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Abstract. We prove that the concept class of disjunctions cannot be pointwise
approximated by linear combinations of any small set of arbitrary real-valued
functions. That is, suppose there exist functions φ1, . . . ,φr : {−1,1}n → R with
the property that every disjunction f on n variables has ‖ f −∑

r
i=1 αiφi‖∞ 6 1/3

for some reals α1, . . . ,αr. We prove that then r > 2Ω(
√

n). This lower bound is
tight. We prove an incomparable lower bound for the concept class of linear-size
DNF formulas. For the concept class of majority functions, we obtain a lower
bound of Ω(2n/n), which almost meets the trivial upper bound of 2n for any
concept class.

These lower bounds substantially strengthen and generalize the polynomial
approximation lower bounds of Paturi and show that the regression-based ag-
nostic learning algorithm of Kalai et al. is optimal. Our techniques involve a
careful application of results in communication complexity due to Razborov and
Buhrman et al.

1 Introduction

Approximating Boolean functions by linear combinations of small sets of features is a
fundamental area of study in machine learning. Well-known algorithms such as linear
regression, support vector machines, and boosting attempt to learn concepts as linear
functions or thresholds over a fixed set of real-valued features.

In particular, much work in learning theory has centered around approximating vari-
ous concept classes, with respect to a variety of distributions and metrics, by low-degree
polynomials [3,10,17–19,21,26,28]. In this case, the features mentioned above are sim-
ply monomials. For example, Linial et al. [21] gave a celebrated uniform-distribution
algorithm for learning constant-depth circuits by proving that any such circuit can be
approximated by a low-degree Fourier polynomial, with respect to the uniform distri-
bution and `2 norm.

A more recent application of this polynomial technique is due to Kalai et al. [11],
who considered the well-studied problem of agnostically learning disjunctions [6, 14,
27, 34]. Kalai et al. recalled a result of Paturi [29] that a disjunction on n variables
can be approximated pointwise by a degree-Õ(

√
n) polynomial. They then used linear

regression to obtain the first subexponential (2Õ(
√

n)-time) algorithm for agnostically
learning disjunctions with respect to any distribution [11, Thm. 2]. More generally,
Kalai et al. used `∞-norm approximation to formulate the first, and so far only, approach
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to distribution-free agnostic learning. One goal of this paper is to show the fundamental
limits of this approximation-based paradigm.

1.1 Key Definitions

Before stating our results formally, we briefly describe our notation. A Boolean function
is a mapping f : {−1,1}n →{−1,1}, where −1 corresponds to “true.” A feature is any
function φ : {−1,1}n → R. We say that φ approximates f pointwise within ε, denoted

‖ f −φ‖∞ 6 ε,

if | f (x)− φ(x)| 6 ε for all x. We say that a linear combination of features φ1, . . . ,φr
approximates f pointwise within ε if ‖ f −∑

r
i=1 αiφi‖∞ 6 ε for some reals α1, . . . ,αr.

1.2 Our Results

Let C be a concept class. Suppose that φ1, . . . ,φr are features whose linear combinations
can pointwise approximate every function in C . We first observe that the algorithm of
Kalai et al.—assuming that φ1, . . . ,φr can be evaluated efficiently—learns C agnosti-
cally under any distribution in time poly(n,r). As far as we are aware, this is the only
known method for developing provably efficient, distribution-free agnostic learning al-
gorithms. To determine the limits of this paradigm, our paper focuses on lower bounds
on r for an arbitrary choice of features.

We start with the concept class of disjunctions.

Theorem 1 (Disjunctions). Let C = {
∨

i∈S xi : S⊆ [n]} be the concept class of disjunc-
tions. Let φ1, . . . ,φr : {−1,1}n → R be arbitrary functions whose linear combinations
can pointwise approximate every f ∈ C within ε = 1/3. Then r > 2Ω(

√
n).

Theorem 1 obviously also holds for the concept class of conjunctions.
Theorem 1 shows the optimality of using monomials as features for approximating

disjunctions. In particular, it rules out the possibility of using the algorithm of Kalai
et al. with other, cleverly constructed features to obtain an improved agnostic learning
result for disjunctions.

We obtain an incomparable result against linear-size DNF formulas.

