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Abstract. We give new algorithms for learning halfspaces in the chaiieg
malicious noisemodel, where an adversary may corrupt both the labels and the
underlying distribution of examples. Our algorithms calettate malicious noise
rates exponentially larger than previous work in terms efdependence on the
dimensionn, and succeed for the fairly broad class of all isotropic dogcave
distributions.

We give polyn, 1/¢)-time algorithms for solving the following problems to ac-
curacye:

— Learning origin-centered halfspacesR{" with respect to the uniform dis-
tribution on the unit ball with malicious noise rate= £2(¢?/log(n/c)).
(The best previous result wéa(e/(n log(n/€))'/*).)

— Learning origin-centered halfspaces with respect to astyapic log-concave
distribution onR™ with malicious noise ratg = £2(¢*/log(n/¢)). This is
the first efficient algorithm for learning under isotropigiooncave distribu-
tions in the presence of malicious noise.

We also give a polfn, 1/¢)-time algorithm for learning origin-centered halfs-
paces under any isotropic log-concave distributiorRshin the presence cdd-
versarial label noiseat raten = £2(e?/log(1/¢)). In the adversarial label noise
setting (or agnostic model), labels can be noisy, but notgka points them-
selves. Previous results could hangle- £2(¢) but had running time exponential
in an unspecified function df/e.

Our analysis crucially exploits both concentration and-eancentration prop-
erties of isotropic log-concave distributions. Our altfuris combine an itera-
tive outlier removal procedure using Principal Componenalisis together with
“smooth” boosting.

1 Introduction

A halfspaceis a Boolean-valued function of the forgh = sign(}". | wiz; — 6).
Learning halfspaces in the presence of noisy data is a fuediiproblem in ma-
chine learning. In addition to its practical relevance, fineblem has connections to
many well-studied topics such as kernel methods [26], ogyatphic hardness of learn-
ing [13], hardness of approximation [5, 8], learning Boolearcuits [1], and addi-
tive/multiplicative update learning algorithms [15, 6].

Learning an unknown halfspace from correctly labeled (noisy) examples is one
of the best-understood problems in learning theory, withkwaating back to the famous
Perceptron algorithm of the 1950s [21] and a range of effiaégorithms known for
different settings [19, 14, 2, 17]. Much less is known, hoareabout the more difficult
problem of learning halfspaces in the presence of noise.



Important progress was made by Blwenal. [1] who gave a polynomial-time al-
gorithm for learning a halfspace undeessification noiseln this model each label
presented to the learner is flipped independently with soxeel forobability; the noise
does not affect the actual example points themselves, veneehenerated according to
an arbitrary probability distribution ovdR™. In the current paper we consider a much
more challenging noise modehalicious noisewhich we describe below.

Malicious Noise.In this model, introduced by Valiant [27] (see also [12]elth is an
unknown target functiory and distributionD over examples. Each time the learner
receives an example, independently with probability # it is drawn fromD and
labeled correctly according té, but with probabilityn it is an arbitrary painz, y)
which may be generated by an omniscient adversary. The gaeamis known as the
“noise rate.”

Malicious noise is a notoriously difficult model with few ptige results. It was al-
ready shown in [12] that for essentially all concept clasisésinformation-theoretically
impossible to learn to accuraty- ¢ if the noise rate) is greater tham/(1 +¢). Indeed,
known algorithms for learning halfspaces [25, 11] or evempér target functions [18]
with malicious noise typically make strong assumptionstaltioe underlying distribu-
tion D, and can learn to accuraty- ¢ only for noise rateg much smaller thae.

In this paper we consider learning under the uniform distidn on the unit ball
in R™, and more generally under any isotropic log-concave 8istion. The latter is
a fairly broad class of distributions that includes sphari8aussians and uniform dis-
tributions over a wide range of convex sets. Our algoritharslearn from malicious
noise rates that are quite high, as we now describe.

1.1 Main Results

Our first result is an algorithm for learning halfspaces mittalicious noise model with
respect to the uniform distribution on thedimensional unit ball:

Theorem 1. There is apoly(n, 1/¢)-time algorithm that learns origin-centered halfs-
paces to accuracy — e with respect to the uniform distribution on the unit ballsin
dimensions in the presence of malicious noise at#ate 2(e?/ log(n/¢)).

The previous best result is due to Ka#ial. [11] who gave apoly(n, 1/¢)-time
algorithm for malicious noise at rate(e/(n log(n/¢))'/*). Theorem 1 gives an expo-
nential improvement in the dependenceroim the noise rate that can be achieved.

Via a more sophisticated algorithm, we can learn in the presef malicious noise
under any isotropic log-concave distribution:

Theorem 2. There is apoly(n, 1/¢)-time algorithm that learns origin-centered halfs-
paces to accuracy — e with respect to any isotropic log-concave distribution o0&
and can tolerate malicious noise at raje= 2(¢®/ log(n/e)).

We are not aware of any previous polynomial-time algoritfiordearning under
isotropic log-concave distributions in the presence oficials noise.

Finally, we also consider a somewhat relaxed noise modelkresadversarial
label noise In this model there is a fixed probability distributidhoverR™ x {—1, 1}



(i.e. over labeled examples) for whichla- 7 fraction of draws are labeled according
to an unknown halfspace. The marginal distribution dR&ris assumed to be isotropic
log-concave; so the idea is that an “adversary” chooses fmaction of examples to
mislabel, but unlike the malicious noise model she cannanghk the (isotropic log-
concave) distribution of the actual example point®ifh. For this model we prove:

Theorem 3. There is apoly(n, 1/¢)-time algorithm that learns origin-centered halfs-
paces to accuracy — e with respect to any isotropic log-concave distribution o0&
and can tolerate adversarial label noise at rate= 2(¢2/ log(1/¢)).

The previous best algorithm for learning halfspaces in ftamework, from [11]
(where it is referred to as “agnostically learning halfgmaonder log-concave distri-
butions”), can tolerate = (2(¢), but its running time is exponential in an unspecified
function of 1 /e. We tolerate a somewhat lower noise rate (though one thatlepien-
dent ofn), but run in truepoly(n, 1/¢) time.

1.2 Techniques

Outlier Removal. Consider first the simplest problem of learning an originteead
halfspace with respect to the uniform distribution on thdimensional ball. A natural
idea is to use a simple “averaging” algorithm that takes #wtar average of the positive
examples it receives and uses this as the normal vector diyfisthesis halfspace.
Servedio [24] analyzed this algorithm for the random cfassiion noise model, and
Kalai et al. [11] extended the analysis to the adversarial label noisdei@ll] also
showed that this simple algorithm learns to accuraayth malicious noise at rate less
thane//n. (Their2(e/(nlog(n/€))'/*) result was achieved via a different algorithm.)

