
Cryptographic Hardness Results for Learning

Intersections of Halfspaces

Adam R. Klivans and Alexander A. Sherstov

The University of Texas at Austin

Department of Computer Sciences

Austin, TX 78712 USA

{klivans,sherstov}@cs.utexas.edu

Abstract

We give the first representation-independent hardness results for PAC learning intersections
of halfspaces, a central concept class in computational learning theory. Our hardness results
are derived from two public-key cryptosystems due to Regev, which are based on the worst-
case hardness of well-studied lattice problems. Specifically, we prove that a polynomial-time
algorithm for PAC learning intersections of nǫ halfspaces (for a constant ǫ > 0) in n dimensions
would yield a polynomial-time solution to Õ(n1.5)-uSVP (unique shortest vector problem). We
also prove that PAC learning intersections of nǫ low-weight halfspaces would yield a polynomial-
time quantum solution to Õ(n1.5)-SVP and Õ(n1.5)-SIVP (shortest vector problem and shortest
independent vector problem, respectively). By making stronger assumptions about the hardness
of uSVP, SVP, and SIVP, we show that there is no polynomial-time algorithm for learning
intersections of logc n halfspaces in n dimensions, for c > 0 sufficiently large. Our approach also
yields the first representation-independent hardness results for learning polynomial-size depth-2
neural networks and polynomial-size depth-3 arithmetic circuits.

1 Introduction

A halfspace in n dimensions is a Boolean function of the form a1x1 + a2x2 + · · · + anxn > θ,
where a1, . . . , an, θ are integers. Halfspace-based learning methods have important applications in
almost every area of computer science, including data mining, artificial intelligence, and computer
vision. A natural and important extension of the concept class of halfspaces is the concept class
of intersections of halfspaces. While many efficient algorithms exist for PAC learning a single
halfspace, the problem of learning the intersection of even two halfspaces remains a central challenge
in computational learning theory, and a variety of efficient algorithms have been developed for
natural restrictions of the problem [14, 15, 18, 25]. Attempts to prove that the problem is hard
have been met with limited success: all known hardness results for the general problem of PAC
learning intersections of halfspaces apply only to the case of proper learning, where the output
hypothesis must be of the same form as the unknown concept.

1.1 Our Results

We obtain the first representation-independent hardness results for PAC learning intersections
of halfspaces. Assuming the intractability of the lattice problems uSVP (unique shortest vector
problem), SVP (shortest vector problem), or SIVP (shortest independent vector problem), we prove
that there is no polynomial-time PAC learning algorithm for intersections of nǫ halfspaces (for any
ǫ > 0). The above lattice problems are widely believed to be hard [21].

Our hardness results apply even to intersections of light halfspaces, i.e., halfspaces whose weight
|θ| + ∑n

i=1 |ai| is bounded by a polynomial in n (we say a halfspace is heavy otherwise). We first
state our hardness results for intersections of heavy halfspaces. Throughout this paper, “PAC
learnable” stands for “learnable in the PAC model in polynomial time.”

Theorem 1.1. Assume that intersections of nǫ heavy halfspaces in n dimensions are PAC-learnable
for some constant ǫ > 0. Then there is a polynomial-time solution to Õ(n1.5)-uSVP.

With a different (incomparable) hardness assumption, we obtain an intractability result for
learning intersections of light halfspaces, a less powerful concept class:

Theorem 1.2. Assume that intersections of nǫ light halfspaces in n dimensions are PAC-learnable
for some constant ǫ > 0. Then there is a polynomial-time quantum solution to Õ(n1.5)-SVP and
Õ(n1.5)-SIVP.

These hardness results extend to polynomial-size depth-2 neural networks as follows:

Theorem 1.3. Assume that depth-2 polynomial-size circuits of majority gates are PAC learnable.
Then there is a polynomial-time solution to Õ(n1.5)-uSVP and polynomial-time quantum solutions
to Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

Finally, we prove a hardness result for learning depth-3 arithmetic circuits:

Theorem 1.4. Assume that depth-3 polynomial-size arithmetic circuits are PAC-learnable in poly-
nomial time. Then there is a polynomial-time quantum solution to Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

We are not aware of any previous representation-independent hardness results for learning
small-depth arithmetic circuits.

By making a stronger quantitative assumption about the hardness of uSVP and the quantum
hardness of SVP and SIVP, we can sharpen Theorems 1.1–1.4. Specifically, we show that there is no

2

polynomial-time algorithm for PAC learning the intersection of logc n halfspaces in n dimensions,
depth-2 majority circuits with logc n gates, or depth-3 arithmetic circuits with logc n gates (here
c > 0 is a sufficiently large absolute constant). See Theorems 6.3–6.5 for precise statements. We
note here that the algorithm due to Klivans et al. [14] PAC learns the intersection of k weight-w
halfspaces in time nO(k log k log w). Taking k = logc n and w = nO(1) we see that there is a quasi-
polynomial time algorithm for PAC learning the intersection of polylogarithmically many light
halfspaces.

A natural question to ask is whether our approach can yield hardness results for other classes
such as AC0 or, more ambitiously, polynomial-size DNF formulas. In Section 7 we show that the
decryption functions of the cryptosystems we use contain parity as a subfunction, so we cannot
directly apply this approach.

Note: Subhash Khot has recently informed us that he has independently obtained Theorem 1.3.

1.2 Previous Results

In his fundamental paper on learning, Valiant [24] established a cryptographic hardness result for
learning polynomial-size circuits. Kearns and Valiant [10] used number-theoretic problems (in-
verting the RSA function, deciding quadratic residuosity, and factoring Blum integers) to obtain
hardness results for NC1 circuits, constant-depth threshold circuits TC0, and deterministic finite
automata. Kharitonov [11] obtained hardness results for AC1 and NC1 circuits based on the con-
jectured hardness of the subset sum problem. Kharitonov [12] later used the Blum-Blum-Shub
pseudorandom generator [5] to obtain a hardness result for learning AC0 and TC0 that holds even
under the uniform distribution and if membership queries are allowed.