Theorem 2 (DNF formulas). Let C be the concept class of DNF formulas of linear
size. Let φ1, . . . ,φr : {−1,1}n → R be arbitrary functions whose linear combinations
can pointwise approximate every f ∈ C within ε = 1−2−cn1/3

, where c > 0 is a suffi-
ciently small absolute constant. Then r > 2Ω(n1/3).

Theorems 1 and 2 both give exponential lower bounds on r. Comparing the two, we
see that Theorem 1 gives a better bound on r against a simpler concept class. On the
other hand, Theorem 2 remains valid for a particularly weak success criterion: when the
approximation quality is exponentially close to trivial (ε = 1).

The last concept class we study is that of majority functions. Here we prove our best
lower bound, r = Ω(2n/n), that essentially meets the trivial upper bound of 2n for any
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concept class. Put differently, we show that the concept class of majorities is essentially
as hard to approximate as any concept class at all. In particular, this shows that the Kalai
et al. paradigm cannot yield any nontrivial (2o(n)-time) distribution-free algorithm for
agnostically learning majority functions.

Theorem 3 (Majority functions). Let C = {MAJ(±x1, . . . ,±xn)} be the concept class
of majority functions. Let φ1, . . . ,φr : {−1,1}n →R be arbitrary functions whose linear
combinations can pointwise approximate every f ∈ C within ε = c/

√
n, where c is a

sufficiently small absolute constant. Then r > Ω(2n/n). For approximation to within
ε = 1/3, we obtain r > 2Ω(n/ logn).

We also relate our inapproximability results to the fundamental notions of dimen-
sion complexity and SQ dimension (Sections 5–7). Among other things, we show that
the types of approximation lower bounds we study are prerequisites for lower bounds
on dimension complexity and the SQ dimension. It is a hard open problem [32] to
prove exponential lower bounds on the dimension complexity and SQ dimension of
polynomial-size DNF formulas, or even AC0 circuits.

Optimality of polynomial-based approximation. The preceding discussion has empha-
sized the implications of Theorems 1–3 in learning theory. Our results also have in-
teresting consequences in approximation theory. Paturi [29] constructs polynomials of
degree Θ̃(

√
n) and Θ(n) that pointwise approximate disjunctions and majority func-

tions, respectively. He also shows that these degree results are optimal for polynomials.
This, of course, does not exclude polynomials that are sparse, i.e., contain few mono-
mials. Our lower bounds strengthen Paturi’s result by showing that the approximating
polynomials cannot be sparse. In addition, our analysis remains valid when monomials
are replaced by arbitrary features. As anticipated, our techniques differ significantly
from Paturi’s.

1.3 Our Techniques

To prove our approximation lower bounds, we need to use various techniques from ma-
trix analysis, communication complexity, and Fourier analysis. We obtain our main the-
orems in two steps. First, we show how to place a lower bound on the quantity of interest
(the size of feature sets that pointwise approximate a concept class C ) using the discrep-
ancy and the ε-approximate trace norm of the characteristic matrix of C . The latter two
quantities have been extensively studied. In particular, the discrepancy estimate that we
need is a recent result of Buhrman et al. [5]. For estimates of the ε-approximate trace
norm, we turn to the pioneering work of Razborov [30] on quantum communication
complexity, as well as a recent construction of Linial and Shraibman [24].

2 Preliminaries

The notation [n] stands for the set {1,2, . . . ,n}, and
([n]

k

)
stands for the family of all

k-element subsets of [n] = {1,2, . . . ,n}. The symbol Rn×m refers to the family of all
m× n matrices with real entries. The (i, j)th entry of a matrix A is denoted by Ai j or
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A(i, j). We frequently use “generic-entry” notation to specify a matrix succinctly: we
write A = [F(i, j)]i, j to mean that that the (i, j)th entry of A is given by the expression
F(i, j).

A concept class C is any set of Boolean functions f : {−1,1}n → {−1,1}. The
characteristic matrix of C is the matrix M = [ f (x)] f∈C , x∈{−1,1}n . In words, the rows
of M are indexed by functions f ∈ C , the columns are indexed by inputs x ∈ {−1,1}n,
and the entries are given by M f ,x = f (x).