Intuitively the “averaging” algorithm can only toleratewiamalicious noise rates
because the adversary can generate noisy examples whi¢hthguaverage vector far
from its true location. Our main insight is the adversarygiibés most effectively when
the noisy examples are coordinated to pull in roughly theesdimection. We use a form
of outlier detection based on Principal Component Analigsietect such coordination.
This is done by computing the direction of maximal variance of the data set; if the
variance in directiorw is suspiciously large, we remove from the sample all paints
for which (w - x)? is large. Our analysis shows that this causes many noisy @ram
and only a few non-noisy examples, to be removed.

We repeat this process until the variance in every diredagamot too large. (This
cannot take too many stages since many noisy examples aovedrin each stage.)
While some noisy examples may remain, we show that theiradp effects cannot
hurt the algorithm much.

Thus, in a nutshell, our overall algorithm for the unifornstdibution is to first do
outlier removat by an iterated PCA-type procedure, and then simply run teesaing
algorithm on the remaining “cleaned-up” data set.

1 We note briefly that the sophisticated outlier removal téges of [1, 4] do not seem to be
useful in our setting; those works deal with a strong notibrowtliers, which is such that
no point on the unit ball can be an outlier if a significant fiac of points are uniformly
distributed on the unit ball.



Extending to Log-Concave Distributions via Smooth Boostig. We are able to show
that the iterative outlier removal procedure describedrati® useful for isotropic log-
concave distributions as well as the uniform distributibexamples are removed in a
given stage, then many of the removed examples are noisyrdyd éew are non-noisy
(the analysis here uses concentration bounds for isottogiconcave distributions).
However, even if there were no noise in the data, the averbtie @ositive examples
under an isotropic log-concave distribution need not givegh-accuracy hypothesis.
Thus the averaging algorithm alone will not suffice aftedieutemoval.

To get around this, we show that after outlier removal theaye of the positive
examples gives a (real-valuedgakhypothesis that has some nontrivial predictive ac-
curacy. (Interestingly, the proof of this relies heavily amnti-concentration properties
of isotropic log-concave distributions!) A natural appehds then to use a boosting
algorithm to convert this weak learner into a strong learfkis is not entirely straight-
forward because boosting “skews” the distribution of exsythis has the undesirable
effects of both increasing the effective malicious noide,rand causing the distribu-
tion to no longer be isotropic log-concave. However, by gsan“smooth” boosting
algorithm [25] that skews the distribution as little as pbkes we are able to control
these undesirable effects and make the analysis go thrfligdextra factor o in the
bound of Theorem 2 compared with Theorem 1 comes from theHatthe boosting
algorithm constructs!'/e-skewed” distributions.)

We note that our approach of using smooth boosting is regenisof [23, 25], but
the current algorithm goes well beyond that earlier work] [@d not consider a noisy
scenario, and [25] only considered the averaging algonitlitmout any outlier removal
as the weak learner (and thus could only handle quite lovs r@ftenalicious noise, at
moste/+/n in our isotropic log-concave setting).

Finally, our results for learning under isotropic log-cawe distributions with ad-
versarial label noise are obtained using a similar appro@lh algorithm here is in
fact simpler than the malicious noise algorithm: since tiveasarial label noise model
does not allow the adversary to alter the distribution ofégkemples inR™, we can
dispense with the outlier removal and simply use smooth tompsvith the averaging
algorithm as the weak learner. (This is why we get a slighditdr quantitative bound
in Theorem 3 than Theorem 2).

Organization. For completeness we review the precise definitions of ipatrtng-
concave distributions and the various learning models ipefglix A. We present the
simpler and more easily understood uniform distributioalgsis first, proving Theo-
rem 1 in Section 2. The proof of Theorem 2, which builds on teas of Theorem 1,
is in Section 3. Because of space constraints we prove Time®ia Appendix C.

2 The uniform distribution and malicious noise

In this section we prove Theorem 1. As described above, gorighm first does outlier
removal using PCA and then applies the “averaging algorithm

We may assume throughout that the noise natesmaller than some absolute con-
stant, and that the dimensians larger than some absolute constant.



2.1 The Algorithm: Removing Outliers and Averaging
Consider the following Algorithni,,,..:

1. Draw a samplé& of m = poly(n/e) many examples from the malicious orag
2. ldentify the directiorw € S*~! that maximizes

e.

o2y (wex?
(x,y)€S

If 02 < W then go to Step 4 otherwise go to Step 3.
3. Remove front every example that hgsv - x)? > 101#. Go to Step 2.
4. For the example§ that remain letv = ﬁ Z(x,y)GS yx and output the lineg
classifierh, defined byh, (x) = sgn(v - ).

=

We first observe that Step 2 can be carried out in polynonmeadti

Lemma 1. There is a polynomial-time algorithm that, given a finiteleotion S of
points inR™, outputsw € S"~! that maximize$ " o(w - x).

Proof.If S is centered, i.€) |, ¢ x = 0, then the optimaiv is the direction of maxi-
mum variance, and can be found using Principal Componeny8isdi.e. a polynomial-
time eigenvector computation, see e.g. [10]). Otherwisecan perform the PCA on
SU-S,where—S = {—x : x € S}. This works becaus€ U — S is centered, and, for
eachw, > o _s(W-x)? =23 _o(w-x)% O

This implies that the entire algoritha,,,, runs inpoly(m) time.

Before embarking on the analysis we establish a termincédgonvention. Much
of our analysis deals with high-probability statementsrdkie draw of then-element
samplesS; it is straightforward but quite cumbersome to explicitlep track of all of
the failure probabilities. Thus we write “with high probbty’” (or “w.h.p.”) in various
places below as a shorthand for “with probability at least1/poly(n/e).” The inter-
ested reader can easily verify that an appropialg (n/e) choice ofm makes all the
failure probabilities small enough so that the entire gthar succeeds with probability
at leastl /2 as required.

2.2 Properties of the clean examples

In this subsection we establish properties of the clean plesrthat were sampled in
Step 1 ofA,,,,. The first says that no direction has much more variance tteeexpected
variance ofl /n:

Lemma 2. W.h.p. over a random draw éfclean example$.jc.., we have

1 1 1
max { - S (a-x)?p< -+ O(n)logm
aESn71 )g (x7y)€SCleall n é
Proof. The proof uses standard tools from VC theory and is in Appebdi a
The next lemma says that in fact no direction has too manynagamples lying far
out in that direction:



O(l)~n2ﬁ2652"’/2

Lemma 3. Forany$ > 0 andx > 1, if S¢jean iS @ random set of > B EET I

clean examples then w.h.p. we have

1 e
aggljfl {Z mESchean l(a»m)2>62} S (1 + ’%)e A /2-
Proof.In Appendix E. a

2.3 What is removed

In this section, we provide bounds on the number of clean atydekamples removed
in Step 3.
The first bound is a Corollary of Lemma 3.

