1989.

[36] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

[37] L. Valiant. Learning disjunctions of conjunctions. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, pages 560–566, 1985.

[38] V. Vapnik. Statistical Learning Theory. Wiley-Interscience, New York, 1998.

A Solving L1 polynomial regression in polynomial time

Let S denote the set of all indices of monomials of degree at most d over variables x1, . . . , xn, so
|S| ≤ nd+1. Our goal is to find wS ∈ R for S ∈ S to minimize 1

m

∑m
i=1 |yi −∑

S∈S wS(xi)S |, where
xS is the monomial indexed by S. This can be done by solving the following LP:

min
m∑

i=1
zi such that ∀i : zi ≥ yi − ∑

S∈S
wS(xi)S and

zi ≥ −
(

yi − ∑
S∈S

wS(xi)S

)
.

Using polynomial-time algorithm for linear programming this can be solved exactly in nO(d) time.
In fact, for our purposes it is sufficient to obtain an approximate minimum, and hence one can use
even more efficient algorithms [9].

30

