
Copyright

by

Matthew John Hausknecht

2016

The Dissertation Committee for Matthew John Hausknecht
certifies that this is the approved version of the following dissertation:

Cooperation and Communication in Multiagent Deep

Reinforcement Learning

Committee:

Peter Stone, Supervisor

Dana Ballard

Ray Mooney

Risto Miikkulainen

Satinder Singh

Cooperation and Communication in Multiagent Deep

Reinforcement Learning

by

Matthew John Hausknecht, B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2016

Acknowledgments

Many thanks to my advisor Peter Stone for many years of support and en-
couragement throughout the PhD process. In particular, I remember a dark time
when I was directionless and depressed about the prospect of finding fruitful re-
search directions or ever graduating. You told me that all PhDs go through a period
where they are lost in the woods and encouraged me to continue onward. This
thesis is testament to the fact that given sufficient persistence, encouragement, and
caffeine, there is a way out of the woods.

Thanks to my lab-mates and colleagues who have shaped my research and
added flavor to my graduate experience: Shivaram Kalyanakrishnan, Juhyun Lee,
Todd Hester, Samuel Barrett, Daniel Urieli, Piyush Khandelwal, Patrick MacAlpine,
Katie Genter, Karl Pichotta, Wesley Tansey, Subhashini Venugopalan, Jake Menashe,
Elad Liebman, Sanmit Narvekar, Josiah Hanna, Matteo Leonetti, and many others.

Additional thanks to my committee: Dana Ballard, Ray Mooney, Risto Mi-
ikkulainen, and Satinder Singh for the time and feedback they so generously gave.

Thanks to Kay Nettle and Amy Bush for tirelessly supporting and debug-
ging the many issues that arise from setting up and maintaining a GPU cluster.
The research in this thesis would have been impossible (or at least computationally
intractable) without your help.

Special thanks to my loving family and my fiancé Man Liang for their un-
conditional support throughout the ups and downs of the PhD process.

iv

Cooperation and Communication in Multiagent Deep

Reinforcement Learning

Matthew John Hausknecht, Ph.D.

The University of Texas at Austin, 2016

Supervisor: Peter Stone

Reinforcement learning is the area of machine learning concerned with
learning which actions to execute in an unknown environment in order to maxi-
mize cumulative reward. As agents begin to perform tasks of genuine interest to
humans, they will be faced with environments too complex for humans to predeter-
mine the correct actions using hand-designed solutions. Instead, capable learning
agents will be necessary to tackle complex real-world domains. However, tradi-
tional reinforcement learning algorithms have difficulty with domains featuring 1)
high-dimensional continuous state spaces, for example pixels from a camera image,
2) high-dimensional parameterized-continuous action spaces, 3) partial observabil-
ity, and 4) multiple independent learning agents. We hypothesize that deep neural
networks hold the key to scaling reinforcement learning towards complex tasks.
This thesis seeks to answer the following two-part question:

1) How can the power of Deep Neural Networks be leveraged to extend
Reinforcement Learning to complex environments featuring partial observability,
high-dimensional parameterized-continuous state and action spaces, and sparse re-
wards? 2) How can multiple Deep Reinforcement Learning agents learn to cooper-
ate in a multiagent setting?

To address the first part of this question, this thesis explores the idea of using
recurrent neural networks to combat partial observability experienced by agents in
the domain of Atari 2600 video games. Next, we design a deep reinforcement learn-
ing agent capable of discovering effective policies for the parameterized-continuous
action space found in the Half Field Offense simulated soccer domain.

v

To address the second part of this question, this thesis investigates architec-
tures and algorithms suited for cooperative multiagent learning. We demonstrate
that sharing parameters and memories between deep reinforcement learning agents
fosters policy similarity, which can result in cooperative behavior. Additionally,
we hypothesize that communication can further aid cooperation, and we present
the Grounded Semantic Network (GSN), which learns a communication protocol
grounded in the observation space and reward function of the task. In general, we
find that the GSN is effective on domains featuring partial observability and asym-
metric information.

All in all, this thesis demonstrates that reinforcement learning combined
with deep neural network function approximation can produce algorithms capable
of discovering effective policies for domains with partial observability, parameterized-
continuous actions spaces, and sparse rewards. Additionally, we demonstrate that
single agent deep reinforcement learning algorithms can be naturally extended to-
wards cooperative multiagent tasks featuring learned communication. These results
represent a non-trivial step towards extending agent-based AI towards complex en-
vironments.

vi

Table of Contents

Chapter 1 Introduction .. 1
1.1 Research Question .. 3
1.2 Contributions ... 3
1.3 Dissertation Overview... 5

Chapter 2 Background .. 8
2.1 Markov Decision Processes ... 8
2.2 Reinforcement Learning.. 9
2.3 Deep Neural Networks .. 11

