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Abstract

We give the first polynomial-time algorithm for agnostically learning any function of a constant
number of halfspaces with respect to any log-concave distribution (for any constant accuracy
parameter). This result was not known even for the case of PAC learning the intersection of two
halfspaces.

We give two very different proofs of this result. The first develops a theory of polynomial
approximation for log-concave measures and constructs a low-degree ¢; polynomial approximator
for sufficiently smooth functions. The second uses techniques related to the classical moment
problem to obtain sandwiching polynomials. Both approaches deviate significantly from known
Fourier-based methods, where essentially all previous work required the underlying distribution to
have some product structure.

Additionally, we show that in the smoothed-analysis setting, the above results hold with respect
to distributions that have sub-exponential tails, a property satisfied by many natural and well-studied
distributions in machine learning.

Keywords: Log-concave distributions, smoothed analysis, halfspaces, agnostic learning, Fourier
analysis

1. Introduction: Learning Intersections of Halfspaces

Learning halfspaces is one of the core algorithmic tasks in machine learning and can be solved in the
noiseless (PAC) model via efficient algorithms for linear programming. The simplest generalization
of this problem— learning intersections of halfspaces— has attracted the attention of many researchers
in theoretical computer science and statistics. Surprisingly, learning the intersection of even two
halfspaces with respect to arbitrary distributions remains a challenging open problem.

It is well known that even simple classes of intersections of halfspaces cannot be learned with
respect to arbitrary distributions (e.g., polygons in the plane have infinite VC-dimension), and a
major open problem is to classify the types of distributions for which intersections of halfspaces are
efficiently learnable. Along these lines, Blum and Kannan (1993) gave an algorithm for learning
intersections of 1 halfspaces with respect to Gaussian distributions on R" in time n®™) (for any
constant accuracy parameter). Vempala (2010b) improved on this work and gave a randomized
algorithm for learning intersections of centered halfspaces with respect to any log-concave distribution
on R in time roughly (n/ 5)O(m) (“centered” means that each bounding hyperplane passes through
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the mean of the distribution). In a beautiful follow-up paper, Vempala (2010a) used PCA to give an
algorithm for learning the intersection of m halfspaces with respect to any Gaussian distribution in
time poly(n) - (m/)?(™). We note that these results hold in the PAC model, and it is not clear if
they succeed in the agnostic setting.

In the agnostic model, we are only aware of results that use the polynomial regression algorithm
of Kalai et al. (2008). Klivans et al. (2004) (combined with the observations in Kalai et al.) gave an
algorithm for learning any function of m halfspaces in time nO(m?*/e*) with respect to the uniform
distribution on {—1, 1}". Applying results on Gaussian surface area, Klivans et al. (2008) gave an
algorithm for agnostically learning intersections of m halfspaces in time nPolos(m)/<* with respect
to any Gaussian distribution.

A major goal in this area has been to move beyond Gaussians and tackle the case when the
underlying distribution is log-concave, as log-concave densities are a broad and widely-studied class
of distributions. The Gaussian density is log-concave, and, in fact, any uniform distribution over a
convex set is log-concave.

Kalai et al. (2008) give an algorithm for agnostically learning a single halfspace with respect to
any log-concave distribution in time n/ () for some function f. The best known bound for f is
currently 20(1/¢?) (follows from Section 5 of Lubinsky (2007)). It is unclear how to extend the Kalai
et al. analysis to work for the intersection of two halfspaces.

To summarize, it was not known how to learn the intersection of two halfspaces with respect to
log-concave distributions even in the noiseless (PAC) model.

1.1. Our Results

Here we give the first polynomial-time algorithm for agnostically learning intersections (or even
arbitrary functions) of a constant number of halfspaces with respect to any log-concave distribution
on R"(see Table 1.1 for the precise parameters):

Theorem 1 Functions of m halfspaces are agnostically learnable with respect to any log-concave
distribution on R™ in time n®m<() where ¢ is the accuracy parameter:

Admittedly, our dependence on the number of halfspaces m and the error parameter € is not great, but
we stress that no polynomial-time algorithm was known even for the intersection of two halfspaces.
See Table 1.1 for a summary of previous work.

We extend the above result— in the smoothed-analysis setting— to hold with respect to arbitrary
distributions with sub-exponential tail bounds. We first define the model of smoothed-complexity
that we consider.

Definition 2 Given a distribution D on R", and a parameter o € (0, 1), let D(0) be a perturbed
distribution of D obtained by independently picking X + D, Z < N (u, X)"™ and outputting X + Z,
where p = X, ¥ = ocov(X)'.

That is, D(o) is obtained by adding Gaussian noise to D and quantitatively, we want the variance
of the noise in any direction to be comparable to (at least o times) the variance of D in the
same direction. For instance, for D isotropic, perturbations by N (0, o)™ would suffice. The latter
corresponds more directly to the traditional smoothed-complexity setup, but we use the above
definition as it is basis independent and allows for non-spherical Gaussian perturbations.

1. Here, >~ denotes the semi-definite ordering.
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Concept Distribution Running Time Model Source
Class
Intersections Gaussian poly(n) - (m/e)™ PAC Vempala (2010a)
Intersections Gaussian n (Polylog(m)/=7) Agnostic Klivans et al. (2008)
Intersections | Log-concave (n/e)™ PAC Vempala (2010b)
(centered)
One halfs-| Log-concave nf @) Agnostic Kalai et al. (2008)
pace
Arbitrary Log-concave noxp(O(m?/h) Agnostic This work
(convolution
proof)
Arbitrary Log-concave nexp((log(1/2) 0™ /eh) Agnostic This work
(moment-
matching)
Arbitrary Sub-exponential | nexp((log(logm/ 0€))0tm fotet) Agnostic This work
(o-smoothed)
Arbitrary Sub-gaussian n(log(logm/e) ™) /otet Agnostic This work
(o-smoothed)

Figure 1: Summary of recent work on learning intersections and arbitrary functions of m halfspaces

We define the smoothed-complexity of (agnostically) learning a concept class C under a distribution
D to be the complexity of (agnostically) learning C under the perturbed distributions D(c). This
model first appears in the work of Blum and Dunagan (2002) (for the special case of spherical
Gaussian perturbations) and we believe it to be a natural and practical extension of the traditional
models of learning. For instance, the main motivating principle behind smoothed-analysis— that
real data involves measurement error— is very much applicable here. Besides the work of Blum and
Dunagan, there seems to be little known about learning in this model.

We say a distribution is sub-exponential (sub-gaussian) if every marginal (i.e., one-dimensional
projection) of the distribution obeys a tail bound of the form e I#l (e“z|2, respectively). It is known
that all log-concave distributions are sub-exponential. Sub-exponential and sub-gaussian densities
are commonly studied in machine learning and statistics and model various real-word situations (see
Buldygin and Kozachenko (2000) for instance). We show that for these types of distributions, our
learning algorithms have polynomial smoothed-complexity (for constant o):

Theorem 3 Functions of m halfspaces are agnostically learnable with respect to any sub-exponential
distribution on R™ in time n©m=°M) where ¢ is the accuracy parameter and o is the perturbation
parameter.