Corollary 1. W.h.p. over the random draw of the-element sampl#, the number of
clean examples removed during any execution of Step43,inis at mostn log m.

Proof. Since the noise rateis sufficiently small, w.h.p. the numbépf clean examples
is at least (sayjn/2. We would like to apply Lemma 3 with = 5/*nlog/ and3 =

1/ 101%, and indeed we may do this because we have

O(1) - n23%e*n/2 O(1) - n(logm)m® m m
(14 £)In(1 + &) s (14 £)In(1 + &) <0 <1ogm> = 2 st

for n sufficiently large. Since clean points are only removedeéfthave(a - x)? > 32,
Lemma 3 gives us that the number of clean points removed i®at m

m(1 + /@)6752”/2 < 6m°nlog(f)/m® < 6nlogm.

O
The counterpart to Corollary 1 is the following lemma. Iigals that if examples
are removed in Step 3, then there must be ndirty examples removed. It exploits the
fact that Lemma 2 bounds the variancealh directionsa, so that it can be reused to
reason about what happens in different executions of step 3.

Lemma 4. W.h.p. over the random draw &f, wheneverA,,, executes step 3, it re-
moves at Ieasf% noisy examples frorfig;,y, the set of dirty examples ist

Proof. As stated earlier we may assume that< 1/4. This implies that w.h.p. the
fraction?) of noisy examples in the initial sétis at mostl /2. Finally, Lemma 2 implies
thatm = 2(n?) suffices for it to be the case that w.h.p., for alle S"~1, for the
original multisetS,..,, of clean examples drawn in step 1, we have
9 _ 2m
Yo (ax)<—. (1)
(%,¥)EScican n
We shall say that a random samflethat satisfies all these requirements is “reason-
able”. We will show that for any reasonable dataset, the raemalh noisy examples
removed during the execution of step 34f,, is at Ieast‘””‘%‘m.



If we remove examples using direction then it meansy” , \cs(w - x)* >

M Since S is reasonable, by (1) the contribution to the sum from tharcle
examples that survived to the current stage is at westn so we must have

S (w-x)% > 10mlog(m)/n — 2m/n > 9mlog(m)/n.
(%,Y) ESdirty

Let us decomposByg;ty into N U F whereN (“near”) consists of those pointss.t.
(w-x)? < 10log(m)/n and F (“far”) is the remaining points for whicliw - x)? >
10log(m)/n. Since|N| < [Sairty] < 7im, (any dirty examples removed in earlier
rounds will only reduce the size 6f.,) we have

> (w-x)? < (7m)10log(m)/n

(x,y)EN

and so

|F| > ( X)IGF(W -x)? > 9mlog(m)/n — (7m)10log(m)/n > 4mlog(m)/n

(the last line used the fact that< 1/2). Since the points i¥" are removed in Step 3,
the lemma is proved. a

2.4 Exploiting limited variance in any direction

In this section, we show that if all directional variances amall, then the algorithm’s
final hypothesis will have high accuracy.

We first recall a simple lemma which shows that a sample ofaftleexamples
results in a high-accuracy hypothesis for the averagingrikgn:

Lemma5 ([24]). Suppose, ..., X,, are chosen uniformly at random frof# !, and
a target weight vecton € S"~! produces labelg; = sign(u - x1), ..., ¥ = sign(u

Xp). Letv = % Z:;l yix¢. Then w.h.p. the component ofin the direction ofu
satisfiean-v = Q(\/LE), while the rest ofr satisfieg|v — (u-v)ul|| = O(y/log(n)/m).

Now we can state Lemma 6.

Lemma 6. LetS = Sciean U Sairty be the sample of. examples drawn from the noisy
oracleEX, (f,U). Let

Sglcan be those clean examples that were never removed during steg 3,
Shirey D those dirty examples that were never removed during stépi3.,
- #Utsyéltyl i.e. the fraction of dirty examples among the examples that
survive step 3, and
-—a = w the ratio of the number of clean points that were erronepusl

clean dirt,

removed to the size of the final surviving data set.



Lets’ Stiean U Shiry- SUppose that , for every direction € S"~' we have
: 10mlo
O'V2V d;j Z (W X)2 mn gm
(x,y)€8"

Then w.h.p. over the draw 6f the halfspace with normal vecter™s/ 57 2 (xy)est YX

has error rate
I
<¢Tgm+a\r+w/” "g">

Proof. The claimed bound is trivial unlegg < o(1)/logm anda < o(1)/+/n, SO we
shall freely use these bounds in what follows.

Let u be the unit length normal vector for the target halfspacé.\.g., be the
average ofll the clean examplesy; .
that were not deleted (i.e. the examplessgwlt ), andvq.; be the average of the clean
examples that were deleted. Then

1
Yo | clean U S(/hrty| (x, y)GS/Z us/, .

clean = Pdirty

be the average of the dirty (noisy) examples

1
S U5, |<< % yx>+< 2 yx>_< = yx))
clean dirty (x,¥)ESciean (%,9) €S ity (%,9)€Sciean =5 can

/!
vV = (1 - 77 + a)VClean + n Vdirty — V{el-

Let us begin by exploiting the bound on the variance in evésction to bound the
length ofv);,,. Foranyw < "' we know that

10m1 10m1
Z (W X)2 w’ and hence Z (W X)2 w
(x,y)€s’ n (%,9) €S ity n
sinceSy;,, € S’ The Cauchy-Schwarz inequality now gives

> wex|[< \/mm'Séi”y'lOgm

(%,9) €Sty n

Takingw to be the unit vector in the direction of; ., we have|vy,,. || =

irty?

1 1 10m logm
W'V:iirty |S/ | Z yx < |S/ | Z |WX| < W
dirty | (x,y) ESéh.ty dirty ! (x,y)€S}, irty dirty
3)

Because the domain distribution is uniform, the errohgfis proportional to the
angle betweer andu, in particular,

v - ujull [v = (v-wul|

(4)

u-v u-v

Prlhy # f] = —arctan(”v_( )S(l/ﬁ)

(@)



We have thaf|v — (v - u)u|| equals
(1 = 7" 4+ a)(Veiean — (Velean - 1)u) + nl(véirty - (Véirty ‘u)u) — a(Vdel — (Vdel - u)u)|
< 2[|[Velean — (Velean - W)ul| + 77/||V/dirty|| + a[vdelll

where we have used the triangle inequality and the factithatare “small.” Lemma 5
lets us bound the first term in the sum B(y/log(n)/m), and the fact that 4. is
an average of vectors of length 1 lets us bound the third.blfor the second term,
Equation (3) gives us