Hardness results of any kind for learning intersections of halfspaces, by contrast, have seen quite
limited progress. Until recently, the problem was known to be hard only for proper learning: if
the learner’s output hypothesis must be from a restricted class of functions (e.g., intersections of
halfspaces), then the learning problem is NP-hard with respect to randomized reductions [4, 2].
Klivans and Sherstov [17] have since obtained a 2Ω(

√
n) lower bound on the sample complexity of

learning intersections of
√

n halfspaces in the statistical query (SQ) model, an important restriction
of the PAC model. Since the SQ model is stronger than PAC, the lower bounds in [17] do not not
imply hardness in the PAC model, the subject of this paper. We are not aware of any other results
on the difficulty of learning intersections of halfspaces.

We are also not aware of any representation-independent hardness results for PAC learning
small-depth arithmetic circuits. There is a long line of research establishing lower bounds on
the query complexity of polynomial interpolation algorithms over various fields, but these do not
imply hardness results for the problem of PAC learning polynomials with small representations as
arithmetic circuits (see Section 5.1 for more details).

1.3 Our Techniques

Our results exploit recent cryptosystems due to Regev [20, 21], which improve on the security of the
Ajtai-Dwork cryptosystem [1]. These cryptosystems are based on the hardness of the well-studied
lattice problems uSVP, SVP, and SIVP. As pointed out in [21], an advantage of these problems is
the equivalence of the worst-case and average-case complexity. In other words, an efficient algo-
rithm for solving these problems on a nonnegligible (inverse-polynomial) fraction of instances yields
an efficient algorithm for solving every instance. This contrasts with common number-theoretic
problems such as factoring or deciding quadratic residuosity. Furthermore, lattice-based cryp-

3

tosystems feature decryption functions that are completely different from modular exponentiation
d(Y) = Y D mod N, the decryption function that is at the heart of virtually every number-theoretic
cryptosystem. As a result, lattice-based cryptosystems imply hardness results for learning inter-
sections of halfspaces that number-theoretic cryptosystems have not yielded.

An established method [10] for obtaining hardness results for a concept class C is to demon-
strate that C can compute the decryption function of a public-key cryptosystem. Intersections of a
polynomial number of halfspaces, however, cannot compute the decryption functions of the cryp-
tosystems we use. In fact, the decryption functions in question contain PARITY as a subfunction
(see Section 7), which cannot be computed by intersections of a polynomial number of any unate
functions [17]. Furthermore, the decryption functions for Regev’s cryptosystems perform a division
or an iterated addition, which require threshold depth 3 and 2, respectively [26, 23]. Threshold
circuits of depth 2 and higher are known to be more powerful than intersections of halfspaces.

To overcome these difficulties, we use non-uniform distributions on {0, 1}n to help us with
the computation. This technique allows us to use intersections of degree-2 polynomial threshold
functions to compute the decryption function while still obtaining a hardness result for intersections
of halfspaces. In addition, we construct particularly compact intersections of polynomial threshold
functions by treating the private key as a constant rather than an input to the decryption function.

2 Preliminaries

A halfspace is a Boolean function f such that f = sign(w · x − θ) where w = (w1, . . . , wn) and wi

(for all i) and θ are integers. It is well known that without loss of generality we may assume that
the magnitude of each integer is at most 2O(n log n). The intersection of k halfspaces is the function
g =

∧k
i=1 hi where each hi is a halfspace. A polynomial threshold function or PTF of degree d is a

Boolean function f such that f = sign(p(x)) for some real-valued, n-variate polynomial p.
We adopt the probably approximately correct (PAC) model of learning, due to Valiant [24].

An overview of this model is as follows. A concept class C is any subset of Boolean functions
mapping {0, 1}n → {0, 1} with polynomial description length (e.g., polynomial-size circuits). Fix a
target function f ∈ C and a distribution µ on {0, 1}n. The learner, who does not know f, receives
labeled examples (x1, f(x1)), (x2, f(x1)), Here x1, x2, · · · ∈ {0, 1}n are chosen independently
at random according to µ. An algorithm is said to learn C if, on input ǫ ∈ (0, 1) and poly(n, 1

ǫ)
labeled examples, it outputs a hypothesis h that with high probability has Prx∼µ[f(x) 6= h(x)] < ǫ.
We will be using a looser requirement called weak learning, which relaxes the success criterion to
Prx∼µ[f(x) 6= h(x)] >

1
2 + 1

nc for a constant c.

2.1 Lattice-based Cryptography

This subsection describes lattice-based cryptography and presents two relevant lattice-based cryp-
tosystems due to Regev [20, 21]. A lattice in n dimensions is the set {a1v1+· · ·+anvn : a1, . . . , an ∈
Z} of all integral linear combinations of a given basis v1, . . . ,vn ∈ R

n. The primary problems on
lattices are the unique shortest vector problem f(n)-uSVP, shortest vector problem f(n)-SVP, and
shortest independent vector problem f(n)-SIVP. In f(n)-uSVP, the goal is to find the shortest
nonzero vector in the lattice, provided that it is shorter by a factor of at least f(n) than any
other non-parallel vector. In f(n)-SVP, the goal is to approximate the length of the shortest vector
within a factor of f(n). Thus, uSVP is a special case of SVP, distinguished by the “uniqueness”
condition. Finally, in f(n)-SIVP the goal is to approximate (within a factor of f(n)) the length of
the shortest basis for the lattice, where the length of a basis is the length of its longest vector. Note
that all three problems become harder as the approximation factor 1 6 f(n) 6 poly(n) decreases.