We obtain much better parameters (in the constant hidden in O,, . (1)) for the special case of
sub-gaussian densities (see Theorem 26).

Blum and Dunagan were the first to study the smoothed complexity of learning halfspaces. They
showed that for a single halfspace in the noiseless (in labels) setting, the perceptron algorithm
converges quickly with high probability for examples perturbed by Gaussian noise. Their expected
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running time, however, is infinite (and thus strictly speaking does not give bounds on the smoothed-
complexity of the Perceptron algorithm).

To obtain our smoothed-analysis results, we prove that Gaussian perturbations provide enough
anti -concentration for our polynomial approximation methods to work. We believe this connection
will find additional applications related to the smoothed-complexity of learning Boolean functions.

1.2. Overview of Conceptual and Technical Contributions

In their seminal paper, Linial et al. Linial et al. (1993) introduced the polynomial approximation
approach to learning theory. The core of their approach is to solve the following optimization
problem: given a Boolean function f, minimize, over all polynomials p of degree at most d, the
quantity Egcq_q 1y [(f — p)?].

The algorithm is given uniformly random samples of the form (z, f(z)). Their “low-degree”
algorithm approximately solves this optimization problem in time roughly n°(%). Later, the “sparse”
algorithm of Kushilevitz and Mansour Kushilevitz and Mansour (1993) solved the same optimization
problem but where the minimization is over all sparse polynomials, and the algorithm is allowed
query access to the function f. These algorithms were developed in the context of PAC learning.

Kalai et al. Kalai et al. (2008) subsequently observed that in order to succeed in the agnostic frame-
work of learning (we formally define agnostic learning in Section 2.1 but for now agnostic learning
can be thought of as a model of PAC learning with adversarial noise), it suffices to approximately
minimize Eye(—1 1y [[f — pl]-

That is, minimizing with respect to the 1-norm rather than the 2-norm results in highly noise-
tolerant learning algorithms. Finding efficient algorithms for directly minimizing the above expecta-
tion with respect to the 1-norm (“¢; minimization”), however, is more challenging than in the ¢5 case.
The work of Kalai et al. Kalai et al. (2008) gives the analogue of the “low-degree” algorithm for ¢;
minimization and the work of Gopalan et al. Gopalan et al. (2008) gives the analogue of the “sparse”
algorithm for /1 minimization.

Although, we have efficient algorithms that directly carry out ¢; minimization for low-degree
polynomials, proving the existence of good low-degree ¢; approximators has required first finding a
good low-degree {5 approximator (i.e., Fourier polynomial) and then applying the simple fact that
E[|p|] < v/E[p?]. Directly analyzing the error of low-degree ¢, approximators seems quite difficult.
In our setting, for example, it is not even clear that the best low-degree ¢; polynomial approximator
is unique!

The main conceptual contribution is the first framework for directly proving the existence of
low-degree ¢; approximating polynomials for Boolean functions (in fact, we also obtain sandwiching
polynomials). One benefit of our approach is that we do not require the underlying distribution to
be product (essentially all of the techniques involving the discrete Fourier polynomial require some
sort of product structure). As such, in this work, we are able to reason about approximating Boolean
functions with respect to interesting non-product distributions, such as log-concave densities.

In fact, we give two very different frameworks and two very different proofs within these frame-
works for establishing the existence of such approximating polynomials. The proofs were obtained
independently by different sets of authors and are merged in this submission. To compare the two
proofs, the first— a “convolution proof”— has better dependence on the relevant parameters; the
second- a “moment-matching proof”’— may be applicable to a wider class of distributions and gives
sandwiching approximations. In the Appendix we show how to use “moment-matching” to learn
with respect to interesting non-product distributions on the hypercube.
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In the following descriptions, we assume we are trying to show polynomial approximations for
f R — {0,1}, where f = g(hi(x),..., hn(x)), where g : {0,1}™ — {0, 1} is an arbitrary
Boolean function and hq, ..., Ay, : R™ — {0, 1} are halfspaces.

A “Convolution” Proof. In our first method of proof, in Section 3, we begin by projecting our
measure down to R" as defined by the halfspaces in question. We then approximate the function
f by first finding a polynomial approximation to some kernel, p, and then approximating f by its
convolution with p.

Much of the effort is spent finding an appropriate p. It is noted that subexponential tail bounds
mean that any polynomial with tight bounds on its higher-order derivatives is well-approximated
by a sufficiently high degree Taylor polynomial with respect to the distribution of interest. While
such functions cannot be tightly concentrated enough to produce an appropriate kernel, we show that
products of such functions may also be polynomially approximated, and in particular note that a high
power of such a function will yield an appropriate kernel p.

A “Moment-Matching” Proof. The second proof, found in Section 4, uses ideas from probability
theory and linear programming to give a framework for proving the existence of sandwiching
polynomials (it is easy to see that sandwiching polynomials are stronger than ¢; approximators). The
main technical contribution is to show how to use a set of powerful theorems from the study of the
classical moment problem to apply our framework to functions of halfspaces. At a high level, our
approach makes crucial use of the following consequence of strong duality for semi-infinite linear
programs: let D be a distribution and let Dy, be any distribution where all moments of order less than
or equal to k£ match those of D. If Ep[f] is “close” to Ep, [f] then f has a low-degree sandwiching
polynomials with respect to D. The question then becomes how to analyze the bias of a Boolean
function where only the low-order moments of a distribution have been specified. We show how to
use several deep results from probability to answer this question in Sections 4.3 and 4.4.

We show that the moment-matching approach also has some interesting applications for learning
with respect to distributions on the discrete cube {—1,+1}". Due to lack of space, we defer this
section to the Appendix.

2. Preliminaries

Agnostic Learning. We recall the model of agnostically learning a concept class C Haussler (1992),
Kearns et al. (1994). In this scenario there is an unknown distribution D over R x {—1, 1} with
marginal distribution over R"™ denoted Dx.

Let opt def inf rec Pr(,4)~plf(z) # yl; i.e. opt is the minimum error of any function from C in
predicting the labels y. The learner must output a hypothesis whose error is within € of opt:

Definition 4 Let D be an arbitrary distribution on R™ x {—1, 1} whose marginal over R" is Dy,
and let C be a class of Boolean functions f : R™ — {—1,1}. We say that algorithm B is an agnostic
learning algorithm for C with respect to D if the following holds: for any D as described above, if B
is given access to a set of labeled examples (x,y) drawn from D, then with probability at least 1 — §
algorithm B outputs a hypothesis h : R™ — {—1,1} such that Pr, ,y.p[h(z) # y] < opt +¢.

Note that PAC learning is a special case of agnostic learning (the case when opt = 0).
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The “L; Polynomial Regression Algorithm” due to Kalai et al. (2008) shows that one can agnosti-
cally learn any concept class that can be approximated by low-degree polynomials:

Theorem 5 (Kalai et al. (2008)) Fix D on X x R and let f € C. Assume there exists a polynomial
p of degree d such that E,p, [|f(z) — p(z)|] < € where Dx is the marginal distribution on X.
Then, with probability 1 — 0§, the Ly Polynomial Regression Algorithm outputs a hypothesis h such
that Pr, \plh(z) # y] < opt + ¢ in time poly(n?/e,log(1/4)).