2.1 Agnostic Learning

The agnostic learning model was defined by Kearns et al. [15]. It gives the learner access
to arbitrary example-label pairs with the requirement that the learner output a hypothesis
competitive with the best hypothesis from some fixed concept class. Specifically, let D
be a distribution on {−1,1}n ×{−1,1} and let C be a concept class. For a Boolean
function f , define its error as err( f ) = Pr(x,y)∼D[ f (x) 6= y]. Define the optimal error of
C as opt = min f∈C err( f ).

A concept class C is agnostically learnable if there exists an algorithm which takes
as input δ ,ε , and access to an example oracle EX(D), and outputs with probability at
least 1− δ a hypothesis h : {−1,1}n → {−1,1} such that err(h) 6 opt+ε. We say C
is agnostically learnable in time t if its running time (including calls to the example
oracle) is bounded by t(ε,δ ,n).

The following proposition relates pointwise approximation by linear combinations
of features to efficient agnostic learning.

Proposition 1. Fix ε > 0 and a concept class C . Assume there are functions φ1, . . . ,φr :
{−1,1}n → R whose linear combinations can pointwise approximate every f ∈ C .
Assume further that each φi(x) is computable in polynomial time. Then C is agnostically
learnable to accuracy ε in time poly(r,n).

We defer a proof of Proposition 1 to the full version. The needed simulation is a straight-
forward generalization of the `1 polynomial regression algorithm from Kalai et al. [11].

2.2 Fourier Transform

Consider the vector space of functions {−1,1}n → R, equipped with the inner product
〈 f ,g〉 = 2−n

∑x∈{−1,1}n f (x)g(x). The parity functions χS(x) = ∏i∈S xi, where S ⊆ [n],
form an orthonormal basis for this inner product space. As a result, every Boolean
function f can be uniquely written as

f = ∑
S⊆[n]

f̂ (S)χS,

where f̂ (S) = 〈 f ,χS〉. The f -specific reals f̂ (S) are called the Fourier coefficients of f .
We denote

‖ f̂‖1 = ∑
S⊆[n]

| f̂ (S)|.
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2.3 Matrix Analysis

We draw freely on basic notions from matrix analysis; a standard reference on the sub-
ject is [9]. This section only reviews the notation and the more substantial results.

Let A ∈ Rm×n. We let ‖A‖∞

def= maxi j |Ai j|, the largest absolute value of an entry
of A. We denote the singular values of A by σ1(A) > σ2(A) > . . . > σmin{m,n}(A) > 0.

Recall that ‖A‖Σ = ∑
min{m,n}
i=1 σi(A) and ‖A‖F =

√
∑

m
i=1 ∑

n
j=1 A2

i j are the trace norm and
Frobenius norm of A. We will also need the ε-approximate trace norm, defined as

‖A‖ε
Σ = min{‖B‖Σ : ‖A−B‖∞ 6 ε}.

The well-known Hoffman-Wielandt inequality plays an important role in our anal-
ysis. In words, it states that small perturbations to the entries of a matrix result in small
perturbations to its singular values. This inequality has seen numerous uses in the liter-
ature [8, 12, 25].

Theorem 4 (Hoffman-Wielandt inequality [9, Thm. 8.6.4]). Let A,B ∈ Rm×n.

Then ∑
min{m,n}
i=1 (σi(A) − σi(B))2 6 ‖A − B‖2

F . In particular, if rank(B) = k then
∑i>k+1 σi(A)2 6 ‖A−B‖2

F .

The Hoffman-Wielandt inequality is central to the following lemma, which allows
us to easily construct matrices with high ‖ · ‖ε

Σ
norm.

Lemma 1 (Linial and Shraibman [24], implicit). Let M = [ f (x⊕ y)]x,y, where f :
{−1,1}n →{−1,1} is arbitrary. Then for all ε > 0,

‖M‖ε
Σ > 2n(‖ f̂‖1− ε2n/2).