4

We will be working with f(n) = Õ(n1.5), an approximation factor for which these three problems
are believed to be hard.

The cryptosystems below encrypt one-bit messages (0 and 1). Encryption is randomized; de-
cryption is deterministic. Let eK,r : {0, 1} → {0, 1}poly(n) denote the encryption function corre-
sponding to a choice of private and public keys K = (Kpriv,Kpub) and a random string r. In
discussing security, we will need the following notion.

Definition 2.1 (Distinguisher). An algorithm A is said to distinguish between the encryptions
of 0 and 1 if for some universal constant c,

∣∣∣∣Pr
K,r

[A(Kpub, eK,r(1)) = 1] − Pr
K,r

[A(Kpub, eK,r(0)) = 1]

∣∣∣∣ >
1

nc
.

We focus on those aspects of the cryptosystems that are relevant to the hardness proofs in this
paper. For example, we state the numeric ranges of public and private keys without describing the
key generation procedure. We follow the established convention of denoting polynomially-bounded
quantities (in n) by lowercase letters, and superpolynomial ones by capital letters.

2.2 The uSVP-based Cryptosystem

We start with a cryptosystem, due to Regev [20], whose security is based on the worst-case hardness
of uSVP. Let n be the security parameter. Denote N = 28n2

and m = cn2, where c is a universal
constant. Let γ(n) be any function with γ(n) = ω(n

√
log n), where faster-growing functions γ

correspond to improved security but also higher probability of decryption error.

Private key: A real number H with
√

N 6 H < 2
√

N.

Public key: A vector (A1, . . . , Am, i0), where i0 ∈ {1, . . . ,m} and each Ai ∈ {0, . . . , N − 1}.

Encryption: To encrypt 0, pick a random set S ⊆ [m] and output
∑

i∈S Ai mod N. To encrypt 1,
pick a random set S ⊆ [m] and output ⌊Ai0/2⌋ +

∑
i∈S Ai mod N.

Decryption: On receipt of W ∈ {0, . . . , N −1}, decrypt 0 if frac(WH/N) < 1/4, and 1 otherwise.
Here frac(a) ⇋ min{⌈a⌉ − a, a − ⌊a⌋} denotes the distance from a ∈ R to the closest integer.
By a standard argument, the security and correctness of the cryptosystem are unaffected if
we change the decryption function to frac(AW) < 1/4, where A is a representation of H/N
to within poly(n) fractional bits.

Correctness: The probability of decryption error (over the choice of private and public keys and
the randomness in the encryption) is 2−Ω(γ(n)2/m).

Regev [20] showed that breaking the above cryptosystem would yield a polynomial-time algo-
rithm for uSVP. A more detailed statement follows (see Theorem 4.5 and Lemma 5.4 of [20]):

Theorem 2.2 (Regev [20]). Assume that one can efficiently distinguish between the encryptions
of 0 and 1. Then there is a polynomial-time solution to every instance of (

√
n · γ(n))-uSVP.

We will set γ(n) = n log n to make the probability of decryption error negligible (inverse-
superpolynomial) while guaranteeing Õ(n1.5)-uSVP security. Regev’s cryptosystem thus improves
on the public-key cryptosystem of Ajtai and Dwork [1] whose security is based on the worst-case
hardness of O(n8)-uSVP, an easier problem than Õ(n1.5)-uSVP.

5

2.3 The SVP- and SIVP-based Cryptosystem

This second cryptosystem [21] is based on the worst-case quantum hardness of SVP and SIVP. Let n
be the security parameter. Denote by p a prime with n2 < p < 2n2, and let m = 5(n+1)(1+2 log n).
Let γ(n) be any function with γ(n) = ω(

√
n log n), where faster-growing functions γ correspond to

improved security but also higher probability of decryption error.

Private key: A vector s ∈ Z
n
p .

Public key: A sequence of pairs (a1, b1), . . . , (am, bm), where each ai ∈ Z
n
p and bi ∈ Zp.

Encryption: To encrypt 0, pick S ⊆ [m] randomly and output (
∑

i∈S ai,
∑

i∈S b). To encrypt 1,
pick S ⊆ [m] randomly and output (⌊p/2⌋ +

∑
i∈S ai,

∑
i∈S bi). (All arithmetic is modulo p.)

Decryption: On receipt of (a, b) ∈ Z
n
p × Zp, decrypt 0 if b − 〈a, s〉 is closer to 0 than to ⌊p/2⌋

modulo p. Decrypt 1 otherwise. (All arithmetic is modulo p.)

Correctness: The probability of decryption error (over the choice of private and public keys and
the randomness in the encryption) is 2−Ω(γ(n)2/m).

Regev [21] showed that breaking the above cryptosystem would imply a polynomial-time quan-
tum algorithm for solving SVP and SIVP. A more precise statement is as follows (see Theorem 3.1
and Lemmas 4.4, 5.4 of [21]):

Theorem 2.3 (Regev [21]). Assume that there is a polynomial-time (possibly quantum) algorithm
for distinguishing between the encryptions of 0 and 1. Then there is a polynomial-time quantum
solution to Õ(n · γ(n))-SVP and Õ(n · γ(n))-SIVP.

We adopt the setting γ(n) =
√

n log2 n to make the probability of decryption error negligible
while guaranteeing Õ(n1.5)-SVP and Õ(n1.5)-SIVP security. Observe that this second cryptosystem
due to Regev [21] is preferable to his first cryptosystem (Regev [20]) in that it is based on the
worst-case hardness of a more general lattice problem (SVP vs. uSVP). The disadvantage of the
second cryptosystem is that breaking it would only yield a quantum algorithm for SVP, as opposed
to the first cryptosystem which would yield a standard algorithm for uSVP.