Throughout, we suppress the poly(log(1/9)) dependence on 6.
3. The Convolution Proof

The bulk of our work will be to show that if f : R™ — [—1, 1] is an function of m halfspaces and
if D is a log-concave distribution on R™ there there exists some polynomial p of bounded degree
that approximates f to within € in L!(D). For such a function f, it is clear that f(x) depends only
on (z,w;) for some m vectors w;. If we choose a polynomial p depending only on these linear
functions, we can project our problem about a polynomial approximation in R™ to a problem about
approximation in R". By Theorem 5.1 of Lovasz and Vempala (2003), the projection of the measure
D onto R™ is itself log-concave, and thus it suffices to solve this problem in the special case of
n = m. By applying an appropriate affine transformation we may assume that our distribution D has
mean 0 and covariance matrix given by the identity. In this Section, we develop a theory to show the
existence of such approximations. In particular we show:

Theorem 6 Let m > 0 be an integer. Let D be a log-concave distribution on R™ with mean 0 and
identity covariance matrix. Let f : R™ — [—1, 1] be a function. The for any €, > 0, there exists a
polynomial p on R™ of degree at most d = exp (O (m45 —4 4 Jog? (6*1))) so that

Exp[[f(X) —p(X)[] <&+ 2up(Ss)
where Ss :=={z € R™|Jy e R™ : |[v — y| < d and f(x) # f(y)}.

Before we begin the proof of Theorem 6, we will need to recall some results on log-concave
distributions.

Theorem 7 [Theorem 5.1 of Lovdsz and Vempala (2003)] Any projection of a log-concave distribu-
tion is log-concave.

It should be noted that the above result also follows easily from the Prékopa-Leindler Inequality.

Lemma 8 [Lemma 6 of Lovdsz and Vempala (2003)] Let v be a log-concave measure on R with
mean 0 and variance 1. Then the probability density function of v is bounded above by e~ 171/16,

Corollary 9 Let D be a log-concave distribution on R™ with mean 0 and identity covariance matrix,
then the probability that | X | > R for X ~ D is at most 200 e~ 1/32,

The proof of Corollary 9 is standard and deferred to the full version. Throughout this section
we shall use the notation that if g : R™ — R is a function, then |g|; denotes the L! norm of g with
respect to D [g]1 = Ex-p[lg(X)]]

We are now ready to begin to develop a theory of polynomial approximation with respect to
log-concave measures. We start by introducing a class of functions that will turn out to be easy to
approximate.
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Definition 1 We say that a function f : R™ — R is c-smooth (for some ¢ > 0), if for every non-
negative integer k, and every unit vector x we have that | D% f |, < c*. Where DE f is the k™" order
directional derivative of f in the x-direction.

The class of c-smooth functions will be important because such functions can be well approximated
by their Taylor polynomials.

Lemma 10 Let f : R™ — R be a c-smooth function. Then for every non-negative integer d, there
exists a degree-d polynomial p so that | f(x) — p(z)| < (c|z|)™/(d + 1)\,

Proof We choose p to be the Taylor polynomial of f around O of degree-d. In order to prove the
desired bound, we let = = ty for y a unit vector. Define the function g : R — R by g(s) = f(sy). It
is clear that the polynomial p(sy) is the degree-d Taylor polynomial of g. Therefore,

|x|d+1
(d+1)!

(clz) ™!

DdJrl o < L
D= e < 71y

Sd+l
7(@) = p(@)] = lg(s) —plsw)l < G 1)!Ig(d“)\oo <

Our construction will depend critically on using the above result to find good approximations for
powers of a c-smooth function.

Lemma 11 Let f : R™ — R be a c-smooth function. Let k, N be positive integers. There exists a
polynomial p of degree at most k2N so that |(f(x))N — p(z)| < Z?;& 2N (2¢|x )2 /(27 k).

Proof deferred to the Appendix Section A.1

Corollary 12 Let f : R™ — R be a c-smooth function for ¢ < ﬁ. Let D be a log-concave
distribution on R™ with mean 0 and identity covariance matrix. Let k, N be positive integers. There

exists a polynomial p of degree at most k2" so that | fN — php < N O(m) 9=k

Proof deferred to the Appendix Section A.2

The great advantage of Lemma 11 and Corollary 12 is that although f being c-smooth will
necessitate that f is not sharply concentrated at any point, f%¥ may well have this property. In fact,
we will be able to approximate our desired function by its convolution with f~ for an appropriate
power N. Before we can do this, we will want to find some useful c-smooth functions.

Lemma 13 Let b be a function supported on the ball of radius ¢ about the origin with |b|; < 1. Then
the Fourier transform, b of b is c-smooth.

Proof If z is a unit vector, then D¥(b) is given by the Fourier transform of (iz)*b. Since |(iz)*b|; <
c¥|bly = ¥, the L> norm of D (b) is at most ¢*. Hence b is c-smooth. [

For any constant ¢ > 0, we let p.(x) := [[;~, sinc(cz;/y/m). We note that p.(x) is the Fourier
transform of the uniform probability distribution over the box of side length ¢/+/m. This by Lemma
13, pc(x) is c-smooth.

We now consider the behavior of p.(x)" for N a large even integer. For |z| < ¢ X it
is not hard to see that |p.(z)N| = Q(1). This happens if |z;| < ¢ 'N~1/2 for each i. Thus

-1
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the integral of p.(x) over R™ is at least Q(¢c™™N~"/2). On the other hand, it is easy to see
that fmeR‘be,m sinc(z)Vdx = exp(—Q(v/N)). Thus the integral of p.(z)" over the region

where |z| > ¢~ !mN~*is at most ¢="m™/2 exp(—Q(v/N)). These results together imply that an
appropriate multiple of p.(z) would make a suitable approximation to the J-function.
We have now stated all the important technical ingredients for proving Theorem 6. We show how
to combine them (in a not too difficult way) to prove Theorem 6 in the Appendix, Section A.3.
Using Theorem 6, it is easy to show that the characteristic function of an intersection of half-spaces
can be approximated in L' with respect to any log-concave measure.

Corollary 14 Let D be any log-concave distribution on R". Let f : R" — [—1, 1] be a function so
that f(x) depends only on the values of sgn({x, w;) — 0;) for some fixed vectors wy, . .., wy, and real
numbers 01, . .., 0, (so for example f could be the indicator function of an intersection of m half-
spaces). Let & > 0 be a real number. Then there exists a polynomial p of degree d = exp(O(m*c—4))
so that Ex. p[|f(X) — p(X)|] <e.