Proof (adapted from Linial and Shraibman [24]). Let N = 2n be the order of M. Con-
sider an arbitrary matrix A with ‖A−M‖∞ 6 ε. We have:

N2
ε

2 > ‖A−M‖2
F

Thm. 4
>

N

∑
i=1

(σi(A)−σi(M))2 >
1
N

(‖A‖Σ −‖M‖Σ )2,

so that ‖A‖Σ > ‖M‖Σ −N3/2ε. Since the choice of A was arbitrary, we conclude that

‖M‖ε
Σ > ‖M‖Σ −N3/2

ε. (1)

It remains to analyze ‖M‖Σ . Let Q = N−1/2[χS(x)]x,S. It is easy to check that Q is
orthogonal. On the other hand,

M = [ f (x⊕ y)]x,y =

[
∑

S⊆[n]
f̂ (S)χS(x)χS(y)

]
x,y

= Q

N f̂ ( /0)
. . .

N f̂ ([n])

QT.

The last equation reveals the singular values of M. In particular, ‖M‖Σ = N‖ f̂‖1. To-
gether with (1), this completes the proof.

A sign matrix is any matrix with ±1 entries.
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2.4 Communication Complexity

We consider functions f : X ×Y → {−1,1}. Typically X = Y = {−1,1}n, but we also
allow X and Y to be arbitrary sets, possibly of unequal cardinality. A rectangle of X×Y
is any set R = A×B with A ⊆ X and B ⊆ Y. For a fixed distribution µ over X ×Y , the
discrepancy of f is defined as

discµ( f ) = max
R

∣∣∣∣∣ ∑
(x,y)∈R

µ(x,y) f (x,y)

∣∣∣∣∣ ,
where the maximum is taken over all rectangles R. We define disc( f ) =
minµ{discµ( f )}. We identify the function f with its communication matrix M =
[ f (x,y)]x,y and define discµ(M) = discµ( f ).

Discrepancy is a powerful quantity with various applications. In particular, it imme-
diately yields lower bounds in various models of communication complexity, as well
as circuit lower bounds for depth-2 majority circuits [20, 24, 33]. This paper shows yet
another application of discrepancy. A definitive resource for further details on commu-
nication complexity is the book of Kushilevitz and Nisan [20].

2.5 SQ Dimension

The statistical query (SQ) model of learning, due to Kearns [13], is a restriction of
Valiant’s PAC model. See [16] for a comprehensive treatment. The SQ model is recog-
nized as a powerful abstraction of learning and plays a major role in learning theory.
The SQ dimension of C under µ, denoted sqdimµ(C ), is the largest d for which there
are d functions f1, . . . , fd ∈ C with∣∣∣∣ E

x∼µ
[ fi(x) · f j(x)]

∣∣∣∣6 1
d

for all i 6= j. We denote

sqdim(C ) = max
µ
{sqdimµ(C )}.

The SQ dimension is a tight measure [13] of the learning complexity of a given concept
class C in the SQ model. In addition, the SQ dimension is strongly related to complexity
theory [32].

3 Approximation Rank: Definition and Properties

For a real matrix A, its ε-approximation rank is defined as

rankε(A) = min
B
{rank(B) : B real, ‖A−B‖∞ 6 ε}.

This notion is a natural one and has been studied before. In particular, Buhrman and
de Wolf [4] show that the approximation rank of a matrix implies lower bounds on
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its quantum communication complexity (in the bounded-error model without entangle-
ment). In Section 6, we survey two other related concepts: matrix rigidity and dimension
complexity.

We define the ε-approximation rank of a concept class C as

rankε(C ) = rankε(M),

where M is the characteristic matrix of C . For example, rank0(C ) = rank(M) and
rank1(C ) = 0. It is thus the behavior of rankε(C ) for intermediate values of ε that
is of primary interest. The following proposition follows trivially from our definitions.

Proposition 2 (Approximation rank reinterpreted). Let C be a concept class. Then
rankε(C ) is the smallest integer r such that there exist real functions φ1, . . . ,φr :
{−1,1}n → R with the property that each f ∈ C has ‖ f −∑

r
i=1 αiφi‖∞ 6 ε for some

reals α1, . . . ,αr.

3.1 Improving the Quality of the Approximation

We now take a closer look at rankε(M) as a function of ε. Suppose we have an estimate
of rankE(M) for some 0 < E < 1. Can we use this information to obtain a nontrivial
upper bound on rankε(M), where 0 < ε < E? It turns out that we can. We first recall
that the sign function can be approximated well by a real polynomial:

Fact 1. Let 0 < E < 1 be given. Then for each integer d > 1, there exists a degree-d
real univariate polynomial p(t) such that

|p(t)− sign(t)|6 8
√

d
(

1− (1−E)2

16

)d

(1−E 6 |t|6 1+E).