3 Learning Decryption Functions vs. Breaking Cryptosystems

In their seminal paper [10], Kearns and Valiant established a key relationship between the security
of a public-key cryptosystem and the hardness of learning an associated concept class. We re-
derive it below for completeness and extend it to allow for error in the decryption process. This
link is a natural consequence of the ease of encrypting messages with the public key. A large
pool of such encryptions can be viewed as a set of training examples for learning the decryption
function. But learning the decryption function to a nonnegligible advantage would mean breaking
the cryptosystem. Assuming the cryptosystem is secure, we can thus conclude that it is not feasible
to learn the decryption function. We formalize this observation in the following lemma:

Lemma 3.1 (Cryptography and learning; cf. Kearns & Valiant [10]). Consider a public-key
cryptosystem for encrypting individual bits by n-bit strings. Let C be a concept class that contains
all the decryption functions {0, 1}n → {0, 1} of the cryptosystem. Let ε(n) = PrK,r[dK(eK,r(0)) 6=
0 or dK(eK,r(1)) 6= 1] be the probability of decryption error (over the choice of keys and random-
ization in the encryption). If C is weakly PAC-learnable in time t(n) with t(n)ε(n) = 1/nω(1), then
there is a distinguisher between the encryptions of 0 and 1 that runs in time t(n).

6

Proof. For a pair of keys K = (Kpriv,Kpub), let eK,r : {0, 1} → {0, 1}n be the randomized encryp-
tion function (indexed by the choice of random string r). Let dK : {0, 1}n → {0, 1} denote the
matching decryption function. We will use the assumed learnability of C to exhibit an algorithm
A that runs in time O(t(n)) and has

Pr
K,r

[A(Kpub, eK,r(1)) = 1] − Pr
K,r

[A(Kpub, eK,r(0)) = 1] >
1

nc

for some universal constant c, as long as t(n)ε(n) = 1/nω(1). The probability is taken over the
choice of keys, randomness in the encryption, and any internal randomization in A. It follows that
A is the desired distinguisher.

Algorithm A takes as input a pair (Kpub, w), where w ∈ {0, 1}n is the encryption of an unknown
bit. First, A draws t(n) independent training examples, choosing each as follows:

1. Pick b = 0 or b = 1, with equal probability.

2. Pick r, an unbiased random string.

3. Create training example 〈eK,r(b), b〉.

Next, A passes the training examples to the assumed algorithm for learning C. Assume no decryption
error has occurred, i.e., the decryption function dK is consistent with the examples. Then the
learning algorithm outputs, with high probability, a hypothesis h that approximates dK with a
nonnegligible advantage:

Pr
b,r

[h(eK,r(b)) = dK(eK,r(b))] >
1

2
+

1

nc
,

for some constant c. With this hypothesis in hand, algorithm A outputs h(w) and exits.
It remains to show that A is indeed distinguisher. We will first handle the case in which no

decryption error occurs; call this event E . Then:

Pr
K,r

[A(Kpub, eK,r(1)) = 1 | E] − Pr
K,r

[A(Kpub, eK,r(0)) = 1 | E]

= Pr
K,r

[h(eK,r(1)) = 1] − Pr
K,r

[h(eK,r(0)) = 1]

= Pr
K,r

[h(eK,r(1)) = 1] −
(

1 − Pr
K,r

[h(eK,r(0)) = 0]

)

= Pr
K,r

[h(eK,r(1)) = 1] + Pr
K,r

[h(eK,r(0)) = 0] − 1

= 2

(
1

2
Pr
K,r

[h(eK,r(1)) = 1] +
1

2
Pr
K,r

[h(eK,r(0)) = 0]

)
− 1

= 2 Pr
K,b,r

[h(eK,r(b)) = b] − 1

> 2

(
Pr

K,b,r
[h(eK,r(b)) = dK(eK,r(b))] − Pr

K,b,r
[dK(eK,r(b)) 6= b]

)
− 1

> 1 +
2

nc
− 2ε(n) − 1

=
2

nc
− 2ε(n).

7

We now extend the analysis to account for possible decryption errors. Observe that the likeli-
hood of a decryption error on a run of A is small:

Pr[E] = EK

[
Pr
r

[E | K]
]

6 EK

[
t(n) · Pr

b,r
[dK(eK,r(b)) 6= b | K]

]
by union bound

= t(n) · EK

[
Pr
b,r

[dK(eK,r(b)) 6= b | K]

]

= t(n) · Pr
K,b,r

[dK(eK,r(b)) 6= b]

6 t(n)ε(n).

This upper bound on Pr[E], along with the above analysis of the error-free case, allows us to
complete the proof of the desired claim:

Pr
K,r

[A(Kpub, eK,r(1)) = 1] − Pr
K,r

[A(Kpub, eK,r(0)) = 1]

=

(
Pr
K,r

[A(Kpub, eK,r(1)) = 1 | E] − Pr
K,r

[A(Kpub, eK,r(0)) = 1 | E]

)
· Pr[E]

+

(
Pr
K,r

[A(Kpub, eK,r(1)) = 1 | E] − Pr
K,r

[A(Kpub, eK,r(0)) = 1 | E]

)
· Pr[E]

>

(
2

nc
− 2ε(n)

)
· Pr[E] − 1 · Pr[E]

>
1

nc
.

4 Implementing the Decryption Functions

Section 3 demonstrated that if a public-key cryptosystem is secure, then no concept class that
can implement its decryption function is efficiently PAC-learnable. In what follows, we obtain
implementations of the decryption functions from Section 2 by intersections of degree-2 PTFs.
This will lead to a hardness result for learning intersections of degree-2 PTFs. We will obtain the
main result of the paper by noting that intersections of degree-2 PTFs are no harder to learn than
are intersections of halfspaces, a claim we formalize next.

Lemma 4.1. Assume that intersections of nǫ heavy (respectively, light) halfspaces are weakly PAC-
learnable. Then for any constant c > 0, intersections of nc heavy (respectively, light) degree-2 PTFs
are weakly PAC-learnable.