2.3.1 Convolutional Neural Networks .. 12
2.4 Arcade Learning Environment ... 13

2.4.1 ALE: State Space .. 13
2.4.2 ALE: Action Space.. 14
2.4.3 ALE: Rewards .. 15

2.5 Half Field Offense Domain.. 15
2.5.1 State Space ... 16
2.5.2 Action Space... 17
2.5.3 Teammates ... 17
2.5.4 Evaluation Metrics .. 18
2.5.5 Learning Paradigms... 18
2.5.6 Related Work: RoboCup Soccer ... 19

2.6 Deep Q-Network (DQN) ... 20
2.7 Continuous Action Space: DDPG .. 23

2.7.1 Stable Updates .. 26
2.8 Chapter Summary... 27

Chapter 3 Deep RL for Partially Observed MDPs 29
3.1 Partial Observability ... 31
3.2 DRQN Architecture .. 31
3.3 Stable Recurrent Updates .. 32

vii

3.4 Atari Games: MDP or POMDP? .. 34
3.5 Flickering Pong POMDP... 35
3.6 Experimental Details... 38
3.7 Generalization Performance... 41
3.8 Evaluation on Standard Atari Games .. 41
3.9 MDP to POMDP Generalization .. 42
3.10 Alternative Architectures... 44
3.11 Computational Efficiency .. 45
3.12 Related Work ... 46
3.13 Chapter Summary... 47

Chapter 4 Deep RL in Parameterized Action Space.................................... 49
4.1 Reward Signal .. 50
4.2 Network Architecture.. 51
4.3 Parameterized Action Space Architecture 51
4.4 Action Selection and Exploration ... 52
4.5 Bounded Parameter Space Learning ... 53
4.6 Gradient Bounding Results .. 54
4.7 Single Agent Learning .. 55
4.8 Mixing On-Policy and Off-Policy Updates 57

4.8.1 Motivation for On-Policy Updates....................................... 60
4.8.2 Computing On-Policy MC Targets 61
4.8.3 Mixing Update Targets... 61
4.8.4 Scoring on a Goalie ... 62

4.9 Chapter Summary... 63

Chapter 5 Multiagent Deep Reinforcement Learning.................................. 67
5.1 Multiagent Empty Goal Task ... 67
5.2 Cooperative vs. Non-Cooperative Tasks.. 68
5.3 Independent Learning Baseline .. 69
5.4 Centralized Control... 70
5.5 Parameter Sharing .. 70

viii

5.6 Memory Sharing... 74
5.7 Results: Multiagent Empty Goal Task... 75
5.8 Results: Multiagent Soccer vs. Keeper ... 78
5.9 Analysis: Parameter Sharing.. 80
5.10 Chapter Summary... 83

Chapter 6 Communication... 86
6.1 Baseline: Independent Communication... 87
6.2 Teammate Communication Gradients ... 88
6.3 Grounded Semantic Network (GSN) .. 91

6.3.1 Stability.. 93
6.3.2 Limitations ... 93

6.4 Results: Say My TID Task... 94
6.5 Blind Move to Ball Task.. 95
6.6 Results: Blind Move to Ball... 97
6.7 Analysis... 98
6.8 Related Work ... 103
6.9 Chapter Summary... 104

Chapter 7 Curriculum Learning.. 106
7.1 On the Design of Reward Functions ... 106
7.2 Limitations of Potential-Based Shaping Rewards 107
7.3 Related Work ... 109
7.4 Approach ... 112
7.5 Move To Ball Task.. 113
7.6 Kick to Goal Task ... 113
7.7 Soccer Task.. 113
7.8 Task Embedding ... 114
7.9 State Embedding Architecture.. 115
7.10 Weight Embedding Architecture .. 116
7.11 Curriculum Ordering... 118

7.11.1 Random Curriculum .. 118

ix

7.11.2 Sequential Curriculum ... 118
7.12 Task Embedding Sanity Check... 120
7.13 Results: Soccer Curriculum ... 122
7.14 Ablation Experiment ... 124
7.15 Analysis of Sequential Curriculum ... 125
7.16 Chapter Summary... 127

Chapter 8 Related Work .. 129

Chapter 9 Future Work, Discussion, and Conclusion 135
9.1 Thesis Summary... 135
9.2 Contributions ... 139
9.3 Short Term Future Work.. 141

9.3.1 Alternative DRQN Architectures .. 142
9.3.2 Better Task Performance .. 142
9.3.3 Combining GSN and Curriculum Learning 142

9.4 Long Term Future Work .. 143
9.4.1 Teammate Modeling .. 143
9.4.2 Adversarial Multiagent Settings .. 144
9.4.3 Quantitative Analysis of Reward Functions.......................... 145

9.5 Conclusion... 145

Appendix A Abbreviations ... 147

Appendix B Online Materials ... 148

References... 149

x

Chapter 1

Introduction

One of the core challenges of artificial intelligence is designing generally
capable learning agents: an ideal learning agent would be capable of learning in a
diversity of situations or environments without requiring extensive redesign or re-
programming for each new problem it encounters. In particular, it is undesirable
for the developer of the agent to have to understand the environment in which the
agent will be deployed or have to optimize the sensory inputs or motor outputs of
the agent to provide a greater chance of successful learning. Instead, we hope that
through machine learning, we might develop intelligent agents capable of learn-
ing from noisy, raw, or unprocessed input signals, acting through low-level motor
primitives, and reach high performance on a diverse set of tasks.