Fact 1 can be extracted with little effort from Rudin’s proof [31, Thm. 7.26] of the
Weierstrass approximation theorem. Subtler, improved versions of Fact 1 can be readily
found in the approximation literature.

Theorem 5. Let M be a sign matrix, and let 0 < ε < E < 1. Then

rankε(M) 6 rankE(M)d ,

where d is any positive integer with 8
√

d(1− (1−E)2/16)d 6 ε.

Proof. Let d be as stated. By Fact 1, there is a degree-d polynomial p(t) with

|p(t)− sign(t)|6 ε (1−E 6 |t|6 1+E).

Let A be a real matrix with ‖A−M‖∞ 6 E and rank(A) = rankE(M). Then the matrix
B = [p(Ai j)]i, j approximates M to the desired accuracy: ‖B−M‖∞ 6 ε. Since p is a
polynomial of degree d, elementary linear algebra shows that rank(B) 6 rank(A)d .
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Note. The key idea in the proof of Theorem 5 is to improve the quality of the approxi-
mating matrix by applying a suitable polynomial to its entries. This idea is not new. For
example, Alon [1] uses the same method in the simpler setting of one-sided errors.

We will mainly need the following immediate consequences of Theorem 5.

Corollary 1. Let M be a sign matrix. Let ε,E be constants with 0 < ε < E < 1. Then
rankε(M) 6 rankE(M)c, where c = c(ε,E) is a constant.

Corollary 2. Let M be a sign matrix. Let ε be a constant with 0 < ε < 1. Then
rank1/nc(M) 6 rankε(M)O(logn) for every constant c > 0.

By Corollary 1, the choice of the constant ε affects rankε(M) by at most a polynomial
factor. When such factors are unimportant, we will adopt ε = 1/3 as a canonical setting.

3.2 Estimating the Approximation Rank

We will use two methods to estimate the approximation rank. The first uses the ε-
approximate trace norm of the same matrix, and the second uses its discrepancy.

Lemma 2 (Lower bound via approximate trace norm). Let M ∈ {−1,1}N×N . Then

rankε(M) >

(
‖M‖ε

Σ

(1+ ε)N

)2

.

Proof. Let A be an arbitrary matrix with ‖M−A‖∞ 6 ε. We have:

(‖M‖ε
Σ )2 6 (‖A‖Σ )2 =

(
rank(A)

∑
i=1

σi(A)

)2

6

(
rank(A)

∑
i=1

σi(A)2

)
rank(A)

= (‖A‖F)2 rank(A) 6 (1+ ε)2N2 rank(A).

Our second method is as follows.

Lemma 3 (Lower bound via discrepancy). Let M be a sign matrix and 0 6 ε < 1.
Then

rankε(M) >
1− ε

1+ ε
· 1

64disc(M)2 .

The proof of Lemma 3 requires several definitions and facts that we do not use else-
where in this paper. For this reason, we defer it to Appendix A.

4 Approximation Rank of Specific Concept Classes

We proceed to prove our main results (Theorems 1–3), restated here as Theorems 7, 9,
and 10.
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4.1 Disjunctions

We recall a breakthrough result of Razborov [30] on the quantum communication com-
plexity of disjointness. The crux of that work is the following theorem.

Theorem 6 (Razborov [30, Sec. 5.3]). Let M be the
( n

n/4

)
×
( n

n/4

)
matrix whose rows

and columns are indexed by sets in
( [n]

n/4

)
and entries given by

MS,T =
{

1 if S∩T = /0,
0 otherwise.

Then ‖M‖1/4
Σ

= 2Ω(
√

n)( n
n/4

)
.

We can now prove an exponential lower bound on the approximation rank of dis-
junctions, a particularly simple concept class.

Theorem 7 (Approximation rank of disjunctions). Let C = {
∨

i∈S xi : S⊆ [n]} be the
concept class of disjunctions. Then rank1/3(C ) = 2Ω(

√
n).