Proof sketch. We will prove the “light” case only; the “heavy” case is analogous. Consider the
following concept classes:

C : intersections of nǫ light halfspaces;
C′ : intersections of nǫ light degree-2 PTFs;
C′′ : intersections of nc light degree-2 PTFs.

First observe that a polynomial-time PAC-learning algorithm for C implies one for C′. This is
because a degree-2 PTF in the n variables x1, . . . , xn is a halfspace in the n +

(
n
2

)
variables

8

x1, . . . , xn, x1x2, . . . , xn−1xn, which yields a polynomial-time map from training/testing examples
for a degree-2 PTF to those for a halfspace.

Finally, a polynomial-time PAC-learning algorithm for C′ implies one for C′′ via a “padding
argument.” This is because we can “project” the problem of learning C′′ from n into nc/ǫ dimensions.
This projection preserves the polynomial running time of the learning algorithm for C′ (since c and
ǫ are constants), while making it so that the number of PTFs is the ǫth power of the dimension.

4.1 The uSVP-based Cryptosystem

Recall that frac(a) ⇋ min{⌈a⌉ − a, a−⌊a⌋} denotes the distance from a ∈ R to the closest integer.
Throughout this section, {a} stands for the fractional part of a ∈ R. Define the Boolean predicate
CLOSE-TO-INT(a) = 1 ⇐⇒ frac(a) < 1/4. This predicate ignores the integral part of a, meaning
that CLOSE-TO-INT(a) = CLOSE-TO-INT({a}).

The decryption function in the uSVP-based cryptosystem (Section 2) is dA(W) =
CLOSE-TO-INT(AW), where A is a fixed real number and W is an integer input, both with
a polynomial number of bits. We will demonstrate how to implement CLOSE-TO-INT(AW) with
intersections of degree-2 PTFs. A critical ingredient of our implementation is the “interval trick”
of Siu and Roychowdhury [23], an insightful idea that the was used in [23] to obtain a depth-2
light-weight threshold circuit for iterated addition.

Lemma 4.2 (Implementing the uSVP-based decryption function). Let A > 0 be a real num-
ber with k fractional bits. Then function f(x) = CLOSE-TO-INT(A

∑n−1
j=0 xj2

j) can be computed

by the intersection of k PTFs with degree 2 and weight O(k44k).

Proof. Let {A} = .b1b2 . . . bk be the fractional part of A; the integral part of A is irrelevant. Then

A

n−1∑

j=0

xj2
j

 =

k∑

i=1

n−1∑

j=0

bixj2
j−i

 (by definition of A)

=

k∑

i=1

min{n−1,i−1}∑

j=0

bixj2
j−i

 (drop terms bixj2

j−i that are whole numbers).

Denote S(x) =
∑k

i=1

∑min{n−1,i−1}
j=0 bixj2

j−i so that {A∑n−1
j=0 xj2

j} = {S(x)}. Observe that S(x)

is a multiple of 1/2k and ranges between 0 and k. We will use degree-2 PTFs to identify intervals
in [0, k] on which CLOSE-TO-INT(S(x)) = 1. A listing of the first few such intervals is as follows:

Values of S(x) Output of CLOSE-TO-INT(S(x))

. 0 0 0 0 . . . 0 0
...

. 0 0 1 1 . . . 1 1

1

. 0 1 0 0 . . . 0 0
...

. 1 1 0 0 . . . 0 0

0

. 1 1 0 0 . . . 0 1
...

1 . 0 0 1 1 . . . 1 1

1

1 . 0 1 0 0 . . . 0 0
...

1 . 1 1 0 0 . . . 0 0

0

9

Each interval [a, b] can be computed by the PTF (S(x)− a+b
2)2 6 (b−a

2)2; an integral representation
of this PTF has weight O(k44k). To compute the negation of an interval, we replace the inequality
sign by “>”. Finally, there are at most 2k + 1 intervals because every two consecutive intervals,
starting at the second, cover a distance of 1 on the interval [0, k]. By AND’ing the negations of
the k intervals on which CLOSE-TO-INT(S(x)) = 0, we obtain the desired f as an AND of k
weight-O(k44k) degree-2 PTFs.

4.2 The SVP- and SIVP-based Cryptosystem

For an integer a ∈ {0, . . . , p − 1}, define the Boolean predicate CLOSE-TO-MIDDLEp(a) ⇐⇒
|a − ⌊p/2⌋| 6 min{a, p − a}. Recall that the decryption function in the SVP- and SIVP-based
cryptosystem (Section 2) is ds1,...,sn

(a1, . . . , an, b) = CLOSE-TO-MIDDLEp(b −
∑

aisi), where all
si, ai, and b are integers in {0, . . . , p − 1} = Zp. We will show how to compute ds1,...,sn

with
intersections of degree-2 PTFs.

Lemma 4.3 (Implementing the SVP- and SIVP-based decryption function). Let ds1,...,sn
:(

{0, 1}log p
)n+1 → {0, 1} be the Boolean function defined by

ds1,...,sn
(x) = CLOSE-TO-MIDDLEp

(∑log p−1
i=0 2ix0,i −

∑n
j=1 sj

∑log p−1
i=0 2ixj,i

)
,

where all si are integers in {0, . . . , p − 1}. Then ds1,...,sn
can be computed by the intersection of

n log p PTFs with degree 2 and weight O((pn log p)2).

Proof. Denote

S(x) ⇋

log p−1∑

i=0

2ix0,i −
n∑

j=1

log p−1∑

i=0

(2isj mod p)xj,i.