Proof Let y be the vector given by y; = (x, w;). By Theorem 7, the induced probability distribution
on y is log-concave. We note that y takes values in R™. If it is the case that the w; are linearly
dependent, then y will only take values along some subspace. In such a case, we project y further
by removing coordinates until this is no longer the case. Replacing y be an affine transformation
if necessary, we may assume that y is mean 0 and has identity covariance matrix. By construction,
it is the case that the value of f(z) is equal to g(y) for some function g. By Theorem 6, there is a
polynomial ¢ on R™ of degree d so that E[[q(y) — g(y)|] < § + 2u(S;/(8m))- Where above p is the
appropriate measure on y, and .S /(g,,) is the set of points within distance at most /(8m) of one of
the planes corresponding to (z, w;) = ;. Let z be the signed distance from one of these planes. By
assumption, the covariance matrix for y is the identity matrix. This implies that the variance of z is 1.
By Theorem 7, the distribution on z is log-concave, and therefore by Lemma 8, the probability that
|z| <e/(8m) is at most £/(8m). Summing this probability over all m of these hyperplanes, yields
that 4(S./(sm)) < /4. Therefore we have that E[|q(y) — g(v)|] < . Letting p(z) = q(y), yields
our result. |

Theorem 1 with the runtime given in Table 1.1 follows from the above result and Theorem 5.
4. Moment-Matching Proof

The second proof develops a theory of “moment-matching polynomials.” Our main result is the
following.

Theorem 15 Let D be a log-concave distribution over R™. Let hy, ... hy, : R — {1, -1}, be
halfspaces and let g : {1, —1}"™ — {1, —1} be an arbitrary function. Define f : R™ — {1, —1} by
f(@) = g((h1(x),...,hm(x))). Then, there exists a real-valued polynomial P of degree at most
k = exp((log((logm)/e))°™ /e*) such that Ex. p[| f(X) — P(X)|] < e.

Theorem 1 with the runtime given in Table 1.1 follows from the above result and Theorem 5. The
theorem is proved in Section 4.4. We start with some preliminaries.
4.1. Preliminaries

We start with some notational conventions. For a random variable X € R™, let px : R™ — R
be the characteristic function defined by px (t) = Elexp(—i(t, x))], where i = /—1. For I =
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(ity...,in) € Z", and @ € R", let z(I) = [[}_, 2. For k > 0, let I(k,n) = {I = (i1,...,in) €
Y/ E;‘:l i; <k, i; > 0}.

We say that a class of functions C is e-approximated in #; by polynomials of degree d under a
distribution D if for every f € C, there exists a degree d polynomial p such that E,p[|p(z) —
f@)) <.

We shall use the following measures of closeness between random variables X, Y € R™.

(1) The A-metric: dx(X,Y) = miny~o max{maxyy<7{|lvx(t) — ¢y (t)[},1/T}.
(2) The Levy distance: for 1 being the all 1’s vector,

dwv(X,Y) = ing {Vt e R™, PriX <t—el]—e < PrlY <t] < Pr[X <t+el]+¢e}.
>

(3) Kolmogorov-Smirnov or cdf distance: degs(X,Y") = sup,cpm {| Pr[X > t] — Pr[Y > ¢]|}.
We use the following properties of log-concave distributions (equivalent formulations can be found
in Lovész and Vempala (2003)).

Theorem 16 (Carbery and Wright (2001)) Let random-variable X € R"™ be drawn from a log-
concave distribution. Then, for every w € R", and r > 0, E[|(w, X)|"] < r" - E[(w, X)?]"/2.

Theorem 17 (Carbery and Wright (2001)) There exists a universal constant C' such that the fol-
lowing holds. For any real-valued log-concave random variable X with E[X?] = 1 and all t € R,
e >0, PrX € [t,t +¢]] < Ce.

We also use the following simple lemmas. The first helps us convert closeness in Levy distance to
closeness in cdf distance, while the second helps us go from fooling intersections of halfspaces to
fooling arbitrary functions of halfspaces.

Fact 18 Let X = (Xy,...,X,n) € R™ be a random variable such that for every r € [m], t €
R,e > 0, Pr[X, € [t,t +¢]] < B¢ fora fixed B > 0. Then, for any random variable Y,
deaf(X,Y) <m - 8- diy(X,Y).

Lemma 19 Ler XY € R™ be real-valued random variables such that for every a1, ...,a, €
{1, -1}, degs (a1 X7, a2X0, . .., am X)), (a1Y1,a2Ys, ... anY.m)) < €. Then, for any function
g:{1,=1}"™ — {1, —1} and thresholds 61, . . . , O, | E[g(sign(X1—61),...,sign(Xym —0m) )] —
Elg(sign(Y1 — 61),...,sign(Ym, — 0) )] | < 2Me.

Proof deferred to Appendix, Section B.1.
4.2. LP Duality

It is now well known in the pseudorandomness literature that with respect to the uniform distribution
over {—1,1}", a concept class C has degree & sandwiching polynomials if and only if C is fooled by
k-wise independent distributions Bazzi (2009). The proof of this fact follows from LP duality where
feasible solutions to the primal are k-wise independent distributions and feasible dual solutions are
approximating polynomials.

In our setting, we consider continuous distributions over R" that are not necessarily product. As
such, this equivalence is more subtle. In fact, it is not even clear how to define k-wise independence
for non-product distributions (such as log-concave densities). Still, given a distribution D we can
write a semi-infinite linear program (a program with infinitely many variables but finitely many
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constraints) whose feasible solutions are distributions that match all of D’s moments up to degree k
(in the case where D is uniform over {—1, 1}", matching all moments is equivalent to being k-wise
independent).

For I € I(k,n),leto; = Ex.p[X(I)]. Let f € C. We write the primal program as follows:

sup | f(2)p(z)dx
no JRE

/ x(Dp(x)de =op, VI € I(k,n), / p(x) = 1. (1)
Rk RE

The supremum is over all probability measures 1 on R¥. As in the finite dimensional case, feasible
solutions to the dual program correspond to degree k approximating polynomials. The dual can be
written as

inf Z ajog

I(k,n)
ack 1€1(kn)

>_ax(l) > f(z), VR @
I

The issue here is that in general, strong duality does not hold for semi-infinite linear programs. In
our case, however, where the ¢;’s are obtained as moments from a distribution D (as opposed to
just arbitrary reals), it turns out that strong duality does hold. To see this, we note that the above
primal LP is a special case of the so-called generalized moment problem LP, a classical problem from
probability and analysis that asks if there exists a multivariate distribution with moments specified by
the o;’s. In our case, feasibility is immediate, as the o;’s are obtained from D.

As for strong duality, it is known that if the ¢;’s are in the interior of a particular set (the details
are not relevant here), then the optimal value of the primal equals the optimal value of the dual. In
the case that the ¢;’s do not satisfy this condition, strong duality holds assuming we relax the dual
program constraints to some subset {2 C R"™. One concern is that we will now obtain an optimal
approximating polynomial with respect to some distribution D’ defined on ) (as opposed to the
original D). But it is also known that in this case, all feasible distributions are supported on €). As
such, approximation with respect to D’ is equivalent to approximation with respect to D. We refer
the reader to Bertsimas and Popescu (2005) (Section 2) for more details and references. We next
given an important definition.