10m(n')? logm 10mn’ log m 1207 log m
M < _ <
n ||Vd1rtyH — \/ |S(/i |TL |S’|n =~ " R

irty

where for the last equality we uséd’| > m/2 (which is an easy consequence of
Corollary 1 and the fact that w.h.[S¢jcan| > 3m/4). We thus get

v = (v wul| <0 (Viog(n)/m) + /207 log(m)/n + . (5)
Now we consider the denominator of (4). We have
u-v= (1 - 77/ + a)(u : Vclean) + 77/11 : V/dirty — QU * Vel -

Similar to the above analysis, we again use Lemma 5 (but nevother boundr- v >
22(1/+/n), Equation (3), and the fact thHw .|| < 1. Sincea andy’ are “small,” we

get that there is an absolute constaatich thatr- v > ¢//n — /207 log(m)/n — a.
Combining this with (5) and (4), we get

O( /10&)_’_ /20n/logm+a
Prlhy # f] < —O(\/%ﬁ—i—\/?flogm—l—a\/ﬁ).

c 200’ logm a

v m

O

2.5 Proof of Theorem 1

By Corollary 1, w.h.p. each outlier removal stage removesnast6n logm clean
points.

Since each outlier removal stage removes at |é§bé,fw noisy examples, there
must be at mosO(n/(logm)) such stages. Consequently the total number of clean
examples removed across all stage®{s?). Since w.h.p. the initial number of clean
examples is at least/2, this means that the final data set (on which the averaging
algorithm is run) contains at least/2 — O(n?) clean examples, and hence at least
m/2 — O(n?) examples in total. Consequently the valuexdfom Lemma 6 after the
final outlier removal stage (the ratio of the total numberlefo examples deleted, to

the total number of surviving examples) is at mes 2_”02(”2).

The standard Hoeffding bound implies that w.h.p. the adtaation of noisy exam-
ples in the original samplg is at most; + /O(logm)/m. Itis easy to see that w.h.p.



the fraction of dirty examples does not increase (since stage of outlier removal re-
moves more dirty points than clean points, for a suitablgéaly(n/¢) value ofm),

and thus the fraction’ of dirty examples among the remaining examples after thé fina
outlier removal stage is at mogtt+ \/O(log m)/m. Applying Lemma 6, for a suitably
large valuen = poly(n/e), we obtainPr[h, # f] < O (v/nlogm) . Rearranging this
bound, we can learn to accuracgven forn = 2(¢2/log(n/e¢)). This completes the
proof of the theorem. ad

3 Isotropic log-concave distributions and malicious noise

Our algorithm A, that works for arbitrary log-concave distributions usessth
boosting.

3.1 Smooth Boosting

A boosting algorithm uses a subroutine, called@ak learner that is only guaran-
teed to output hypotheses with a non-negligible advantasgerandom guessingThe
boosting algorithm that we consider usesomfidence-rateeveak learner [22], which
predicts{—1, 1} labels using continuous valuesjinl, 1]. Formally, theadvantageof
a hypothesig’ with respect to a distributio®’ is defined to bé&, .o/ [h/(z) f(x)],
wheref is the target function.

For the purposes of this paper, a boosting algorithm makesithe weak learner,
an example oracle (possibly corrupted with noise), a désiceuracy, and a bound
on the advantage of the hypothesis output by the weak learner

A boosting algorithm that is trying to learn an unknown tarigection f with re-
spect to some distributio® repeatedly simulates a (possibly noisy) example oracle
for f with respect to some other distributi@ calls a subroutinel .., with respect
to this oracle, receiving weak hypothesjsvhich mapsR™ to the continuous interval
[—1,1].

After repeating this for some number of stages, the boostiggrithm combines
the weak hypotheses generated durings its various caletaéak learner into a final
aggregate hypothesis which it outputs.

LetD, D’ be two distributions oveR. We say tha?’ is (1/¢)-smooth with respect
toDif D(x) < (1/€)D’'(x) forallx € R™.

The following lemma from [25] (similar results can be regdibund elsewhere,
see e.g. [7]) identifies the properties that we need from atirggp algorithm for our
analysis.

Lemma 7 ([25]). There is a boosting algorithm® and a polynomiap such that, for
anye,v > 0, the following properties hold. When learning a target fiioc f us-
ing EX,,(f,D), we have: (a) If each call tod,,... takes timet, then B takes time
p(t,1/v,1/€). (b) The weak learner is always called with an oraEl¥,, (f, D’) where
D’ is (1/¢)-smooth with respect t®’ andrn’ < n/e. (c) Suppose that for each distri-
butionEX,, (f, D’) passed tad. .. by B, the output of4d,,..;, has advantage. Then
the final output: of B satisfiePr,cp[h(z) # f(x)] < e.

2 For simplicity of presentation we ignore the confidence peeter of the weak learner in our
discussion; this can be handled in an entirely standard way.



3.2 The Algorithm

Our algorithm for learning under isotropic log-concavetrdigitions with malicious
noise, AlgorithmA,,,,., applies the smooth booster from Lemma 7 with the following
weak learner, which we call Algorithm,,, ... (The valuecy is an absolute constant
that will emerge from our analysis.)

1. Drawm = poly(n/e) examples from the oracleX,, (f,D’).
2. Remove all those examplés, y) for which||x|| > \/3nlogm.
3. Repeatedly
— find a direction (unit vectorjv that maximizesy, (W - x)? (see
Lemma 1)
— if Z(w)es(w-x)2 < ¢omlog(n/e) then move on to Step 3, and otherwise
— remove fromS all examplegx, y) for which (w - x)? > ¢glog(n/e), and
iterate again.
4. Letv = 157 2 ,)e s Y%, and returmh defined byh(x) = g2, if v - x| <
3nlogm, andh(x) = sgn(v - x) otherwise.

Our main task is to analyze the weak learner. Given the fatiguemma, Theo-
rem 2 will be an immediate consequence of Lemma 7 (proved peAdix B).

Lemma 8. Suppose Algorithml,,j.., is run usingEX,, (f, D") where f is an origin-
centered halfspacd)’ is (1/e)-smooth w.r.t. an isotropic log-concave distributi®h
n' < n/e, andn < 2(e3/log(n/e)). Then w.h.p. the hypothesisreturned byA,,jcy

has advantagé? (ﬁfn/e) .