Observe that S(x) is just the original weighted sum
(∑log p−1

i=0 2ix0,i −
∑n

j=1 sj
∑log p−1

i=0 2ixj,i

)
with

the coefficients reduced modulo p.
Using the definition of CLOSE-TO-MIDDLEp, we have ds1,...,sn

(x) =
CLOSE-TO-MIDDLEp(S(x)). The integer S(x) ranges between −(p − 1)n log p and p − 1, a
total range of length < pn log p. As in the proof of Lemma 4.2, this range can be divided into
consecutive intervals on which ds1,...,sn

(x) is constant (i.e., does not change value within an
interval).

Every two consecutive intervals cover a length of p units. Thus, there are a total of
6 2(pn log p)/p = 2n log p consecutive intervals. By picking out the n log p intervals on which
ds1,...,sn

(x) = 0 and AND’ing their negations, we can compute ds1,...,sn
exactly. It remains to note

that the negation of an interval [a, b] can be computed by a degree-2 weight-O((pn log n)2) PTF of
the form (S(x) − a+b

2)2 > (b−a
2)2.

We additionally observe that the decryption function in the SVP- and SIVP-based cryptosystem
can be computed by a depth-3 arithmetic circuit.

Lemma 4.4 (Extension to arithmetic circuits). Let ds1,...,sn
:
(
{0, 1}log p

)n+1 → {0, 1} be the
Boolean function defined by

ds1,...,sn
(x) = CLOSE-TO-MIDDLEp

(∑log p−1
i=0 2ix0,i −

∑n
j=1 sj

∑log p−1
i=0 2ixj,i

)
,

where all si are integers in {0, . . . , p − 1}. Then ds1,...,sn
can be computed by a depth-3 arithmetic

circuit of size poly(p, n).

10

Proof. Set S(x) as in the proof of Lemma 4.3. Recall that S(x) is an integer in the range
R ⇋ [−(p − 1)n log p, p − 1] ∩ Z and completely determines the target function: ds1,...,sn

(x) =
CLOSE-TO-MIDDLEp(S(x)).

Let g be a polynomial such that g(S(x)) = ds1,...,sn
(x) for all Boolean inputs x. It can be

constructed by interpolating ds1,...,sn
on the range of S(x) via the Lagrange formula:

g(y) =
∑

r∈R

CLOSE-TO-MIDDLEp(r) ·
∏

r′∈R,r 6=r

y − r′

r − r′
.

Since the range R contains poly(p, n) integers, g(S(x)) can be computed by a depth-3 arithmetic
circuit of size poly(p, n) with input S(x) and summation gates at the bottom. But S(x) is a sum of
poly(p, n) terms, each a singleton variable xi or a constant. Thus, ds1,...,sn

can be computed directly
by a depth-3 arithmetic circuit of size poly(p, n) with inputs x.

5 Main Results

Based on the assumed hardness of the cryptosystems in Section 2 and the learning-to-cryptography
reductions of Sections 3 and 4, we are in a position to prove the desired hardness results for learning
intersections of halfspaces.

Theorem 1.1. (Restated from page 2.) Assume that intersections of nǫ heavy halfspaces in n di-
mensions are PAC-learnable for some constant ǫ > 0. Then there is a polynomial-time solution to
Õ(n1.5)-uSVP.

Proof. Let C denote the concept class of intersections of nǫ heavy halfspaces, and let C′ denote the
concept class of intersections of nc heavy degree-2 PTFs (for a large enough constant c > 0). By
Lemma 4.1, the assumed PAC-learnability of C implies the PAC-learnability of C′. By Lemma 4.2,
the decryption function in the uSVP-based cryptosystem is in C′. A PAC-learning algorithm for
C′ would thus yield a distinguisher between the encryptions of 0 and 1 (by Lemma 3.1) and, as a
result, an efficient solution to O(

√
n · γ(n))-uSVP for γ(n) = n log n (by Theorem 2.2).

Theorem 1.2. (Restated from page 2.) Assume that intersections of nǫ light halfspaces in n di-
mensions are PAC-learnable for some constant ǫ > 0. Then there is a polynomial-time quantum
solution to Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

Proof. Let C denote the concept class of intersections of nǫ light halfspaces, and let C′ denote the
concept class of intersections of nc light degree-2 PTFs (for a large enough constant c > 0). By
Lemma 4.1, the assumed PAC-learnability of C implies the PAC-learnability of C′. By Lemma 4.3,
the decryption function in the uSVP-based cryptosystem is in C′. A PAC-learning algorithm for
C′ would thus yield a distinguisher between the encryptions of 0 and 1 (by Lemma 3.1) and, as a
result, an efficient quantum solution to Õ(n · γ(n))-SVP and Õ(n · γ(n))-SIVP for γ(n) =

√
n log2 n

(by Theorem 2.3).

Theorems 1.1 and 1.2 both imply a hardness result for learning polynomial-size depth-2 circuits
of majority gates, a concept class commonly denoted by L̂T2. To prove this, we will need a result
regarding heavy vs. light threshold circuits, due to Goldmann, H̊astad, and Razborov [7] and

Goldmann and Karpinski [8]. Let L̂Td denote the class of depth-d polynomial-size threshold circuits

with polynomially-bounded weights. Let L̃Td denote the class of depth-d polynomial-size threshold
circuits in which only the output gate is required to have polynomially-bounded weights.

11

Theorem 5.1. [7, 8] For any fixed integer d, L̂Td = L̃Td.

We are now in a position to prove the desired hardness result for depth-2 neural networks.