Definition 20 Given two distributions D, D' on R", k > 0, we say D’ k moment-matches D if for
all I € [(k, n), EXED[X(I)] =Ex_ p [X(I)]

We can now prove the main lemma of this section:

Lemma 21 Let f : R™ — {0, 1} and let D be a distribution over R™ with all moments finite such
that the following holds: For every distribution D' that k moment-matches D, |Ex. p[f(X)] —
Exp[f(X)]| < e. Then, there exist degree at most k polynomials Py, P, : R™ — R such that

e Forevery x € Support(D), Py(x) < f(x) < Py(z).

o For X « D, E[P,(X)] — E[f(X)] < ¢ and E[f(X)] — E[Py(X)] < .

10
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Proof Let opt* be the value of the primal program Equation 1. Then, by hypothesis opt™ < ~v + ¢,
where v = Ex p[f(X)].

Now, from the above discussion, strong duality (almost) holds for the programs in Equations (1) and
(2), and we conclude that there exists a dual solution a € RY(%") with value exactly opt* that satisfies
the inequality constraints for all z € Support(D). Define, Py(z1,...,Zn) = > 1cq(kn) arz(l).

Then, P,( ) is a degree at most k polynomial, and P,(z) > f(x) for every x € Support(D).
Further, the assumption in the lemma implies Ex. p[P,(X)] = Zlel(k,n) ajor = opt* <y +e.
We have the existence of the lower sandwiching polynomial P similarly. |

4.3. The Classical Moment Problem

In the previous section, we reduced the problem of constructing low-degree sandwiching polynomial
approximators with respect to D to understanding the optimal value of a semi-infinite linear program.
The feasible solutions of the linear program correspond to all distributions that are & moment-
matching to D. As such, for any £ moment-matching distribution D" we need to bound |Ep|f] —
Ep[f]|- We need the following result showing that multivariate distributions whose marginals
have matching lower order moments have close characteristic functions (as quantified by A-metric)
provided the moments are well behaved.

Theorem 22 (Theorem 2, Page 171, Klebanov and Rachev (1996)) Ler X, Y € R™ be two ran-
dom variables such that for any t € R™, the real-valued random variables (t, X), (t,Y) have
identical first 2k moments. Then, for a universal constant C,

(X Y) < OB (14 pa(X)'V2)

where j1;(X) = sup{ E[[{t,2)}7] : t € R™, ]| < 1}, and B = Bu(X) = S5, 1/ oy (X%,

We now need to convert the above bound on closeness of characteristic functions to more direct
measures of closeness like Levy or Kolmogorov-Smirnov metrics. Such inequalities play an important
role in Fourier theoretic proofs of limit theorems (eg., Esseen’s inequality; cf. Chapter X VI Feller
(1971)). Here we use the following relation between dy and dyy (proof deferred to Appendix B)
which follows from a related inequality due to Gabovich (1981).

Lemma 23 Let X, Y be two vector-valued random variables with dy(X,Y) < 6. Let N(¢) € R be
such that Pr[X ¢ [-=N(e), N(e)]™],Pr[Y ¢ [-N(g), N()]™] < d. Then,

div(X,Y) < O ((log N(6) + 2log(1/6))™ - 6).
4.4. Low-Order Moments, Functions of Halfspaces, and Log-Concave Densities

We are now ready to complete our second proof of the main theorem for learning functions of
halfspaces with respect to log-concave distributions - Theorem 1. We do so by using the tools
from the previous section on moment bounds to analyze the optimum value of the primal LP from
Section 4. This will imply low-degree ¢; approximators with low error for any f € C. We can then
apply known results due to Kalai et al. (2008) (Theorem 5) relating approximability by low-degree
polynomials and agnostic learning.

Proof [Proof of Theorem 15] Without loss of generality suppose that D is in isotropic position. We
can do so, as any distribution can be brought to isotropic position by an affine transformation and the
class of intersections of halfspaces is invariant under affine transformations.

11
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Let halfspace h; : R™ — {1,—1} be given as h;(z) = sign({w;, z) — ;) for w; € R™ with
szH =1landf; € R.

Let X < D and let X’ + D', where D’ is any distribution that is 2k-moment matching to
D for k = 20(m/9)") (o be chosen later. Let Y = ((wy, X), (wg, X), -+, (W, X)) and Y’ =
((w1, X"), -+, (wm, X')). Observe that for every ¢t € R™, the first 2k moments of (¢,Y), (t,Y”)
are identical. Thus, we can apply Theorem 22 to the random variables Y, Y. For t € R™,
J>0,

E[|(t, V)] = Ztrwr, Z ZtTwT, V2972 = 47 yther||ﬂ<ng

r=1

bl

where the first inequality follows from Theorem 16 and the second equality from X being isotropic.
Therefore, for 1;(Y’) and Sy, as defined in Theorem 22,

k

7 2 X g = Aok)/m) ®

]_

IIMw

We now wish to get a good estimate on N () as defined in Lemma 23. From Theorem 16 and
Markov’s inequality, for every o > 0, and r € [m], j < 2k even

El{w,, X}
o

jj

< -,
oJ

Pr[{(w,, X)| > a] <

Therefore, for j = log(m/J), and o = 25, Pr[|(w,, X)| > 2j] < d/m. Thus, by using a union
bound over all the components of Y, for N = 25 = 2log(m/J),

PrlY ¢ [N, N|™] < 6. “)

As the above calculation only involved the first 2k moments of X, the same property should hold for
Y’. From Equations (3), (4) and Theorem 22,

1/4
dA\(Y,Y") <0 <m> . )

logl/4 k

Let k = 20(m/8%) pe large enough so that the above error bound is d (Y, Y”) < §. Therefore, from
Lemma 23, dy(Y,Y’) < (log((logm)/8))°™ . 5. Now observe that by Theorem 17, for every
re[m],te€R, a>0,PrlY, €t t+ a]] = O(a). Thus, from the above equation and Fact 18,

dear (Y, Y') < O(m - div(Y,Y")) = (log((log m)/&))o(m) -0 =e. ©6)
Since the above argument worked for any weight vectors wy, . .., w,, € R™, a similar argument
applied to weight vectors ajwi, asws, . . . , GmWwy, for a € {1, =1}, gives

deaf((a1Y1, ..oy amYm), (a1Y], ... anY,)) <e.

Therefore, by Lemma 19 applied to Y, Y" and g, | E[f(X)] — E[f(X")]| < 2™e.
Hence, by Lemma 21, for P = P, a degree at most k£ polynomial as in Lemma 21,

E[|P(X) — J(X)]] = E[P(X)] - E[/(X)] < 2".