4 Conclusion

There are relatively few algorithms for learning interegttlasses of functions in the
presence of malicious noise. We hope that our results wil lead to the development
of more efficient algorithms for this challenging noise miode

As a concrete challenge for future work, we pose the follgngnestion: do there
exist computationally efficient algorithms for learningfepaces undearbitrary dis-
tributions in the presence of malicious noise? As of now ritebeesults are known for
this problem than the generic conversions of [12], whichlzampplied to any concept
class. We feel that even a small improvement in the malicimise rate that can be
handled for halfspaces would be a very interesting result.
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A Definitions and Preliminaries

A.1 Learning with Malicious Noise

Given a probability distributiorD overR"™, and a target functiorf : R* — {—1,1},
we define the oraclEX,,(f, D) as follows:

— with probability 1 — 7 the oracle draws according toD, and outputsx, f(x)),
and

— with probabilityn the oracle outputs an arbitrafy, y) pair. This “noisy” example
can be thought of as being generated adversarially and genden the state of
the learning algorithm and previous draws from the oracle.

Given a data set drawn frofaX,, (f, D), we often refer to the examplés, f(x))
(that came fronD) as “clean” examples and the remaining examifley) as “dirty”
examples.

For a setS of probability distributions and a sét of possible target functions, we
say the a learning algorithm learnsF' to accuracyl — ¢ with respect taS in the
presence of malicious noise at a ratéf the following holds: for anyf € F, and
D € S, given access tBX,,(f, D), with probability at leasl /2, the output hypothesis
h generated byl satisfiesPr.p[h(x) # f(x)] < e. (The probability of success may
be amplified arbitrarily close to 1 using standard techrsdq9g)

We note that for learning under the uniform distribution ba tinit ballS™~!, we
may assume w.l.0.g. that even noisy examiles)) havex € S"~! — this is simply
because a learning algorithm can trivially identify andagnany noisy examplex, y)
that hag|x|| # 1.

A.2 Log-concave distributions

A probability distribution oveR" is said to bdog-concavdf its density function is
exp(—1(x)) for a convex functionp.

A probability distribution oveR"is isotropicif the mean of the distribution i8
and the covariance matrix is the identity, iBfx;x;] = 1 for i = j and0 otherwise.

Isotropic log-concave (henceforth abbreviated i.l.cs}ritbutions are a fairly broad
class of distributions. It is well known that any distritartiinduced by taking a uniform
distribution over an arbitrary convex set and applying tedlé linear transformation to
make it isotropic is then isotropic and log-concave. Forxgebent treatment on basic
properties of log-concave distributions, see Lovasz andpada [16].

We will use the following facts:

Lemma 9 ([16]). Let D be an isotropic log-concave distribution ov®™ anda <
Sm=1 any direction. Then fox drawn according taD, the distribution ofa - x is an
isotropic log-concave distribution ovét.

Lemma 10 ([16]).Any isotropic log-concave distributich overR™ has light tails,
Pr [[[x]| > pv/n] < e77F1.
If n = 1, the density oD is bounded:

< |b—al.
Prixefat]<[b—d



B Proof of Lemma 8

Recall Lemma 8:

Lemma 8. Suppose Algorithmi ey is run usingeX,, (f, D’) wheref is an origin-
centered halfspacd)’ is (1/¢)-smooth w.r.t. an isotropic log-concave distributidn
n < n/e, andn < 2(e3/log(n/e)). Then w.h.p. the hypothesisreturned byA ey

has advantage? (ﬁ?n/e) '

Before proving Lemma 8, we need to prove some uniformityltesan non-noisy
examples drawn from an isotropic, log-concave distributithis will enable us to use
outlier removal and averaging to find a weak learner.

B.1 Lemmas in support of Lemma 8

In this section, let us consider a single call to the wealdleawith an oracl& X, (f, D’)
whereD’ is (1/¢)-smooth with respect to an isotropic log-concave distidouD and
n’ < n/e. Our analysis will follow the same basic steps as Section 2.

A preliminary observation is that w.h.p. all clean exammeswvn in Step 1 of Al-
gorithm A1 have||x|| < v/3nlogm; indeed, for any given draw of from 7', the
probability that||x|| > /3nlogm is at most=>; by Lemma 10. Therefore, w.h.p.,
only noisy examples are removed in Step 2 of the algorithrd vaa shall assume that
the distributionsD andD’ are in fact supported entirely orx : ||x|| < v/3nlogm}.
This assumption affects us in two ways: first, it costs us afitiaal _ in the fail-
ure probability analysis below (which is not a problem andhigact swallowed up
by our “w.h.p.” notation). Second, it means that the overall ¢ accuracy bound we
establish for the entire learning algorithm may be slightlyrse than the true value.
This is because our final hypothesis may always be wrong orexaeplesx that
have||x|| > v/3nlogm and are ignored in our analysis; however such examples have
probability mass at most; under the isotropic log-concave distributidh(again by

Lemma 10), and thus the additional accuracy cost is at pigsiSincee > %, this

m31
does not affect the overall correctness of our analysise Wit a consequence of this
assumption is that we can just takex) = 5y >—.
n logm

The remarks about high-probability statements and fajuodabilities from Sec-
tion 2.1 apply here as well, and as in Section 2 we write “wlap shorthand for “with
probabilityl — 1/poly(n/e).”

We first show that the expected variance®fin every direction is not too large:

Lemma 11. For anya € S"~! we haveE,.p/[(a - x)?] = O(log(1/e)).



Proof. For x chosen according t®, the distribution ofa - x is a unit variance log-
concave distribution by Lemma 9. Thus, for any positivegetg:,

Ecopfla-x)?] <k+) (i+ 1) Prla-xe (ii+1]
i=k

<k+) (i+ 1)(1/6) Prla-x € (ii+1]
i=k

<k+(1/e)) (i+1) Prla-x>i
i=k

<Sk+(1/e) Y (i+1)e ™ <k+(1/e) - Oke ™)
i=k

where the firstinequality in the last line uses Lemmas 9 aneftingk = ©(log(1/¢))
completes the proof. ad

The following anticoncentration bound will be useful fooging that clean exam-
ples drawn fronD’ tend to be classified correctly with a large margin.

Lemma 12. Letu € S*~ 1. Then
Expr[Ju-x[] > ¢/8.
Proof. Clearly
Expr(Ju-x[] = (¢/4) Pr [[u-x| > e/4]
But by Lemma 10,

1 €/2
. < < - . < < - = .
Pyl < e/ < L prix <o) < o1

O
The next two lemmas are isotropic log-concave analogueseofihiform distribu-
tion Lemmas 2 and 3 respectively. The first one says that wib.gdirectiorn has much
more variance than the expected variance in any direction:

Lemma 13. W.h.p. over a random draw dfclean example$jc.., fromD’, we have

1 5 1 n®2log’m
- : <0(1) [log= + 208 ™Y
ale%%xl{é (a x)}_O()<0g6+ Vi

(%,Y)E€Sclean

Proof.By Lemma 11, for any € S*~! we have

Exp[(a-x)?] = O(log(1/e)).