Theorem 1.3. (Restated from page 2.) Assume that depth-2 polynomial-size circuits of majority
gates are PAC learnable. Then there is a polynomial-time solution to Õ(n1.5)-uSVP and polynomial-
time quantum solutions to Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

Proof. Let ∧L̂T1 (respectively, ∧LT1) denote the concept classes of intersections of polynomially
many light (respectively, heavy) halfspaces. By Theorems 1.1 and 1.2, it suffices to show that

∧L̂T1 ⊆ L̂T2 and ∧LT1 ⊆ L̂T2. The first statement is obvious: each halfspace is already a majority
gate (with the inputs suitably negated/replicated), and the top gate AND(f1, f2, . . . , ft) can be

replaced by a majority gate MAJ(−t, f1, f2, . . . , ft). To prove that ∧LT1 ⊆ L̂T2, observe that ∧LT1 ⊆
L̃T2 (by an argument similar to the first case) and L̃T2 = L̂T2 (by Theorem 5.1).

5.1 Hardness for PAC Learning Arithmetic Circuits

Here we give a hardness result for PAC learning depth-3 arithmetic circuits over the integers. Many
researchers have constructed efficient, sparse polynomial interpolation algorithms where the learner
has query access to the unknown polynomial [16, 19, 22]. If, in addition to membership queries,
the learner can make equivalence queries, Klivans and Shpilka [13] have shown how to exactly learn
restricted types of depth-3 arithmetic circuits via multiplicity automata techniques [3]. We show
that if the learner receives random examples only, then learning depth-3 polynomial-size arithmetic
circuits is as hard as solving Õ(n1.5)-SVP in quantum polynomial-time (the proof is similar to the
proofs of Theorems 1.1 and 1.2):

Theorem 1.4. (Restated from page 2.) Assume that depth-3 polynomial-size arithmetic circuits
are PAC-learnable in polynomial time. Then there is a polynomial-time quantum solution to
Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

6 Extensions

We can obtain stronger hardness results by making explicit quantitative assumptions about the
hardness of uSVP, SVP, and SIVP.

Assumption 6.1 (Hardness of uSVP). There is a constant ǫ > 0 such that every algorithm for
solving Õ(n1.5)-uSVP requires time 2nǫ

.

Assumption 6.2 (Quantum hardness of SVP and SIVP). There is a constant ǫ > 0 such that
every quantum algorithm for solving Õ(n1.5)-SVP and Õ(n1.5)-SIVP requires time 2nǫ

.

We believe the above assumptions are reasonable. We can use them to sharpen the conclusions
of Theorems 1.1–1.4 as follows:

Theorem 6.3. Let c > 0 be a large enough absolute constant. Then Assumption 6.1 implies that
there is no polynomial-time algorithm for PAC learning the intersection of logc n heavy halfspaces
in n dimensions.

12

Proof. We first show that under Assumption 6.1, there is a constant γ > 0 such that every algorithm
for learning the intersection of n halfspaces in n dimensions requires time 2nγ

. Indeed, suppose
that for every γ > 0 there were such a learning algorithm with running time less than 2nγ

. By
Theorem 1.1, that would yield an algorithm for Õ(n1.5)-uSVP with running time poly(n, t(poly(n))),
which for γ > 0 sufficiently small violates the 2nǫ

time lower bound of Assumption 6.1.
We have shown that there is a constant γ > 0 such that every algorithm for learning the

intersection of n halfspaces in n dimensions requires time 2nγ

. Let c = 2/γ. Then every algorithm for
learning the intersection of logc n halfspaces in logc n dimensions requires time 2(logc n)γ

= nω(1).

Applying an analogous argument to Theorem 1.2 and Assumption 6.2 establishes stronger results
for intersections of light halfspaces and for arithmetic circuits:

Theorem 6.4. Let c > 0 be a large enough absolute constant. Then Assumption 6.2 implies that
there is no polynomial-time algorithm for PAC learning the intersection of logc n light halfspaces in
n dimensions.

Theorem 6.5. Let c > 0 be a large enough absolute constant. Then Assumption 6.2 implies that
there is no polynomial-time algorithm for PAC learning a depth-3 arithmetic circuit with logc n
gates and inputs x1, . . . , xn ∈ {0, 1}.

Finally, we obtain a sharper hardness result for learning depth-2 majority circuits.

Theorem 6.6. Let c > 0 be a large enough absolute constant. Then both Assumption 6.1 and
Assumption 6.2 imply that there is no polynomial-time algorithm for PAC learning depth-2 circuits
with logc n majority gates.

Proof. Combine Theorems 6.3 and 6.4 in the same way Theorem 1.3 combines Theorems 1.1 and 1.2.

7 Hardness for AC
0?

A natural question to ask is whether our approach could yield hardness results for other concept
classes. Particularly interesting candidates are AC0 and, more ambitiously, polynomial-size DNF
formulas. Here we prove that the decryption functions of the Regev cryptosystems contain PARITY
as a subfunction and thus are not computable in AC0.

We start with the easier proof. Recall that the decryption function of the SVP-based cryp-
tosystem is fs1,...,sn

(a1, . . . , an, b) = CLOSE-TO-MIDDLEp(b −
∑

aisi), where all si, ai, and b are
integers in {0, . . . , p − 1} = Zp with n2 < p < 2n2.

Proposition 7.1 (SVP-based cryptosystem and AC0). The decryption function of the SVP-
based cryptosystem, fs1,...,sn

(a1, . . . , an, b) = CLOSE-TO-MIDDLEp(b −
∑

aisi), is not in AC0.

Proof. Note that

CLOSE-TO-MIDDLEp(
p−1
2

∑
xi) = CLOSE-TO-MIDDLEp(

p
2

∑
xi) = PARITY(x1, . . . , xn).

The first equality holds because 1
2

∑
xi 6

n
2 ≪ p. Thus, PARITY(x1, . . . , xn) is a subfunction of

CLOSE-TO-MIDDLEp(b−
∑

aisi). Since AC0 cannot compute PARITY [6, 9], the claim follows.

Recall now that the decryption function in the uSVP-based cryptosystem is dA(X) =
CLOSE-TO-INT(AX), where A is a fixed real number and X is an integer input. For convenience,
we assume that X has n + 1 bits rather than n.

