CS 395T Computational Learning Theory

Lecture 2: September 11, 2006 Lecturer: Adam Klivans
Scribe: Raghu Meka

2.1 Learning Conjunctive Decision Lists

Definition 1 (¢-decision Lists) A t-decision list is a decision list where in each box instead of a
literal we are allowed to have a conjunction of length at most t.

Theorem 1 Any t-decision list can be learnt in the mistake bound model with n®® mistakes.

Proof: Note that there are at most (2n)! = n®®) conjunctions of length ¢ over n variables. For
each such conjunction create a new variable ¥;. Then the number of these new variables is n®®,
Also, we can assume without loss of generality that no conjunction is repeated in the list. So length
of a t-conjunctive decision list is n?(*). We can now use the algorithm for learning decision lists over
variables Y;. Giving us a mistake bound of O(n®®) . nC®)) = pOH) W

2.2 Learning Decision Trees

We'll first, informally, define what decision trees are. A decision tree is a rooted tree with the
following properties:

e Each internal node is labeled with a literal.

e Each internal node has exactly two children. The edges to the children are labeled with distinct
labels from {0, 1}.

e FEach leaf is labeled with one of 0 or 1.

On a particular input we start from the root, look at the literal at the root and move along the edge
labeled 0 if the literal’s value is false, and move along the edge labeled 1 else. We repeat this process
untill we get to a leaf node at which point we output the label of the leaf.

Note that decision trees are more powerful than decision lists. In fact, decision trees can compute
any boolean function where as decision lists cannot, for instance, compute parity. To see this first
note that for any function computed by a decision list, there exists a variable whose value if fixed to
one of {0, 1} the function’s value is fixed. And as there can exist no such variable for parity, parity
cannot be computed by a decision list.

The best known algorithm for learning polynomial size (size of a trees is the number of nodes in the
tree) decision trees in the mistake bound model has a mistake bound of n®1°¢™) . We will now see

Lecture 2: September 11, 2006 2-2

an algorithm, due to A .Blum(91), that achieves this bound. Actually we won’t be giving a new
algorithm but will reduce the problem of learning decision trees to that of learning decision lists -
by showing that every polynomial size decision tree has an equivalent O(logn)-decision list.

We will first need to define the rank of a tree.

Definition 2 (Rank of a decision tree) Rank of a decision tree T is defined recursively as follows:

e If T is a leaf then, Rank(T) = 0.
o If T is not a leaf and 11 and Ty are the left and right sub-trees of T', then

maz(Rank(T1), Rank(T)) if Rank(T1) # Rank(T?)

Hank(T) = {Rank(Tl) +1 if Rank(T1) = Rank(T>)

/
J
4%

Figure 2.1: Example: The above tree has rank 1.

Lemma 1 Ewvery decision tree of size s has rank at most logs.

Proof: We’'ll prove this by induction on the number of nodes in a decision tree. For a tree with
one node the claim is obvious (Rank(leaf) = 0). Now suppose that the lemma is true for all trees
with at most s — 1 nodes. For a tree with more than two nodes let T}, and T be the left and right
sub-trees of the root of T'. Suppose that Rank(T;) # Rank(T2). Since both T7,T% have less than
s nodes, by the induction hypothesis Rank(T1) < logs and Rank(T:) < logs. From which we get
that Rank(T) = maz(Rank(T1), Rank(T>)) < logs.

Now suppose that Rank(T1) = Rank(T>). Without loss of generality suppose that 77 has at most
s/2 nodes. Then, by induction hypothesis and definition of Rank(T') we get that

Rank(T) = Rank(T1) +1 < 1og(§) +1=logs.

Lecture 2: September 11, 2006 2-3

Theorem 2 FEvery decision tree of rank t can be computed by a t-decision list.

Proof: We’ll use induction on the size of the decision tree. If the tree has one node, there’s nothing
to prove. Now, suppose that for all trees of size less than s and rank k, there is an equivalent
k-decision list.

Let T be a tree of size s > 1, T1,T> be the sub-trees of the root of 7" and the literal at the root of
T be y. Note that both T7,7> have size strictly less than s. We’ll consider two cases:

Case 1: Rank(T1) = Rank(T2) =t — 1. By the induction hypothesis there exists (¢ — 1)-decision
lists Ly and Lo which are equivalent to 77,75 respectively. Also, we can assume without loss of
generality that for all inputs the decision lists L; and L» produce a output before reaching the end
of the lists. Let the lists be as shown in the figure below:

C1 C2 C3 e — Ck

Decisionlist L1 for T1

c1 c2 C3 e — Ck

Decisionlist L2 for T2

Figure 2.2: Decision lists for 77,7%

Then, it can be seen easily that the following is a decision list for T'.

yCl y C2 yC3 — —> y Ck

c1 c2 C3 ... —> Cck

Decision List for T

Figure 2.3: Decision list for T'

Further, since Ly, Ly are (¢t — 1)-decision lists L above is a t-decision list.

Case 2: Rank(Ti) # Rank(T). In this case one of T7,7T> must have rank strictly less than ¢.
Without loss of generality suppose that Rank(T1) < t and Rank(T>) =t. Then, there exist decision

Lecture 2: September 11, 2006 2-4

lists Ly, Lo equivalent to 77,7 as above, where L; is a (¢ — 1)-decision list and Lo is a ¢-decision
list. So that L as constructed above is a t-decision list equivalent to 7'. This completes the proof of
the theorem.

Now, by lemma (1), the above theorem and the learning algorihtm for learning decision lists (theorem
(1)) we get a learning algorithm for decision trees with a mistake bound of n©(°¢%) where s is the
size of the tree.

Theorem 3 A decision tree of size s can be learnt in the mistake bound model with a mistake bound
Of nO(log s).

2.3 Learning DNF formulas

Though both decision trees and DNF formulas can compute all boolean functions, DNF formulas
are more powerful complexity wise - i.e., there exist polynomial size DNF formulas which require
exponentially large decision trees. In this and the next lecture we will look at the best known
learning algorithm for polynomial size DNF formulas in mistake bounded model. This has a mistake
bound of nOm**) (O means we are ignoring O(log) factors). As a first step we will show a mistake

bound of n®""*). We will need the following definition.

Definition 3 (t-augmented decision trees) A t-augmented decision tree is a decision tree where each
leaf instead of being labeled with O or 1 is labeled by a DNF formula with term length at most t.

Lemma 2 Any t-augmented decision tree of rank k can be computed by a (k + t)-decision list.

Proof: Replace the DNF’s in the t-augmented decision tree, T, with new variables Y7, Ys,.... Then,
by theorem (2) we know that 7" has a k-conjunctive decision list, with some of the variables possibly
being Y;’s. It is easy to see that if we now expand the Y’s, and break up the resulting boxes, we get
a (k + t)-decision list. H

We will contine from here in the next lecture.