Since as remarked earlier we may asstPhés supported ofx : ||x|| < v/3nlogm},
we may apply Lemmas 19 and 20 (see Appendix D) with functigmdefined byf, =

(ax)® Thig completes the proof. a

3nlogm

The second lemma says that for a sufficiently large cleansdatav.h.p. no direction
has too many examples lying too far out in that direction:



O(1)ee” (n ln(eeﬁ)+log m)
(14r£) In(14+k)

Lemma 14. Foranys > 0 andk > 1, if Scjean IS a set oft >
clean examples drawn frof’, then w.h.p. we have

1 1
—p+1
aax, {z E , l(a-m)2>ﬁ2} <(1+r) (;) Can

TESclean

Proof.Lemma 10 implies that for the original isotropic log-conealistributionD, we
havePryp[(a - x)? > 3] < e #+L. SinceD’ is (1/¢)-smooth with respect t®, this
implies that

) e~ B+1
. <
Prla-x)?>0 < (6)
In the proof of Lemma 3, we observed that the VC-dimension of
{1(a.x)2>[3 raeR" fJe R}
is O(n), so applying Lemma 21 with (6) completes the proof of thisrem a0

The following is an isotropic log-concave analogue of Clanyi 1, establishing that
not too many clean examples are removed in the outlier rehstea

Corollary 2. W.h.p. over the random draw of the-element sampl& fromEX,, (f, D’),
the number of clean examples removed during any executitie olutlier removal step
(final substep of Step 2) in AlgorithAy, ., is at mostme? /n?.

Proof. Since the true noise ratgis assumed sufficiently small, the valye < n/e is

at moste/4, and thus w.h.p. the numbéof clean examples if§ is at least (sayj)n /2.

We would like to apply Lemma 14 with = (n/e)°~* and3 = ¢y log(n/¢), and we
may do this since we have

O(1)ee? (n1n (ee?) + logm) < O()e(n/e)nlogm

(I1+x)In(1+ k) =" (n/e)o4tlogm </

<O0(1)n°/e <«

for a suitable fixegoly(n/¢) choice ofm. Since clean points are only removed if they
have(a - x)? > 3%, Lemma 14 gives us that the number of clean points removed is a

most .
1 co~
m(l+ k) - —e P < mM < 6me®/nt.
€ (n/e)e
O
Not surprisingly, the following lemma is an analogue of Leah it lower bounds

the number of dirty examples that are removed in the ougisraval step.

Lemma 15. W.h.p. over the random draw &f any time Algorithnd, 1., executes the
outlier removal step it removes at leagt noisy examples.

Proof. Since our ultimate goal is only to prove that the algorithroceeds for some
which iso(e¢), we may assume without loss of generality that the origineenmater is
less thare/4. This means thaj’ < 1/4, and consequently a Chernoff bound gives that
w.h.p. the fraction)’ of noisy examples irb' at at the beginning of the weak learner’s



training is at most /2. And Lemma 13 implies that for a sufficiently large polynomia
choice ofm, we have that w.h.p. for all € S"~!, the following holds for all the clean
examples in the data before any examples were removed:

> (a-x)’ < cemlog(l/e) (7)

(%,y) €Sciean

wherec is an absolute constant. We say that a random sample thas rakké¢hese
requirements is “reasonable.” We now set the congiatfiat is used in the specification
of Ay to be2c + 2. We will now show that, for any reasonable sam§ijéhe number
of noisy examples removed during the first execution of théeyuemoval step ofd,,,,,
is at leasty-.

If we remove examples using directionthenitmean$ " _ o (w-x)* > comlog(n/e).
SinceS is reasonable, by (7) the contribution to the sum from tharckexamples that
have survived until this point is at mast: log(1/¢) so we must have

Z (w-x)% > (co — ¢)mlog(n/e).
(%,Y) ESdirty

Let Sairty = N U F whereN is the examplegx, y) for which x satisfies(w - x)? <
colog(n/e) andF is the other points. We have

Z (w-x)? < coifmlog(n/e).
(x,y)EN

and so, sincgx|| < v/3nlogm implies that(w - x)? < 3nlogm for all unit lengthw,
we have

(w-x)? (w-x)? (w-x)2
F > _— —_— —_
7] = Z 3nlogm Z 3nlogm Z 3nlogm
(x,y)eF (%,9) ESairty (x,y)EN
(co — e)mlog(n/e) — coif m log(n/e)
- 3nlogm

mlog(n/e) . m
3nlogm ~ 3n’

where the next-to-last inequality usg's< 1/2 andc¢y = 2(c + 1), and the final one
usesm > n/e. The points inF’ are precisely the ones that are removed, and thus the
lemma is proved. a0

B.2 Proof of Lemma 8

We first note that w.h.p. the weak learner must terminate aftenost3n iterations of
outlier removal.

Let u be the unit length normal vector of the separating halfsgace¢he target
function f. The advantage df with respect taD’ can be expressed as

EXND/ [(V i X)f(X)]
3nlogm

Ex~or[h(x)f(x)] =

(8)



and so we shall work on lower boundifycp/ [(v - x) f(x)].
As in the proof of Lemma 6, let

— Sclean be all of the clean examples in the initial sampleandsS! be those that
are not removed in any stage of outlier removal;
— Sairty be all of the dirty examples in the initial sampte and.S)

are not removed in any stage of outlier removal;
Sk . . . .
-7 = wﬂdiw‘ i.e. the noise rate among the examples that survive ustéitd

‘ 1
dirty

of the training of the weak learner, and

— / . .
-—a = W the ratio of the number of clean points that were errongousl
clean dirty

removed to the size of the final surviving data set.

As before we write5” for S;,. U S, - Also as before, let.ican be the average of
all the clean examples{hrty be the average of the dirty (noisy) examples that were not
deleted, andr4. be the average of the clean examples that were deleted. Tieing

exactly as before, we have

lean

iryy 0€ those that

v= (1 - 77/ + Q)VCICan + n/véirty — Vel (9)
The expectation of ..., Will play a special role in the analysis:

* def
Vilean = Bxepr[f(x)x].
Once again, we will demonstrate the limited effectgf by bounding its length.
This time, the outlier removal enforces the fact that, foy anc S~ !, we have

Z (w - x)? < comlog(n/e).

(x,y)€S

Applying this for the unit vectow in the direction ofv(;; . as was done in Lemma 6,
this implies

comlog(n/e)
HV(/iirty” < Q|
54

irty|
Next, let us apply this to bound an expression that captinesiterage harm done by

!
Vdirty .

|Ex€D' [f(X) (V:iirty ’ X)H = |Vv/;1irty ’ V;lean|

comlog(n/e)

= |S/ ||V:10an||' (10)
d

irty |

To show thatv..., plays a relatively large role, it is helpful to lower boundtth
length ofv* We do this by lower bounding the length of its projectioncottite unit

clean*

normal vectom of the target as follows:

Viean -1 = B[(£(x)x) - u] = Efsgn(u-x)(x - )] = E[x - uf] > ¢/3,

clean



by Lemma 12. Since is unit length, this implies
||V:10an|| 2 6/8 (11)

Armed with this bound, we can now lower bound the benefit ingohby v jcan:

Eueo [f(#)(Veean 7)) = —— 3. Euenlyf(2)(x-2)]

St
clean (y y)ESeean

= . Z (yX) : V;lean‘

Sei
clean (xay)esclean

SinceE[(yx) ! Vzlean] ||Vcledn||2' and (yx) "V
Hoeffding bound implies that w.h.p.

