Lecture 18: Voronoi Graphs and Distinctive States

CS 344R/393R: Robotics
Benjamin Kuipers

Problem with Metrical Maps

- Metrical maps are nice, but they don’t scale.
 - Storage requirements go up with the square of environment diameter and map resolution.
 - Route-finding is hard, because of fine-grained representation.
- Solution: **Topological maps**
 - Abstract the continuous space to a graph of places and edges.
 - Storage is efficient.
 - Graph search is (relatively) inexpensive.
Exploration Defines Important Places and Paths

from Kuipers & Byun, 1991

Abstract the Exploration Pattern to the Topological Map
The Topological Map

- The topological map is the set of places and edges linking them.
- A place is a decision point among edges.
 - It has a local topology: cyclic order among edges.
 - It has a local geometry: directions of edges.
- An edge links two places.
 - A directed edge has a control law for travel.

- The decision-graph abstraction.

Voronoi Diagram

- Given a discrete set of points in the plane, the Voronoi diagram partitions space into regions closest to each point.
- The Voronoi Graph consists of the region boundaries.
Voronoi Graph of a Robot Environment

- Given a set \(P \) of points, find the set of points that have more than one closest point in \(P \).
 - Voronoi Edge: points equidistant from exactly two boundary points.
 - Voronoi Node: points equidistant from three or more boundary points.
- The edges and nodes together make a graph.

Voronoi Graph
(Medial-Axis Transform)
The “Voronoï Robot”

- Imagine a point robot that senses a range image surrounding it.
 - Distance d to nearest object(s).
 - Direction(s) to them: $\theta_1 \ldots \theta_k$
- Motion control law: *Follow-the-midline*
 - When exactly two nearest objects.
 - Move in direction $\phi = (\theta_1 + \theta_2)/2$ or $\phi + \pi$
- Define a *place* when there are three or more nearest objects.

Range Sensing for Voronoï Robot

- Use local minima in the range image.
 - We usually observe closest objects.
 - Local minima are likely to be perpendicular reflections of a sonar wave.
- d_{max} = offset distance for wall-following.
 - (We’ll discuss this extension later.)
The Voronoi Robot in Motion Along an Edge (Medial Axis)

Moving Along a Voronoi Edge
Detect a Third Object

Stop at the Voronoi Node
Define a Place
Describe the Local Geometry of the Place Neighborhood

Voronoi Robot Control Laws

- Travel Action
- Hill-Climbing
- Turn Action
Travel Actions

• Define a PD controller.
 \[\omega = \dot{\theta} = -k_1 e - k_2 \dot{e} \]

• Error term:
 \[e(t) = d_A(t) - d_B(t) \]
 \[e(t) = d_A(t) - d_{\text{max}} \]

• Applicability:
 – Nearby objects selected.

• Termination:
 – Stopper object identified.

Hill-Climbing: Move to Equidistance from Three Objects

\[d_{\text{B}} \]
\[d_{\text{A}} \]
Hill-Climbing Algorithm

- Move, maintaining equal distance
 \(d_A(t) = d_B(t) \) from objects A and B.
- Select object C with distance \(d_C(t) \) such that eventually,
 \(d_C(t) = d_A(t) = d_B(t) \).
 - Avoid pathological cases that are never equal,
 or only equal out of maximum sensor range.
- Same method works for *Follow-right-wall*:
 - maintain \(d_A(t) = d_{max} \)
 - until \(d_B(t) = d_A(t) = d_{max} \).

Turn Actions

- Once at a place,
 - Select an outgoing edge,
 - Rotate to face that edge.

- *Applicability*
 - Located at a Voronoi node.

- *Termination*:
 - Facing along selected edge.

- Three distinctive poses at the same place (or six?)
Explore the Whole Environment

• To start:
 – Find nearest object (wander, if necessary).
 – Move away until a second object is found.
 – *Follow-the-midline* to a third object.
 – Define an initial place.

• While some place has an unexplored edge,
 – Follow that edge to the place at the other end.
 – Q: Closing loops? *Topological ambiguity*.

• Stop when all edges have been explored.
Should Small and Large Spaces Have Similar Models?
Scale is a Relevant Distinction

Generalize the Voronoi Robot

Make its sensors more like a real robot.

- Lower bound on d
 - Don’t go through tiny gaps in a wall.
 - Don’t dive too far into concave angles.

- Upper bound on d
 - Range sensors have max effective range.
 - Distinguish between large and small spaces.
 - Add *Follow-left-wall* and *Follow-right-wall* control laws
At Maximum Distance, Choose A Wall to Follow

Selecting the Control Law
Selecting the Control Law

Local Metrical Maps Can Help Avoid Sensor Limitations

A convex corner may be totally invisible due to specular reflections.
Screen Out Small Openings

Screen Out Shallow Openings
Identify Right-Angle Spurs

- A predictable configuration. \[d = \sqrt{2} d_{\text{max}} \]

The Topological Map is defined by control laws.

- Places consist of \textit{distinctive states}, which are defined by \textit{hill-climbing} control laws.
 - A HC control law brings the robot to a distinctive state from anywhere in its neighborhood.
- Path segments are defined by \textit{trajectory-following} control laws.
 - A TF control law brings the robot from one distinctive state to the neighborhood of the next
Distinctive States

- A distinctive state (location plus orientation) is the isolated fixed-point of a hill-climbing control law.

- Hill-climbing to a distinctive state eliminates cumulative position error.
- It also reduces image variability due to pose variation, making place recognition easier.

Deterministic Actions

- Reliable motion abstracts to a causal schema \(\langle x,a,x' \rangle \)
 - \(x \) and \(x' \) are distinctive states (dstates),
 - Action \(a \) consists of trajectory-following then hill-climbing, leading reliably from \(x \) to \(x' \).
- Between distinctive states, actions are functionally deterministic.
Two Types of Actions In the Topological Map

- **Travel:**
 - motion from a distinctive state at one place to a distinctive state at another place.

- **Turn:**
 - motion within a place neighborhood from one distinctive state to another.

- We have abstracted from continuous motion to discrete graph transitions.

What have we accomplished?

- We can define a topological map by finding distinctive places (and distinctive states).
 - The Voronoi graph is a simple way to do this.

- The topological map eliminates moderate amounts of cumulative position error.
 - Provides a deterministic model of motion, even with errors in continuous motion.

- Makes planning more efficient and reliable
Next

• Local metrical maps of place neighborhoods
 – Local geometry

• Building the global topological map
 – Solving the loop-closing problem

• Building global metrical maps
 – Using the topological map as a skeleton