Adapting proposal distributions for accurate, efficient mobile robot localization

Patrick Beeson
Aniket Murarka
Benjamin Kuipers

Department of Computer Sciences
The University of Texas at Austin

2D particle filter example

• State estimated by a set of particles.

2D particle filter example

• After an action …

2D particle filter example

• The action model moves these particles into a proposal distribution.

2D particle filter example

• After an observation …
2D particle filter example

- The observation model weights particles by their likelihood.

- The weighted particles represent the new state estimate, the posterior.

Localization failure example

- Wheels slip → proposal is incorrect → particles have low (or zero) likelihood.

Observations

- Odometry is prone to errors
 - proposals may be in wrong location, leading to localization failures
 - changing surfaces (incorrect variance)
 - wheels slip (incorrect mean)

- Laser range finders are extremely accurate and precise
 - likelihoods are often highly peaked

Our work

- Claim: The robot should believe laser observations more than odometry.
 - proposal simply defines the "search space" of the particle filter
 - likelihood approximates posterior estimate

- Hypothesis: Ensuring that proposals approximate likelihoods improves localization.

Improving proposals

1. Introduce new action model for differential drive robots.
2. Evaluate changing each proposal at every time-step.
3. Evaluate online action model tuning to change future proposals.
Improving proposals

1. Introduce new action model for differential drive robots.

2. Evaluate changing each proposal at every time-step.
 - Data driven proposals

3. Evaluate online action model tuning to change future proposals.

Overestimating example

Regular PF example

Shrink algorithm

- Try to improve localization when proposal overestimates likelihood.
- Use first proposal to estimate a new, second proposal.
- Related work:
 - Grisetti, Stachniss, Burgard, ICRA05
Shrink algorithm example

- Fewer wasted

Comparing posterior estimates

- Regular PF
- PF using Shrink

Underestimating example

- Weighted by likelihood

200 total particles
Grow algorithm

- Try to improve localization if proposal underestimates likelihood.

- While max. likelihood particle < threshold, double standard deviation

Grow algorithm example

Grow algorithm example
Grow algorithm example

- Proposal
- Likelihood

N=40 Total=120

Grow algorithm example

- Proposal
- Likelihood

N=40 Total=160

Grow algorithm example

- Proposal
- Likelihood

N=40 Total=200

Grow algorithm example

- Likelihood (Weighted)

N=40 Total=200

Comparing posterior estimates

- Regular PF
- PF using Grow

200 total particles 200 total particles

(5 loops)

Shrink-and-grow algorithm

- **Shrink** should enhance PF for overestimating proposals.
- **Grow** should handle underestimating proposals.
- We examine the combination of the two.
 - **Shrink**, then if necessary, **Grow** (then loop)
 - bounded # of loops
Wheel-slipage example

Comparing posterior estimates

Experiment Details

- 4 particle filter algorithms: regular PF, Shrink, Grow, Shrink-and-grow
- Tested each PF algorithm on different action models
 - Large, constant-sized proposals (overestimating)
 - Small, constant-sized proposals (underestimating)
 - Tuned offline to fit experimental trace
- Results highly significant: $p \leq 0.01$ for paired t-test

A few results

- Both Shrink and Grow
 - Improves accuracy over regular PF
 - For all 3 action model types (under, over, tuned)
- Shrink
 - Improves efficiency
 - Fewer wasted particles
- Shrink-and-grow
 - More accurate than all 3 other PF algorithms
 - For all 3 action model types
 - Improves efficiency over regular PF

Improving proposals

1. Introduce new action model for differential drive robots.
2. Evaluate changing each proposal at every time-step.
3. Evaluate online action model tuning to change future proposals.
 - Details in paper
 - Related: Eliazar and Parr, ICML04

Online tuning results

- Overestimating action models “shrink”
 - Become more efficient
 - Higher mean likelihood; fewer wasted particles
- Underestimating action models “grow”
 - Become more accurate
 - Higher max. likelihood
- Online tuning enhances performance of all 4 PF algorithms, especially when starting with poorly tuned action models.
Conclusions

- With lasers, proposals that approximate likelihoods improve localization.
 - likelihoods are good estimates of the posteriors

- Shrink-and-grow is a combination of techniques to improve proposals at each time step.
 - improved accuracy (max. likelihood)
 - improved efficiency (mean likelihood)

- Online parameter tuning improves future proposals.
 - trade-off between accuracy and efficiency
 - further improves localization performance

Additional points

- Anecdotal evidence from long-term use:
 - Shrink-and-grow with online parameter tuning has also eliminated localization failures during SLAM.

- Future work:
 - Demonstrate the benefits of online tuning when surfaces change
 - e.g. shag carpet vs. linoleum
 - or when the physical robot changes.
 - e.g. transporting a heavy load; changing tire pressure

Questions

http://www.cs.utexas.edu/~qr/robotics