Proof. One easily verifies that the characteristic matrix of C is MC = [
∨n

i=1(xi∧yi)]x,y.
We can equivalently view MC as the 2n × 2n sign matrix whose rows and columns
indexed by sets in [n] and entries given by:

MC (S,T ) =
{

1 if S∩T = /0,
−1 otherwise.

Now let A be a real matrix with ‖MC −A‖∞ 6 1/3. Let ZC = 1
2 (MC + J), where J is

the all-ones matrix. We immediately have ‖ZC − 1
2 (A+ J)‖∞ 6 1/6, and thus

rank1/6(ZC ) 6 rank
( 1

2 (A+ J)
)

6 rank(A)+1. (2)

However, ZC contains as a submatrix the matrix M from Theorem 6. Therefore,

rank1/6(ZC ) > rank1/6(M)
Lem. 2

>

(
‖M‖1/4

Σ

(1+1/4)
( n

n/4

))2
Thm. 6

> 2Ω(
√

n). (3)

The theorem follows immediately from (2) and (3).

4.2 DNF Formulas

The centerpiece of our proof is the following recent result of Buhrman et al. [5].

Theorem 8 (Buhrman, Vereshchagin, and de Wolf [5, Sec. 3]). There is a function
f : {−1,1}n ×{−1,1}n → {−1,1} in AC0,3 such that disc( f ) = 2−Ω(n1/3). Moreover,
for each fixed y, the function fy(x) = f (x,y) is a DNF formula of linear size.

We can now analyze the approximation rank of linear-size DNF formulas.
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Theorem 9 (Approximation rank of DNF). Let C denote the concept class of func-
tions f : {−1,1}n → {−1,1} computable by DNF formulas of linear size. Then
rankε(C ) = 2Ω(n1/3) for 0 6 ε 6 1− 2−cn1/3

, where c > 0 is a sufficiently small ab-
solute constant.

Proof. Let M be the characteristic matrix of C , and let f (x,y) be the function from The-
orem 8. Since [ f (x,y)]y,x is a submatrix of M, we have rankε(M) > rankε([ f (x,y)]y,x).
The claim is now immediate from Lemma 3.

Comparing the results of Theorems 7 and 9 for small constant ε, we see that The-
orem 7 is stronger in that it gives a better lower bound against a simpler concept class.
On the other hand, Theorem 9 is stronger in that it remains valid for the broad range
0 6 ε 6 1− 2−Θ(n1/3), whereas the ε-approximation rank in Theorem 7 is easily seen
to be at most n for all ε > 1− 1

2n .

4.3 Majority Functions

As a final application, we consider the concept class C of majority functions. Here we
prove a lower bound of Ω(2n/n) on the approximation rank, which is the best of our
three constructions.

Theorem 10 (Approximation rank of majority functions). Let C denote the concept
class of majority functions, C = {MAJ(±x1, . . . ,±xn)}. Then rankc/

√
n(C ) > Ω(2n/n)

for a sufficiently small absolute constant c > 0. Also, rank1/3(C ) = 2Ω(n/ logn).

Proof. The characteristic matrix of C is M = [MAJ(x⊕y)]x,y. The Fourier spectrum of
the majority function has been extensively studied by various authors. In particular, it
is well known that

‖M̂AJ‖1 = Ω

(
2n/2
√

n

)
. (4)

(See, e.g., [22, Sec. 7] for a self-contained calculation.) Taking ε = c/
√

n for a suitably
small constant c > 0, we obtain:

rankc/
√

n(M)
Lem. 2

>

(
‖M‖c/

√
n

Σ

(1+ c/
√

n)2n

)2
Lem. 1

>
1
4

(
‖M̂AJ‖1−

c2n/2
√

n

)2
(4)
> Ω

(
2n

n

)
.

Finally, rank1/3(C ) > [rankc/
√

n(C )]1/O(logn) > 2Ω(n/ logn) by Corollary 2.

5 Approximation Rank vs. SQ Dimension

This section relates the approximation rank of a concept class C to its SQ dimension,
a fundamental quantity in learning theory. In short, we prove that (1) the SQ dimen-
sion is a lower bound on the approximation rank, and that (2) the gap between the two
quantities can be exponential. A starting point in our analysis is the relationship be-
tween the SQ dimension of C and `2-norm approximation of C , which is also of some
independent interest.
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Theorem 11 (SQ dimension and `2 approximation). Let C be a concept class,
and let µ be a distribution over {−1,1}n. Suppose there exist functions φ1, . . . ,φr :
{−1,1}n → R such that each f ∈ C has Ex∼µ

[
( f (x)−∑

r
i=1 αiφi(x))

2
]

6 ε for some
reals α1, . . . ,αr. Then

r > (1− ε)d−
√

d,

where d = sqdimµ(C ).

