
CS 395T Computational Learning TheoryLe
ture 2: September 11, 2006 Le
turer: Adam KlivansS
ribe: Raghu Meka
2.1 Learning Conjun
tive De
ision ListsDe�nition 1 (t-de
ision Lists) A t-de
ision list is a de
ision list where in ea
h box instead of aliteral we are allowed to have a
onjun
tion of length at most t.Theorem 1 Any t-de
ision list
an be learnt in the mistake bound model with nO(t) mistakes.Proof: Note that there are at most (2n)t = nO(t)
onjun
tions of length t over n variables. Forea
h su
h
onjun
tion
reate a new variable Yi. Then the number of these new variables is nO(t).Also, we
an assume without loss of generality that no
onjun
tion is repeated in the list. So lengthof a t-
onjun
tive de
ision list is nO(t). We
an now use the algorithm for learning de
ision lists overvariables Yi. Giving us a mistake bound of O(nO(t) � nO(t)) = nO(t).2.2 Learning De
ision TreesWe'll �rst, informally, de�ne what de
ision trees are. A de
ision tree is a rooted tree with thefollowing properties:� Ea
h internal node is labeled with a literal.� Ea
h internal node has exa
tly two
hildren. The edges to the
hildren are labeled with distin
tlabels from f0; 1g.� Ea
h leaf is labeled with one of 0 or 1.On a parti
ular input we start from the root, look at the literal at the root and move along the edgelabeled 0 if the literal's value is false, and move along the edge labeled 1 else. We repeat this pro
essuntill we get to a leaf node at whi
h point we output the label of the leaf.Note that de
ision trees are more powerful than de
ision lists. In fa
t, de
ision trees
an
omputeany boolean fun
tion where as de
ision lists
annot, for instan
e,
ompute parity. To see this �rstnote that for any fun
tion
omputed by a de
ision list, there exists a variable whose value if �xed toone of f0; 1g the fun
tion's value is �xed. And as there
an exist no su
h variable for parity, parity
annot be
omputed by a de
ision list.The best known algorithm for learning polynomial size (size of a trees is the number of nodes in thetree) de
ision trees in the mistake bound model has a mistake bound of nO(logn). We will now see2-1

Le
ture 2: September 11, 2006 2-2an algorithm, due to A .Blum(91), that a
hieves this bound. A
tually we won't be giving a newalgorithm but will redu
e the problem of learning de
ision trees to that of learning de
ision lists -by showing that every polynomial size de
ision tree has an equivalent O(logn)-de
ision list.We will �rst need to de�ne the rank of a tree.De�nition 2 (Rank of a de
ision tree) Rank of a de
ision tree T is de�ned re
ursively as follows:� If T is a leaf then, Rank(T) = 0.� If T is not a leaf and T1 and T2 are the left and right sub-trees of T , thenRank(T) = (max(Rank(T1); Rank(T2)) if Rank(T1) 6= Rank(T2)Rank(T1) + 1 if Rank(T1) = Rank(T2)

Figure 2.1: Example: The above tree has rank 1.Lemma 1 Every de
ision tree of size s has rank at most log s.Proof: We'll prove this by indu
tion on the number of nodes in a de
ision tree. For a tree withone node the
laim is obvious (Rank(leaf) = 0). Now suppose that the lemma is true for all treeswith at most s� 1 nodes. For a tree with more than two nodes let T1, and T2 be the left and rightsub-trees of the root of T . Suppose that Rank(T1) 6= Rank(T2). Sin
e both T1; T2 have less thans nodes, by the indu
tion hypothesis Rank(T1) � log s and Rank(T2) � log s. From whi
h we getthat Rank(T) = max(Rank(T1); Rank(T2)) � log s.Now suppose that Rank(T1) = Rank(T2). Without loss of generality suppose that T1 has at mosts=2 nodes. Then, by indu
tion hypothesis and de�nition of Rank(T) we get thatRank(T) = Rank(T1) + 1 � log(s2) + 1 = log s:

Le
ture 2: September 11, 2006 2-3Theorem 2 Every de
ision tree of rank t
an be
omputed by a t-de
ision list.Proof: We'll use indu
tion on the size of the de
ision tree. If the tree has one node, there's nothingto prove. Now, suppose that for all trees of size less than s and rank k, there is an equivalentk-de
ision list.Let T be a tree of size s > 1, T1; T2 be the sub-trees of the root of T and the literal at the root ofT be y. Note that both T1; T2 have size stri
tly less than s. We'll
onsider two
ases:Case 1: Rank(T1) = Rank(T2) = t � 1. By the indu
tion hypothesis there exists (t � 1)-de
isionlists L1 and L2 whi
h are equivalent to T1; T2 respe
tively. Also, we
an assume without loss ofgenerality that for all inputs the de
ision lists L1 and L2 produ
e a output before rea
hing the endof the lists. Let the lists be as shown in the �gure below:
C1 C2 C3 Ck.

.

Decision list L1 for T1

Decision list L2 for T2

 C’1 C’2 C’k C’3

Figure 2.2: De
ision lists for T1; T2Then, it
an be seen easily that the following is a de
ision list for T .
.

.

 y C3 y C1 y Ck

Decision List for T

 C’1 C’2 C’3 C’k’

 y C2

Figure 2.3: De
ision list for TFurther, sin
e L1; L2 are (t� 1)-de
ision lists L above is a t-de
ision list.Case 2: Rank(T1) 6= Rank(T2). In this
ase one of T1; T2 must have rank stri
tly less than t.Without loss of generality suppose that Rank(T1) < t and Rank(T2) = t. Then, there exist de
ision

Le
ture 2: September 11, 2006 2-4lists L1; L2 equivalent to T1; T2 as above, where L1 is a (t � 1)-de
ision list and L2 is a t-de
isionlist. So that L as
onstru
ted above is a t-de
ision list equivalent to T . This
ompletes the proof ofthe theorem.Now, by lemma (1), the above theorem and the learning algorihtm for learning de
ision lists (theorem(1)) we get a learning algorithm for de
ision trees with a mistake bound of nO(log s), where s is thesize of the tree.Theorem 3 A de
ision tree of size s
an be learnt in the mistake bound model with a mistake boundof nO(log s).2.3 Learning DNF formulasThough both de
ision trees and DNF formulas
an
ompute all boolean fun
tions, DNF formulasare more powerful
omplexity wise - i.e., there exist polynomial size DNF formulas whi
h requireexponentially large de
ision trees. In this and the next le
ture we will look at the best knownlearning algorithm for polynomial size DNF formulas in mistake bounded model. This has a mistakebound of n ~O(n1=3) (~O means we are ignoring O(log) fa
tors). As a �rst step we will show a mistakebound of n ~O(n1=2). We will need the following de�nition.De�nition 3 (t-augmented de
ision trees) A t-augmented de
ision tree is a de
ision tree where ea
hleaf instead of being labeled with 0 or 1 is labeled by a DNF formula with term length at most t.Lemma 2 Any t-augmented de
ision tree of rank k
an be
omputed by a (k + t)-de
ision list.Proof: Repla
e the DNF's in the t-augmented de
ision tree, T , with new variables Y1; Y2; : : :. Then,by theorem (2) we know that T has a k-
onjun
tive de
ision list, with some of the variables possiblybeing Yi's. It is easy to see that if we now expand the Y 's, and break up the resulting boxes, we geta (k + t)-de
ision list.We will
ontine from here in the next le
ture.