The theorem now follows from setting ¢ = £’/2™ as k = 20(m/5") — g(log((logm)/e)?(™))/e* |

12
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5. Smoothed Complexity of Learning Functions of Halfspaces

We defer this section to the Appendix (Section C) due to lack of space.
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Appendix A. Deferred Proofs from The Convolution Proof

A.1. Proof of Lemma 11

Proof By Lemma 10, for each i there exists a polynomial p; of degree less than 2k so that
(clz)**

(2ik)!
We let p(x) = po(x) H?:_OQ pi(z). This is clearly a polynomial of appropriate degree, we have left to
show that it is an appropriate approximation of f%. Letting y = c|z|, we have that

kN N—2 2k
) = (1) 4 ) T (f(x> + (gik)!) .

=0

|f (@) = pi(2)] <

Expanding out the right hand side above we find that p(z) is equal to (f(z))" plus asum of 2V — 1

other terms. If y < (k!)'/*, then each of these terms is at most %l: (since | f(x)], 2 Gy < D- Thus in

27k)!
this range of y, we have that |(f(x))N — p(x)| < 2N . Otherwise, let j be the largest integer with

20k
7 > 1. Therefore, in this case,

j < n —2so that 2 @R

we have that

(2] k)' > 1. It should be noted that for ¢ < j that £

yk N-2 yQik
o) = |16 | T 1)+ iy

2yk J 2y21k N-2
= <k:') 11 ((2%)! II 2
i—0 i=j+1

N y2j+1k ﬁ<2i+1k>
=2 = )

(2R L4\ 2k
i+1 i i+1
2N 92] i H22%+1k (23/)2] i
(20+1K)! - (20H1E)
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In any of the above cases, we have that |(f(x))" — p(z)] is bounded by the desired bound.

A.2. Proof of Lemma 12

Proof We use the polynomial p given to us in Lemma 11. We have that

C|T 2jk
() |<2NZ/ <22],L )duv(ﬂc)-
This is equal to
n—1 . c 27k
zNZ/ % <(2(2§2)'> Pr (IX] > R)dR.

By Corollary 9 this is at most

N-1
% . (2cR)*'* dR
;/O @ ¢ R

Substituting S = R/32, we get

[ (128¢S)PF o dS
2V o0(m) 2Jk;/ U257 _5d5
2 o @k © S
7=0
Recalling the standard I'-integral, this is at most
N-1 ‘
2N200m) N " 97 (128¢)*'".
§=0

If ¢ < 1/256, this is clearly at most 2V29(™)2=F a5 desired.

A.3. Proof of Theorem 6

Here we give the Proof of Theorem 6. The basic idea is as follows. Let p be the normalized N**
power of a c-smooth function. By Corollary 12, any translation of p can be approximated in LlD by
bounded degree polynomials. Therefore, the convolution of p with any function of bounded L' norm
can be approximated by a polynomial. The polynomial that we use will be such an approximation to
the convolution of p with a truncation of f to a moderately-sized ball about the origin. Since p is a
large power of another function, it forms a reasonable approximation of the J-function. Thus, the
convolution in question will be a good approximation to f except for points outside the truncation (a
region with small total probability) and points near the locus of discontinuity (i.e. those in S5). An

appropriate setting of parameters in this construction will produce the desired bound.

Proof [Proof of Theorem 6] We assume throughout that € and ¢ are sufficiently small. Let C be a

sufficiently large constant.
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Let N > max(m?*256~46~%,1og(C2562mm3mc=1)2), and k > 2N + 4Cm + mlogy(N) +
2m log,(log(¢71)) be integers. Let

p11\9256 (z)

 Jam PYase W)y

/m p(y)dy = 1.

Furthermore, by the above we have that
/ p(y)dy < €/16.
|z|>d

We have that [p,, pf;%().(y)dy = Q(256~™N~™/2). By Corollary 12, for any y € R™, there

exists a polynomial p, () of degree at most k2 so that

Ipy() = pla +y)ly < 27F2OINTZ < 227 log(e )T

p(z) :

Clearly,

Next let P(z) be the polynomial given by

P(z) = p—y() f(y)dy.

/y|§64 log(26™ /) +1
We note that the L' error between P(z) and

q(z) = p(r —y)f(y)dy

/|y§6410g(2c’"/€)+1

is at most /4. Now ¢(z) is the convolution of p with the restriction of f to a ball of radius
641og(2¢™ /&) + 1. This means that inside the ball of radius 64 log(2¢™ /<) that ¢(z) agrees with
p * f to within /8. Off of this ball, |¢(z) — (p * f)(x)| < 2, but by Corollary 9, the probability that
x lies in this range is at most (¢/16) if C'is sufficiently large. Thus, we have that

[P(z) = (px f)(@)]1 < 3¢/8.

Now if z & S, then p * f is

/ ol — ) f (w)dy + / ol — 1) f()dy
|z—y|<d

lz—y[>6

=f(z x—y)dy £ x—y)d
s [ o= [ pte iy
=f(z) £ e/4.
Thus |P(z) — f(z)|1 is at most
[P(z) = (o [)(@) + [(px f)(x) = f(2)h
<3e/8+ 2/ﬂ§k\55(€/4)dlup(x) + /55 2dpp(z)
<e + 2up(Ss)-
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Appendix B. Deferred Proofs from Moment-Matching Proof

We now prove Lemma 23. We shall use the following result from Gabovich (1981).

Theorem 24 (Gabovich (1981) Equation (8)) Ler X,Y € R™ be two vector-valued random vari-
ables. Then, for a universal constant C' and all sufficiently large N, T > 0,

div(X,Y) < dty-- - dtm~+

/ Clox((t1,--tm)) — oy (1, - - - tm)|
t1t2 . tm
7 <t1,tm <T
C(log T)(log(NT))
T

+ Pr[X ¢ [-N,N]|™] 4+ Pr[Y ¢ [N, N]™].

Proof [Proof of Lemma 23] Without loss of generality suppose that § < 1/m?, as else the statement
is trivial. Let T be the value of T that attains the minimum in the definition of dy:

X Y) = maxd max {ox(t) = ov (O]} 1/T7}

Asdy(X,Y) <6, T* > 1/6. Therefore, for every t € R™ with [|t|| < 1/4,
Thus, applying Theorem 24 with N = N (4) and T = 1/5y/m, we get

ex(t) — ey (t)] < 9.

dw(X,Y) < C / ox(t) = oyl 1y 4 o 10g2(NT) - 8y/m) + O()

<t <T D1t

< C/ d dt + O(log*(NT) - §y/m)
<t <T 1

< 06 - (log N +2log T)™ + O(log?(NT) - §y/m)
= O((log N(0) 4+ 21og(1/0))™ - 6).

B.1. Proof of Lemma 19

Proof Fix 61,...,6,, and let X’ = (sign(Xy — 61), ...,sign(X,, — 6,,)) and define Y’ similarly.
Then, from the assumptions of the lemma, for every a € {1, -1},

| PI’[X/ = a] — PF[Y/ = a]] < dcdf((ale, (I2X2, ... ,ame), (alYl, (I2Y2’ ... ,amYm)) < E.

Therefore, dtv(X’,Y"’) < 2™ 1e. The lemma now follows. [ |

Appendix C. Smoothed Complexity of Learning Functions of Halfspaces

We now consider the smoothed complexity of learning convex sets defined by intersections of
halfspaces and extend our learning results to handle any distribution whose marginals obey a
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subexponential tail bound. We feel this is a mild restriction to place on the distribution. It is well
known that any (isotropic) log-concave distribution obeys such a tail bound.