Proof. By the definition of the SQ dimension, there exist functions f1, . . . , fd ∈ C with
|Eµ [ fi · f j] | 6 1/d for all i 6= j. For simplicity, assume that µ is a distribution with
rational weights (extension to the general case is straightforward). Then there is an
integer k > 1 such that each µ(x) is an integral multiple of 1/k. Construct the d×k sign
matrix

M = [ fi(x)]i,x ,

whose rows are indexed by the functions f1, . . . , fd and whose columns are indexed by
inputs x ∈ {−1,1}n (a given input x indexes exactly kµ(x) columns). It is easy to verify
that MMT = [kEµ [ fi · f j]]i, j, and thus

‖MMT− k · I‖F < k. (5)

The existence of φ1, . . . ,φr implies the existence of a rank-r real matrix A with
‖M−A‖2

F 6 εkd. On the other hand, the Hoffman-Wielandt inequality (Theorem 4)
guarantees that ‖M−A‖2

F > ∑
d
i=r+1 σi(M)2. Combining these two inequalities yields:

εkd >
d

∑
i=r+1

σi(M)2 =
d

∑
i=r+1

σi(MMT)

> k(d− r)−
d

∑
i=r+1

|σi(MMT)− k|

> k(d− r)−

√√√√ d

∑
i=r+1

(σi(MMT)− k)2
√

d− r by Cauchy-Swartz

> k(d− r)−‖MMT− k · I‖F
√

d− r by Hoffman-Wielandt

> k(d− r)− k
√

d by (5).

We have shown that εd > (d− r)−
√

d, which is precisely what the theorem claims.
To extend the proof to irrational distributions µ, one considers a rational distribution µ̃

suitably close to µ and repeats the above analysis. We omit these simple details.

We are now in a position to relate the SQ dimension to the approximation rank.

Theorem 12 (SQ dimension vs. approximation rank). Let C be a concept class.
Then for 0 6 ε < 1,

rankε(C ) > (1− ε
2)sqdim(C )−

√
sqdim(C ). (6)
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Moreover, there exists a concept class A with

sqdim(A ) 6 O(n2) and rank1/3(A ) > 2Ω(n/ logn).

Proof. Let r = rankε(C ). Then there are functions φ1, . . . ,φr such that each f ∈ C has
‖ f −∑

r
i=1 αiφi‖∞ 6 ε for some reals α1, . . . ,αr. As a result,

Eµ

[
( f −∑

r
i=1 αiφi)2

]
6 ε

2

for every distribution µ. By Theorem 11, r > (1− ε2)sqdimµ(C )−
√

sqdimµ(C ).
Maximizing this over µ establishes (6).

To prove the second part, let A = {MAJ(±x1, . . . ,±xn)}. Theorem 10 shows that A
has the stated approximation rank. To bound its SQ dimension, note that each function
in A can be pointwise approximated within error 1− 1/n by a linear combination of
the functions x1, . . . ,xn. Therefore, (6) implies that sqdim(A ) 6 O(n2).

6 Related Work

Approximation rank and dimension complexity. Dimension complexity is a fundamen-
tal and well-studied notion [7, 8, 22]. It is defined for a sign matrix M as

dc(M) = min
A
{rank(A) : A real, Ai jMi j > 0 for all i, j}.

In words, the dimension complexity of M is the smallest rank of a real matrix A that
has the same sign pattern as M. Thus, rankε(M) > dc(M) for each sign matrix M and
0 6 ε < 1.

Ben-David et al. [2] showed that almost all concept classes with constant VC di-
mension have dimension complexity 2Ω(n); recall that dc(C ) 6 2n always. Forster [7]
later developed a powerful tool for lower-bounding the dimension complexity of ex-
plicit concept classes. His method has since seen several refinements.

