
CS 395T Computational Learning TheoryLeture 2: September 11, 2006 Leturer: Adam KlivansSribe: Raghu Meka
2.1 Learning Conjuntive Deision ListsDe�nition 1 (t-deision Lists) A t-deision list is a deision list where in eah box instead of aliteral we are allowed to have a onjuntion of length at most t.Theorem 1 Any t-deision list an be learnt in the mistake bound model with nO(t) mistakes.Proof: Note that there are at most (2n)t = nO(t) onjuntions of length t over n variables. Foreah suh onjuntion reate a new variable Yi. Then the number of these new variables is nO(t).Also, we an assume without loss of generality that no onjuntion is repeated in the list. So lengthof a t-onjuntive deision list is nO(t). We an now use the algorithm for learning deision lists overvariables Yi. Giving us a mistake bound of O(nO(t) � nO(t)) = nO(t).2.2 Learning Deision TreesWe'll �rst, informally, de�ne what deision trees are. A deision tree is a rooted tree with thefollowing properties:� Eah internal node is labeled with a literal.� Eah internal node has exatly two hildren. The edges to the hildren are labeled with distintlabels from f0; 1g.� Eah leaf is labeled with one of 0 or 1.On a partiular input we start from the root, look at the literal at the root and move along the edgelabeled 0 if the literal's value is false, and move along the edge labeled 1 else. We repeat this proessuntill we get to a leaf node at whih point we output the label of the leaf.Note that deision trees are more powerful than deision lists. In fat, deision trees an omputeany boolean funtion where as deision lists annot, for instane, ompute parity. To see this �rstnote that for any funtion omputed by a deision list, there exists a variable whose value if �xed toone of f0; 1g the funtion's value is �xed. And as there an exist no suh variable for parity, parityannot be omputed by a deision list.The best known algorithm for learning polynomial size (size of a trees is the number of nodes in thetree) deision trees in the mistake bound model has a mistake bound of nO(logn). We will now see2-1



Leture 2: September 11, 2006 2-2an algorithm, due to A .Blum(91), that ahieves this bound. Atually we won't be giving a newalgorithm but will redue the problem of learning deision trees to that of learning deision lists -by showing that every polynomial size deision tree has an equivalent O(logn)-deision list.We will �rst need to de�ne the rank of a tree.De�nition 2 (Rank of a deision tree) Rank of a deision tree T is de�ned reursively as follows:� If T is a leaf then, Rank(T ) = 0.� If T is not a leaf and T1 and T2 are the left and right sub-trees of T , thenRank(T ) = (max(Rank(T1); Rank(T2)) if Rank(T1) 6= Rank(T2)Rank(T1) + 1 if Rank(T1) = Rank(T2)

Figure 2.1: Example: The above tree has rank 1.Lemma 1 Every deision tree of size s has rank at most log s.Proof: We'll prove this by indution on the number of nodes in a deision tree. For a tree withone node the laim is obvious (Rank(leaf) = 0). Now suppose that the lemma is true for all treeswith at most s� 1 nodes. For a tree with more than two nodes let T1, and T2 be the left and rightsub-trees of the root of T . Suppose that Rank(T1) 6= Rank(T2). Sine both T1; T2 have less thans nodes, by the indution hypothesis Rank(T1) � log s and Rank(T2) � log s. From whih we getthat Rank(T ) = max(Rank(T1); Rank(T2)) � log s.Now suppose that Rank(T1) = Rank(T2). Without loss of generality suppose that T1 has at mosts=2 nodes. Then, by indution hypothesis and de�nition of Rank(T ) we get thatRank(T ) = Rank(T1) + 1 � log(s2) + 1 = log s:



Leture 2: September 11, 2006 2-3Theorem 2 Every deision tree of rank t an be omputed by a t-deision list.Proof: We'll use indution on the size of the deision tree. If the tree has one node, there's nothingto prove. Now, suppose that for all trees of size less than s and rank k, there is an equivalentk-deision list.Let T be a tree of size s > 1, T1; T2 be the sub-trees of the root of T and the literal at the root ofT be y. Note that both T1; T2 have size stritly less than s. We'll onsider two ases:Case 1: Rank(T1) = Rank(T2) = t � 1. By the indution hypothesis there exists (t � 1)-deisionlists L1 and L2 whih are equivalent to T1; T2 respetively. Also, we an assume without loss ofgenerality that for all inputs the deision lists L1 and L2 produe a output before reahing the endof the lists. Let the lists be as shown in the �gure below:
C1      C2     C3    Ck. . . . . .

. . . . . . 

Decision list L1 for T1

Decision list L2 for T2

   C’1     C’2     C’k    C’3

Figure 2.2: Deision lists for T1; T2Then, it an be seen easily that the following is a deision list for T .
. . . . . .

. . . . . . 

    y C3 y C1     y Ck

Decision List for T

     C’1     C’2     C’3      C’k’

   y C2

Figure 2.3: Deision list for TFurther, sine L1; L2 are (t� 1)-deision lists L above is a t-deision list.Case 2: Rank(T1) 6= Rank(T2). In this ase one of T1; T2 must have rank stritly less than t.Without loss of generality suppose that Rank(T1) < t and Rank(T2) = t. Then, there exist deision



Leture 2: September 11, 2006 2-4lists L1; L2 equivalent to T1; T2 as above, where L1 is a (t � 1)-deision list and L2 is a t-deisionlist. So that L as onstruted above is a t-deision list equivalent to T . This ompletes the proof ofthe theorem.Now, by lemma (1), the above theorem and the learning algorihtm for learning deision lists (theorem(1)) we get a learning algorithm for deision trees with a mistake bound of nO(log s), where s is thesize of the tree.Theorem 3 A deision tree of size s an be learnt in the mistake bound model with a mistake boundof nO(log s).2.3 Learning DNF formulasThough both deision trees and DNF formulas an ompute all boolean funtions, DNF formulasare more powerful omplexity wise - i.e., there exist polynomial size DNF formulas whih requireexponentially large deision trees. In this and the next leture we will look at the best knownlearning algorithm for polynomial size DNF formulas in mistake bounded model. This has a mistakebound of n ~O(n1=3) ( ~O means we are ignoring O(log) fators). As a �rst step we will show a mistakebound of n ~O(n1=2). We will need the following de�nition.De�nition 3 (t-augmented deision trees) A t-augmented deision tree is a deision tree where eahleaf instead of being labeled with 0 or 1 is labeled by a DNF formula with term length at most t.Lemma 2 Any t-augmented deision tree of rank k an be omputed by a (k + t)-deision list.Proof: Replae the DNF's in the t-augmented deision tree, T , with new variables Y1; Y2; : : :. Then,by theorem (2) we know that T has a k-onjuntive deision list, with some of the variables possiblybeing Yi's. It is easy to see that if we now expand the Y 's, and break up the resulting boxes, we geta (k + t)-deision list.We will ontine from here in the next leture.