13

Proposition 7.2 (uSVP-based cryptosystem and AC0). The decryption function of the uSVP-
based cryptosystem, dA(X) = CLOSE-TO-INT(AX), is not in AC0.

Proof. We will show that dA(X) computes PARITY on a subset of Θ(n/ log n) bits from among
x1, . . . , xn (when the other bits are set to 0). The claim will follow.

Let ∆ ⇋ 3 + log n and A ⇋
∑n/∆

i=0 2−i∆−1. In what follows, we show that
dA(X) =PARITY(x0, x∆, x2∆, . . . , xn) when xi = 0 for all i 6∈ {0,∆, 2∆, . . . , n}. Namely,

dA(X) = CLOSE-TO-INT(AX) = CLOSE-TO-INT

n/∆∑

i=0

1

2i∆+1

n/∆∑

j=0

xj∆2j∆

= CLOSE-TO-INT

∑

i

∑

j>i

xj2
j∆

2i∆+1
+

∑

i

xi2
i∆

2i∆+1
+

∑

i

∑

j<i

xj2
j∆

2i∆+1

 .

The first summation features only whole numbers and can thus be dropped. The second summation
is precisely 1

2(x0 + x∆ + x2∆ + · · ·+ xn), a multiple of 1
2 . The third summation does not exceed 1/8

(by the choice of ∆ and the geometric series) and thus does not affect the result. We obtain:

dA(X) = CLOSE-TO-INT

(
x0 + x∆ + x2∆ + · · · + xn

2

)
.

It remains to note that the latter expression is exactly PARITY(x0, x∆, x2∆, . . . , xn).

References

[1] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence.
In STOC ’97: Proceedings of the twenty-ninth annual ACM symposium on Theory of comput-
ing, pages 284–293, New York, NY, USA, 1997. ACM Press.

[2] M. Alekhnovich, M. Braverman, V. Feldman, A. Klivans, and T. Pitassi. Learnability and
automatizability. In Proceedings of the 45th Annual Symposium on Foundations of Computer
Science (FOCS), 2004.

[3] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. On the applications
of multiplicity automata in learning. In FOCS, pages 349–358, 1996.

[4] A. L. Blum and R. L. Rivest. Training a 3-node neural network is NP-complete. Neural
Networks, 5:117–127, 1992.

[5] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator.
SIAM J. Comput., 15(2):364–383, 1986.

[6] M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.
Mathematical Systems Theory, 17(1):13–27, 1984.

[7] M. Goldmann, J. H̊astad, and A. A. Razborov. Majority gates vs. general weighted threshold
gates. Computational Complexity, 2:277–300, 1992.

[8] M. Goldmann and M. Karpinski. Simulating threshold circuits by majority circuits. SIAM J.
Comput., 27(1):230–246, 1998.

14

[9] J. H̊astad. Computational limitations of small-depth circuits. MIT Press, Cambridge, MA,
USA, 1987.

[10] M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and finite
automata. J. ACM, 41(1):67–95, 1994.

[11] M. Kharitonov. Cryptographic lower bounds for learnability of boolean functions on the
uniform distribution. In COLT ’92: Proceedings of the fifth annual workshop on Computational
learning theory, pages 29–36, New York, NY, USA, 1992. ACM Press.

[12] M. Kharitonov. Cryptographic hardness of distribution-specific learning. In STOC ’93: Pro-
ceedings of the twenty-fifth annual ACM symposium on theory of computing, pages 372–381,
New York, NY, USA, 1993. ACM Press.

[13] Klivans and Shpilka. Learning arithmetic circuits via partial derivatives. In COLT: Proceedings
of the Workshop on Computational Learning Theory, Morgan Kaufmann Publishers, 2003.

[14] A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections and thresholds of halfspaces.
In Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, pages
177–186, 2002.

[15] A. Klivans and R. Servedio. Learning intersections of halfspaces with a margin. In Proceedings
of the 17th Annual Conference on Learning Theory,, pages 348–362, 2004.

[16] A. Klivans and D. A. Spielman. Randomness efficient identity testing of multivariate polyno-
mials. In STOC, pages 216–223, 2001.

[17] A. R. Klivans and A. A. Sherstov. Improved lower bounds for learning intersections of half-
spaces. In Proceedings of the 19th Annual Conference on Learning Theory, Pittsburg, USA,
2006. To appear.

[18] S. Kwek and L. Pitt. PAC learning intersections of halfspaces with membership queries.
Algorithmica, 22(1/2):53–75, 1998.

[19] Y. Mansour. Randomized interpolation and approximation of sparse polynomials. SIAM J.
Comput., 24(2):357–368, 1995.

[20] O. Regev. New lattice based cryptographic constructions. In STOC ’03: Proceedings of the
thirty-fifth annual ACM Symposium on theory of computing, pages 407–416, New York, NY,
USA, 2003. ACM Press.

[21] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC
’05: Proceedings of the thirty-seventh annual ACM Symposium on theory of computing, pages
84–93, New York, NY, USA, 2005. ACM Press.

[22] Schapire and Sellie. Learning sparse multivariate polynomials over a field with queries and
counterexamples. JCSS: Journal of Computer and System Sciences, 52, 1996.

[23] K.-Y. Siu and V. P. Roychowdhury. On optimal depth threshold circuits for multiplication
and related problems. SIAM J. Discrete Math., 7(2):284–292, 1994.

[24] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

15

[25] S. Vempala. A random sampling based algorithm for learning the intersection of halfspaces.
In Proceedings of the 38th Annual Symposium on Foundations of Computer Science, pages
508–513, 1997.

[26] I. Wegener. Optimal lower bounds on the depth of polynomial-size threshold circuits for some
arithmetic functions. Inf. Process. Lett., 46(2):85–87, 1993.

16