However, this rich body of work is not readily applicable to our problem. Two of
the three matrices we study have trivial dimension complexity, and we derive lower
bounds on the approximation rank that are exponentially larger. Furthermore, in Theo-
rem 3 we are able to exhibit an explicit concept class with approximation rank Ω(2n/n),
whereas the highest dimension complexity proved for any explicit concept class is
Forster’s lower bound of 2n/2. The key to our results is to bring out, through a vari-
ety of techniques, the additional structure in approximation that is not present in sign-
representation.

Approximation rank and rigidity. Approximation rank is also closely related to ε-
rigidity, a variant of matrix rigidity introduced by Lokam [25]. For a fixed real matrix
A, its ε-rigidity function is defined as

RA(r,ε) = min
B
{weight(A−B) : rank(B) 6 r, ‖A−B‖∞ 6 ε},
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where weight(A− B) stands for the number of nonzero entries in A− B. In words,
RA(r,ε) is the minimum number of entries of A that must be perturbed to reduce its
rank to r, provided that the perturbation to any single entry is at most ε. We immediately
have:

rankε(A) = min{r : RA(r,ε) 6 mn} (A ∈ Rm×n).

As a result, lower bounds on ε-rigidity translate into lower bounds on approximation
rank. In particular, ε-rigidity is a more complicated and nuanced quantity. Nontrivial
lower bounds on ε-rigidity are known for some special matrix families, most notably
the Hadamard matrices [12, 25]. Unfortunately, these results are not applicable to the
matrices in our work (see Section 4). To obtain near-optimal lower bounds on approx-
imation rank, we use specialized techniques that target approximation rank without
attacking the harder problem of ε-rigidity.

7 Conclusions and Open Problems

This paper studies the ε-approximation rank of a concept class C , defined as the min-
imum size of a set of features whose linear combinations can pointwise approximate
each f ∈ C within ε. Our main results give exponential lower bounds on rankε(C )
even for the simplest concept classes. These in turn establish exponential lower bounds
on the running time of the known algorithms for distribution-free agnostic learning. An
obvious open problem is to develop an approach to agnostic learning that does not rely
on pointwise approximation by a small set of features.

Another major open problem is to prove strong lower bounds on the dimension
complexity and SQ dimension of natural concept classes. We have shown that

rank1/3(C ) >
1
2

sqdim(C )−O(1) and rankε(C ) > dc(C ),

for each concept class C . In this sense, lower bounds on approximation rank are prereq-
uisites for lower bounds on dimension complexity and the SQ dimension. Of particular
interest in this respect are polynomial-size DNF formulas and, more broadly, AC0 cir-
cuits. While this paper obtains strong lower bounds on their approximation rank, it
remains a hard open problem to prove an exponential lower bound on their dimension
complexity and SQ dimension.
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A Discrepancy and Approximation Rank

The purpose of this section is to prove the relationship between discrepancy and ap-
proximation rank needed in Section 4. We start with several definitions and auxiliary
results due to Linial et al. [22–24].

For a real matrix A, let ‖A‖1→2 denote the largest Euclidean norm of a column of
A, and let ‖A‖2→∞ denote the largest Euclidean norm of a row of A. Define

γ2(A) = min
XY=A

‖X‖2→∞‖Y‖1→2.

For a sign matrix M, its margin complexity is defined as

mc(M) = min{γ2(A) : A real, Ai jMi j > 1 for all i, j}.

Lemma 4 (Linial et al. [22, Lem. 9]). Let A be a real matrix. Then γ2(A) 6√
rank(A) · ‖A‖∞.

Theorem 13 (Linial and Shraibman [23]). Let M be a sign matrix. Then mc(M) >
1/(8disc(M)).

Putting these pieces together yields our desired result:

Lemma 3 (Restated from Sec. 3.2). Let M be a sign matrix and 0 6 ε < 1. Then

rankε(M) >
1− ε

1+ ε
· 1

64disc(M)2 .

Proof. Let A be any real matrix with ‖A−M‖∞ 6 ε. Put B = 1
1−ε

A. We have:

rank(A) = rank(B)
Lem. 4

>
γ2(B)2

‖B‖∞

>
mc(M)2

‖B‖∞

Thm. 13
>

1
‖B‖∞

· 1
64disc(M)2

>
1− ε

1+ ε
· 1

64disc(M)2 .