Our high level approach will be similar to that for log-concave densities: we use moment bounds
and results from Section 4.3 to show that functions of halfspaces cannot distinguish (smoothed)
distributions with strong moment bounds. Adding a Gaussian perturbation plays an important role in
our setting, by essentially allowing us to impose certain probabilistic margin constraints in the form
of anti-concentration bounds. One interpretation of our results is that in the setting of smoothed-
analysis, learning geometric classes becomes easier in many cases because the underlying Gaussian
perturbation makes the distribution anti-concentrated (i.e., no sharp peaks) “for free.”

We state our results below and defer the proofs (and definitions of sub-exponential, sub-gaussian
densities) to the full version.

Theorem 25 Let D be a sub-exponential distribution over R™. Let hy, ..., hy, : R™ — {1, —1}, be
halfspaces and let g : {1,—1}"" — {1, —1} be an arbitrary function. Define f : R™ — {1, —1} by
f(@) = g((h1(z), ..., hm(x))). Then, for every o > 0, there exists a polynomial P of degree at
most

k = exp((log((logm) /o)) ™ /(0e)*)
such that Bx (o[ | £(X) ~ P(X)|] <=
Theorem 26 Let D be a sub-Gaussian distribution over R™. Let hy, ... hy, : R" — {1, -1}, be
halfspaces and let g : {1,—1}"" — {1, —1} be an arbitrary function. Define f : R™ — {1, —1} by
f(@) =g((hi(x),...,hm(x))). Then, for every o > 0, there exists a real-valued polynomial P of
degree at most k = (log((log m)/ae))o(m) /(oe)* such that Excpo [l f(X)-PX)|] <e

Theorem 3 and the precise runtimes as given in Table 1.1 follow from the above results and
Theorem 5.

Appendix D. Sub-Exponential Densities

In this section we study sub-exponential densities and prove Theorem 25.

Definition 27 We say an isotropic distribution D on R" is sub-exponential if there exist constants
C,a > 0, such that for every w € R", ||w|| = 1, and t > 0,

P X t] < C —at).
Pr[Iw, X)| > 1] < Cexp(—at)
More generally, we say a distribution D on R"™ is sub-exponential if the isotropic distribution obtained

by putting D in an isotropic position by an affine transformation is sub-exponential.

We shall use the following standard fact giving strong moment bounds for random variables with
sub-exponential tails.

Fact 28 Let X be unit variance random variable such that Pr[| X | > t] < Cexp(—at). Then, for
allk > 0, E[| X |*] < C(k/a)¥.

Finally, we need the following fact showing that convolving any distribution with a Gaussian
distribution leads to anti-concentration.
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Fact 29 For any real-valued random variable X, Z < N (0,0) andt € R, o > 0, Pr[X + Z €
[t,t + )] < Ca/o, where C is a universal constant.

Proof Fixt € R and o« > 0. Then,

2
—Z5 t+a

(&} 202
dxr <

1
V27mo? t  V2mo?
where C' = 1/+/27. The claim now follows from:

PrIX + Z € [t,t + )] = E[PrZ € [(t - X), (t — X) + )] < E[Ca/0] < Ca/o.

t+a
PriZ e [t,t+ )] = / dx = Ca/o,
t

Proof [Proof of Theorem 25] The proof follows the same approach as that of Theorem 15. Without
loss of generality, we can suppose that D is in isotropic position as functions of halfspaces are closed
under affine transformations.

Let the Gaussian perturbation be Z < AN (0, %)™, where ¥ > ol,,,. We next renormalize the
distribution D so that D(o) is in isotropic position. Note that D(o) is also sub-exponential. This
follows from a simple union bound. For any direction w € R™, ||w| = 1, and X < D and
Z «+ N(0,32)™,

Pri(X + Z,w)| > t] < Pr[[{X,w)| > t/2] + Pr[|{Z, w)| > t/2] = O(exp(—(1))),

where the last inequality follows from the fact that X is sub-exponential by definition and that the
uni-variate Gaussian distribution is sub-exponential.

Fix halfspaces h; : R — {1, —1} and let random variables X < D(o) and let X’ <— D’, where
D' k-moment matches D for k to be chosen later. Let Y, Y’ be as in Theorem 15. Then, by Fact 28,
for any w € R", |Jw|| = 1, E[|[(w, X)|’] < C(j/a)’.

Observe that the proofs of Equations (3) and (4) in Theorem 15 only used moment bounds for
log-concave distributions, and sub-exponential distributions have similar bounds on moments. Thus,
by similar arguments, for k& = 200"/ o) sufficiently large, we get

pi(Y) < C(jim/a)’, Br(Y) = Q((logk)/m), ©)
and for N = O(log(m/d)/a) sufficiently large,
Pr[Y ¢ [-N, N]™| + Pr[Y” ¢ [-N, N]™] < 20.

Combining the above two equations and Lemma 23, we have
dA(Y,Y") = (log(log(m /5)))°™ - 6. ®)

Now, note that for any € [m], Y,. can be written as Y, + Z,, where Z, < N (0, o) is independent
of Y. Therefore, by Fact 29, Pr[Y; € [t,t 4+ ~]] = O(vy/o) fort € R, > 0. Thus, by the above
equation and Fact 18,

dear(Y, Y') = O(mdy (Y, Y") /o) = (log(log(m/8)))°™ -5/ = e.

The theorem now follows from an argument similar to that of Theorem 15 following Equation 6. l
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Appendix E. Sub-Gaussian Densities

We now study sub-Gaussian densities and show an analogue of Theorem 25 with much better
parameters. The improvement in parameters comes from the fact that sub-Gaussian have much more
tightly controlled moments.

Definition 30 We say an isotropic distribution D is sub-Gaussian if there exist constants C', . > 0,

42
XF:’D[KUJ,XH > t] < Cexp(—at?).

More generally, we say a distribution D on R"™ is sub-exponential if the isotropic distribution obtained
by putting D in an isotropic position by an affine transformation is sub-exponential.

Analogous to Fact 28, we have the following statement for sub-gaussian densities.

Fact 31 Let X be unit variance random variable such that Pr[|X| > t| < Cexp(—at). Then,
E[|X|*] < C(k/a?)k/2,

Proof [Proof of Theorem 26] The proof follows the same approach as that of Theorem 25. We only
highlight the important differences. Fix halfspaces h; : R™ — {1, —1}, and random variables X, X',
Y,Y” as in the proof of Theorem 25. Now, observe that for k = Q(m /&%), sufficiently large, for any
teR™, ||It|| = 1,and j > 0,

E[|(t,Y))] = ZtTwr,

< Cj?.E thr, V2972 Ja7 (Fact 31)

= O((m/a)’- ”2)

Therefore,
k

k
m(Y)zzmzsz Q(Vk/m). ©)

Note that the above bound on f is exponentially better than the Q2(log k) bound we had for
log-concave and sub-exponential densities and this leads to the quantitative improvements for sub-
Gaussian densities.