Ezep [f(2)(Velean - 2)] > ||Vclcan||2 nlog m)//|Sclean|-

Since the noise ratg is at most)/e andr certainly less thaim/4 as discussed above,
another Hoeffding bound gives that w.h|Seican| is at leastn/2; thus for a suitably
large polynomial choice afi, using (11) we have

€ [-3nlogm,3nlogm], a

*
clean

2
B [f(2) (Vetoan - 2)] = [Vieanl? — O(nlog®? m)/mjz = Wateanll” —(15)

Now we are ready to put our bounds together and lower bounddh&ntage ofr.
We have

Exep/ [f(xX)(v-x)] = (1 =1 + Q)E[f(X)(Vclean - X)]
+77/E[f(X) (Véirty ’ X)] - CYE[f(X) (Vdel : X)]
We bound each of the three contributions in turn. First,gigir- ' > 1/2 and (12),
we have(l — 7' + a)E[f(x)(Velean - X)] > IIVCIMHII
Next by (10), arguing as we did before equatlon (5), we HalB|f(x )(Vémy .

con’ log(n/e)||vii..ll- Since we may assume that< '3/ log(n/¢) for as
small a fixed constant as we like (recall the overall bound of Theorem 2), we get

V 0077/ 10g n/6 ||V:10an|| < 6/64:)||V:§lcan||

(for a suitably small constant choicedf, and this is less thaﬁw since||v,
€/8.
Finally Corollary 2, together with the fact that there arevaist3n iterations of
outlier removal and the final surviving data set is of sizeeatstm /4, gives us that
3 4
a< %, which (recalling that bottv4., and allx in the support o>’ have

norm at most/3n log m) means thatoE[f (x) (Ve - X)| = o(€?).
Combining all these bounds, we get

>

clcan| | et

2

Voeal?  Woieanl® 2
, . > clean clean _ >
Exen [f()(v )] = 1l L o) > -

by (11). Together with (8), the proof of Lemma 8 is completed.




C Learning under isotropic log-concave distributions with
adversarial label noise

C.1 The Model

We now define the model of learning with adversarial labesaainder isotropic log-
concave distributions. In this model the learning alganitiias access to an oracle that
provides independent random examples drawn according t@d distribution” on
R"™ x {—1,1}, where

— the marginal distribution oveR™ is isotropic log-concave, and
— there is a halfspacg such thatPr, )~ p[f(x) # y] = n.

The parameter is thenoise rate As usual, the goal of the learner is to output a
hypothesis: such thalPr(, ,y.p[h(x) # y] < ¢; if an algorithm achieves this goal, we
say it learns to accurady— ¢ in the presence of adversarial label noise at nate

C.2 The Algorithm

Like the algorithmA,,;. considered in the last section, the algorithiy. studied in
this section applies the smooth boosting algorithm of LenTni@ a weak learner that
performs averaging. The weak learngy.,, behaves as follows:

1. Draw a setS of m examples according t&’ (the oracle for a modified distrj
bution provided by the boosting algorithm).

2. Remove all examples, y) such that|x|| > v/3nlogm from S.

3. Letv = ‘—é‘ > (x.y)es ¥x- Return the confidence-rated classifiedefined by

h(x) = =%, if |v - x| < 3nlogm, andh(x) = sgn(v - x) otherwise.

3nlogm’

C.3 Claim about the weak learner

As in the previous section, the heart of our analysis willdartalyze the weak learner.
We omit discussing the application of the smooth boostiggrthm here, as itis nearly
identical to Section 3.

Lemma 16. Let P’ be a distribution that ig1/¢)-smooth with respect to a joint distri-
bution onR™ x {—1, 1} whose marginal oR" is isotropic and log-concave. Further,
assume there exists a linear threshold functf@uch tha®r, ) p/[f(x) # y] < n/e

andn < Q(ﬁ). Then with high probabilityA.;.,, outputs a hypothesis with ad-
vantage? (=7 10;(2n/€) ).

C.4 Lemmas in support of Lemma 16

In this section, let us focus our attention on a single cath®weak learner. LeP’

be the distribution provided to the weak learner, andletoe the marginal oR™.

As in Section 3, we may assume that the supporbDbfies entirely onx such that

[|Ix]| < v/3nlogm (this negligibly affects the final bounds obtained in ourlgses).
By Lemma 7 we immediately have



Lemma 17 ([25]).P’ is (1/¢)-smooth with respect t&.

The following technical lemma will be used to limit the abilof an adversary for
choosingP’ to concentrate a lot of noise in one direction.

Lemma 18. Let E be any event with positive probability undef, and letx = D'(E).
For any unit lengtha € R", Exp[la- x| | E] = O (log L) .

Proof.Let 3 be such thaPr«.p[|a-x| > 3] = k. By Lemmas 9 and 10, together with
the fact thatD’ is (1/¢) smooth with respect t&, we have

K < 167ﬁ+1
T e

which implies3 < 1+ log (2 ).

Let ' be the eventthda-x| > 3. We will show thatExp [|a-x| | E] < Exp/||a:
x| | F], and then boun@®y.p/[|la-x| | F]. If Pr[(F — F) U (F — E)] = 0, then,
obviously,Ex.p/[|la-x| | E] = Ex~p[|la-x| | F]. Suppos®r[(F—F)JU(F—FE)] > 0.
Then

Ex.pla-x| | E]

= Ex.p[la-x| | ENF]Pr[ENF]+ Exwp/[la-x|| E— F]Pr[E — F]

=Ex.pfla-x| | ENF]Pr[ENF]+ Ex.p/[la-x|| E — F]Pr[F — E]
(becaus@®r[E] = Pr[F])

<Ex-p/lla-x|| ENF|Pr[ENF|+Ex.p|a-x|| F— E|Pr[F — EJ,

because forevery € £ — Fandeveryx’ € F — F,
la-x| <@ <|a-X|.
But
Ex-p/[lax|| ENF]Pr[ENF]+Exp/[|lax| | F—E]|Pr[F—FE] = Ex.p/[la-x| | F],

SO
Ex.p/la-x|| E] < Ex.p/[la-x]| | F]. (13)
Now, settingh = | 3|, we have

B la-x| | F] < D,iF) S (i+1) Py fla-x| € (i,i+1]
1

IN
S
—_ o~
3

—+

—_

=

X

sinceD’(F) = O(e~"/¢). Combining with (13) completes the proof. O



C.5 Proofof Lemma 16

Fix some halfspac¢ such thalPry .. p[f(x) # y] = 0, and letu be the unit normal
vector of its separating hyperplane.