Now, by using Markov’s inequality it follows that for £ > log(m/d), and N = O(y/log(m/J)/«)
sufficiently large,

Pr[Y ¢ [-N,N|™] + Pr[Y' ¢ [-N, N]"] < 26.

Combining the above two equations and Lemma 23, we get
dA(Y,Y") = (log(log(m/5))) 7™ - 4.

The theorem now follows from the above inequality and an argument similar to that of Theorem 25
following Equation 8. n
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Appendix F. Non-Product Distributions on Hypercube

Learning intersections of halfspaces with respect to distributions on the hypercube is a long-standing
and fundamental open problem in learning theory. To date, most non-trivial results pertain to product
distributons on the hypercube, with the exception of the work of Wimmer Wimmer (2010) who can
handle symmetric distributions on the hypercube.

Our results imply algorithms for agnostically learning functions of halfspces in the smoothed
complexity setting for distributions on the hypercube that are locally-independent. Specifically,
call a distribution D on {1, —1}" k-wise independent if for any I C [n],|I| < k, X < D, the
variables (X; : ¢ € I) are independent. (This is the same as saying D k-moment matches the
uniform distribution on {1, —1}™). Our learning algorithms for sub-Gaussian densities, Theorem 26,
immediately imply the following for learning with respect to k-wise independent distributions.

Theorem 32 For all m, e, o there exists k = Oy, ¢ (1) such that the following holds. Functions
of m halfspaces are agnostically learnable with respect to any k-wise independent distribution on
{1, —=1}" in time nOmeo() ywhere ¢ is the accuracy parameter and o is the perturbation parameter.

In contrast, it is not clear if any of the previous techniques can give algorithms for learning
intersections of halfspaces that are even {2(n)-wise independent.
Proof The uniform distribution on {1, —1}" is known to be sub-Gaussian Pinelis (1994). Fur-
ther, observe that in the proof of Theorem 26 we only used properties of the first k-moments for
k = (log((logm)/ as))o(m) /(o). Thus, the same arguments should work for any distribution
D which is k-wise independent. The thoerem then follows from combining the direct analogue of
Theorem 26 for k-wise independent distributions D with Theorem 5. |

Appendix G. Bounded Independence Fools Degree Two Threshold Functions

Here we show that the methods of Section 4 can also be used with respect to the uniform distribution
over {1,—1}". We use the moment-matching techniques to give a new proof for the recent result
of Diakonikolas, Kane, and Nelson Diakonikolas et al. (2010a) that bounded independence fools
degree-2 polynomial threshold functions. Our proof gives worse parameters, but is considerably
different and is perhaps simpler. We also establish a connection between the pseudorandomness
problem and the well studied classical moment problem in probability (see Akhiezer (1965) for
instance).

Theorem 33 There exist constants C, C' such that the following holds. Let D be a m-wise indepen-
dent distribution over {1, —1}" for m = 20/6°, Then, for every degree 2 polynomial P : R™ — R,
and z D, y €, {1, —1}"deas(P(z), P(y)) < C'6. In other words, (2°1/5"))-wise independence
d-fools degree two threshold functions.

In comparison, Diakonikolas et al. show that 0(5 ~9)-wise independence suffices. This bound was
later improved to O(5~%) in Kane (2012).

We shall use the following quantitative estimate due to Klebanov and Mkrtchyan which can be
seen as a one dimensional version of Theorem 22, albeit with better parameters.
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Theorem 34 (Theorem 1, Klebanov and Mkrtchyan (1986)) Let X, Y be real-valued random vari-
ables with E[X?] = E[Y?] for 1 < i < 2m and E[X?]| = 1. Then, for a universal constant C > 0,

Co - In(1 4 fm (X))
Bm(X)1/4 ’

dLV(X7 Y) S

We only detail the case of regular polynomials here, the reduction from the general case to the
regular case works via the regularity lemma of Harsha et al., Harsha et al. (2009) and Diakonikolas
et al., Diakonikolas et al. (2010b).

Definition 35 A multi-linear polynomial P : R" — R, P(x) = 3_;c(, ar [Liey i is 6-regular if
forevery i € [n],
2
n

| X a| <Pl

=1 \IC[n],I>%

where |[P|l3 = ¥, .

Theorem 36 There exist constants C, C’ such that the following holds. Let D be a m-wise inde-

pendent distribution over {1, —1}" for m = 20/%*  Then, for every §-regular degree 2 polynomial
P:R* 5 R, andx < D, y €, {1,—1}", degs(P(z), P(y)) < C'6%/°.

Theorem 33 follows from the above theorem and the regularity lemma of Harsha et al., Diakonikolas
et al. We refer the reader to the work of Meka and Zuckerman Meka and Zuckerman (2010) for a
similar reduction of the general case to the regular case in the pseudorandomness context and omit it
here.

To prove Theorem 36 we use the following results about low-degree polynomials. The lemma
gives us control on how fast the moments of low-degree polynomials grow.

Theorem 37 (Hypercontractivity, Ledoux and Talagrand (1991)) For 1 < p < q < oo, and
P :R™ — R a degree d polynomial, the following holds:

N2
E [P < <9’1) E (PGP
Xeu{1,-1}7 p—1 Xeu{1,-1}"

The next two theorems helps us get anti-concentration bounds for regular polynomials over the
hypercube.

Theorem 38 (Mossel et al. Mossel et al. (2005)) There exists a universal constant C' such that the
following holds. Let P : R — R be a degree d §-regular (multi-linear) polynomial. Then, for
x €y {1, -1} and y + N(0,1),

deat (P (), P(y)) < C d §%/4d+1),

Theorem 39 (Carbery and Wright Carbery and Wright (2001)) There exists an absolute con-
stant C' such that for any polynomial Q) of degree at most d with ||Q|| = 1 and any interval I C R of
length o, Prx . nro,1)»[Q(X) € I] < Cd al/d,
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Proof [Proof of Corollary 36] It suffices to show the statement when D is 4m-wise independent
for m = 29/%% for C to be chosen later. Without loss of generality suppose that ||P|| = 1. Let
random variables X = P(x), forx + Dand Y = P(y), fory €, {1, —1}". Then, E[X?] = E[Y]
for ¢ < 2m as x is 4m-wise independent and P is a degree 2 polynomial. Now, for i < m, by
hypercontractivity, Theorem 37, applied to ¢ = 7, d = 2,

E[X?] = E[Y%] < (2i)*.
Therefore,
- 1 1
Bm = ;W > ;21 = Q(logm).
By Theorem 34,

du(X,Y) = O <10g10gm) ‘

(log m) /1

Now, by Theorem 38 and Theorem 39 applied to degree d = 2, sup, Pr[Y € [t,t + a]] = O(6%/? +
\/a). Therefore, by Fact 18

deaf(X,Y) =0 6%° + Vioglogm'\
(log m) 1/8
The statement now follows by choosing C' to be sufficiently large. =
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