Let P’ be the joint distribution given tol,;.., and letD’ be its marginal orR™.
Lemma 17 implies thabP’ is (1/¢)-smooth with respect to the original marginal distri-
butionD.

First, we bound the advantage with respecPtan terms of the tendency df to
agree with the best linear functigh

Eicy)np [MX)y] = B yynpr [h(3) f ()] = 1 = Exnr [R(x) f ()] = 0. (14)

Furthermore, we have

By [h(3) ()] = B [w} (15)

3nlogm

so we will work on boundin@x.p/[f (x)(x - v)].

Let P/,..., be obtained by conditioning a random dréxw y) from P’ on the event

that f(x) = y. Define Py, analogously, and leDy,.,,, andDg;,,, be the correspond-
ing marginals oR™. Let

[yx]
Vairty = By~ py,, %]

Zorrect = ExED’ [f(X)X]

* p—
Velean = E(xyy)NPC’

lean

Vv

Note that

* 1 *
Ewa/[f(X) (X ! V)] = Veorrect "V = E E Veorrect (yX) (16)
(x,y)€S

Equation (16) express@, .o [f(x)(x - v)], which is closely related to the advantage
of h through (15) and (14), as a sum of independent random vagabhe for each
example. We will boundEx..p/[f(x)(x - v)] by bounding the expected effect of a
random example on its value, and applying a Hoeffding bound.



Letn' = Prx,y~p/[f(X) # y]. SinceP’ is 1/e-smooth with respect t&, we have
7’ < n/e. We can rearrange the effect of a random example as follows

E ()~ P [Voorreet - (U%)] = (1 = 0 )Ex yy~ P [Viomees - (F(X)X)|y = f(x)]
1B ) P [Vioreer - (—f()X) [y # ()]
= (1= 1) Bey)mp Viomees - (f(x)X)|y = f(x)]
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(fX)|y # f(x)]
(= f(x)x)|y # f(x)]
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= E(x,y)~P' [Viorreet * (f(X)X)]
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= [[Veorreet!” = 20 By m P [Viomeer - (F()X)|y # f(%)]
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2 §||Vzorrect||2 - 4(n/)2||v(§irty||27 (17)

The last line follows from the fact that — qr > (¢® — r2)/2 for all realq, r.

So now our goals are a lower bound [ov,,,....|| and an upper bound dfwv; . [[-

We can lower boundv’,.....|| essentially the same way we did before, by lower
bounding its projection onto the “target” normal vector

Veorreet - U = E[(f(x)x) - u] = E[sgn(u - x)(x - u)] = E[jx - ul] > ¢/16,  (18)

by Lemma 12.
We upper boundv; . || as follows:
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by Lemma 18. Thugvy;,, || < O(log(1/(n'¢))).
Combining this with (18), we have that if

* ok
||Vdirty = Vdirty Exep

(n')? - (log(1/(n'€))* < e (19)

for a suitably small constant then (17) is at leas(¢?). Thus, for suchy’, by (16)
we have thaEx.p/[f(x)(x - v)] is @ sum ofm i.i.d. random variables, each with
mean at leas®(¢2?), and coming from an interval of length(n log m). Applying the



standard Hoeffding bound, polynomially many examples seffor Ey.p/[f (x)(x -
v)] > £2(e?). Combining with (15) and (14), we are almost done: it remainly to
observe that (19) holds as longsais at most a small constant multiple &f/ log(1/¢)
(recalling thaty’ < n/e).

D Proof of Lemma 2

Let us start with a couple of definitions and a bound from ttegditure.

Definition 1 (VC-dimension).A setF of {—1, 1}-valued functions defined on a com-
mon domainX shattersey, ..., x4 if every sequencey, ...,yqs € {—1,1} of function
values has a functiofi such thatf (z1) = y1, ..., f(z4) = y4. The VC-dimension df

is the size of the largest set shatterediyy

Definition 2 (pseudo-dimension).For a setF' of real-valued functions defined on a
common domailX , thepseudo-dimensioar F is the VC-dimension dbign(f(-)—#0) :
f€F0eR}.

Lemma 19 ([20]).Let F' be a set of real-valued functions defined on a common domain
X taking values iri0, 1], and letd be the pseudo-dimension®Bf LetD be a probability
distribution overX. Then ifzy, ..., x,,, are obtained by drawingr times independently
according toD, for anyo > 0,
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Pr |3f € F, % S;f(azs) > Ep[f] + %]

wherec > 0 is an absolute constant.

Now, let us bound the pseudo-dimension of the class of fanstihat we need.

Lemma 20. Let F,, consist of the functiong from R"™ to R which can be defined by
f(x) = (a-x)? for somea € R". The pseudo-dimension Bf, is at mostO(n).

Proof. According to the definition, the pseudo dimensiorFyfis the VC-dimension of
the setG,, of {—1, 1}-valued functiongy, o defined byga ¢(x) = sign((a - x)? — ).
Eachg, ¢ is equivalent to an OR of two halfspaces:

a-x>V0 OR (—a) x>0

Thus the VC-dimension dff,, is at most the VC-dimension of the class of all ORs of
two halfspaces, which is known to i) (see [2]). a
Applying Lemmas 19 and 20, we obtain Lemma 2.

E Proof of Lemma 3

We will use the following, which strengthens bounds like leen19 when the expec-
tations being estimated are small. It differs from most lmsuaf this type by providing

an especially strong bound on the probability that the egtsarenuchlarger than the

true expectations.



Lemma 21 ([3]). Supposé is a set of{ 0, 1}-valued functions with a common domain
X. Letd be the VC-dimension df. LetD be a probability distribution oveX . Choose
a>0andK > 4. Then if

c (dlogé + log %)
aKlog K

m =z

wherec is an absolute constant, then

Pr [3f € F, Ep(f) < abutE.(f) > Ka] <6,

u~DpDm

whereE,(f) = L S0 f(u;).

To prove Lemma 3, we first use the fact that, for any fised S~ andg > 0, it
is known (see [11]) that

Pr [la-x| >3] < e Pn/2,
zeSn—1

Further, as in the proof of Lemma 2, we have that
la-x|>pg ifandonlyif a-x>pgOR(-a)-x> 3,

so that the set of events whose probabilities we need to &iim contained in the set
of unions of pairs of halfspaces. The VC-dimension of theetas known to be)(n),
so applying Lemma 21 completes the proof.