However, many questions remain about how to design agents capable of ful-
filling these criteria. Broadly, How should an agent be represented? and What

computations should an intelligent agent perform? There have been answers to
these questions developed throughout the history of AI research. This thesis adopts
a particular perspective on these questions through the use of deep neural networks
to represent learning agents and reinforcement learning to govern the computations
performed by the agent. These choices are by no means the only options for devel-
oping intelligent agents, but are currently considered promising approaches. Build-
ing on this foundation, this thesis contributes several novel designs for artificially
intelligent agents capable of learning to handle low-level, noisy, or incomplete sen-
sations; act using low-level motor primitives; and cooperate with other learning
agents. The prior advances in representation and computation that made this thesis
possible are further discussed below.

Over the last several years, deep neural networks have shown strong per-
formance on a variety of supervised learning tasks, and are now considered state-
of-the-art general-purpose function approximators for the tasks of image recogni-
tion (Szegedy et al., 2014), speech recognition (Hinton et al., 2012), translation

1

(Sutskever et al., 2014), and text generation (Graves, 2013). The success of deep
learning has paralleled the growth and availability of large, labeled datasets such as
ImageNet (Russakovsky et al., 2015). These large datasets along with the advent
of affordable and highly parallel graphics processing unit based computing allow
models with an extremely large number of parameters to be efficiently trained and
optimized.

However, many problems of interest lack supervised labels and well-defined
datasets. Of particular interest to this thesis are problems involving autonomous
agents interacting with unknown environments. For this reason, successful ap-
proaches for combining deep neural networks with reinforcement learning have
taken more time to mature. There are particularly notable exceptions: the Deep Q-
Network (DQN) (Mnih et al., 2015) demonstrated super-human performance across
a variety of different Atari 2600 video games. More recently, reinforcement learn-
ing augmented with deep neural network function approximation and Monte Carlo
tree search was used to create a champion level Go player called Alpha Go (Silver
et al., 2016).

At a high level, reinforcement learning (RL) is an area of machine learn-
ing concerned with how agents ought to take actions in an environment so as to
maximize cumulative reward. Broadly, reinforcement learning answers the ques-
tion of what computations an intelligent agent should perform. More specifically,
reinforcement learning addresses the problem of sequential decision making in an
unknown environment. The environment provides a loosely supervised signal in the
form of a reward after each decision made by the agent. The goal of the agent is to
maximize the cumulative reward accrued throughout the course of interacting with
the environment. Because the agent is attempting to maximize cumulative reward,
individual rewards do not necessarily indicate correct decisions. Thus rewards are
less informative than supervised labels and are not directly usable as targets when
training deep neural networks.

Nonetheless, the results presented in this thesis demonstrate that it is possi-
ble to harness the power of deep neural networks for the purpose of reinforcement
learning. In particular, deep RL agents are capable of learning in higher dimen-

2

sional, more complicated environments than possible before the advent of deep
networks, environments featuring partial observability, high dimensional raw-pixel
input, and parameterized-continuous action spaces.

In the real world, learning often happens in groups rather than all alone.
From the time of infancy nearly all animals learn from their parents or other mem-
bers of the species. From this perspective, single agent learning is limited in the
sense that the learning agent is alone and can only use its own experiences with
the environment as guidance. We suspect that multiple learning agents, working
together, can accomplish far more than a single agent ever could. To this end, a
major focus of this thesis is on exploring architectures and approaches for cooper-
ative multiagent deep RL. In particular, we examine the sharing of neural network
parameters, the sharing of replay memories, and the use of learned communication
protocols.

1.1 Research Question

Motivated by the design of capable general-purpose learning agents, we pose
the following questions:

Thesis Question: 1) How can the power of Deep Neural Networks be lever-
aged to extend Reinforcement Learning towards domains featuring partial ob-
servability, continuous parameterized action spaces, and sparse rewards? 2)
How can multiple Deep Reinforcement Learning agents learn to cooperate in a
multiagent setting?

To better organize our work on this question, we presented individual con-
tributions of the thesis in the next section.

1.2 Contributions

In fulfillment of the thesis question we present the following contributions:

3

1. Deep Recurrent Q-Network (DRQN): An exploration of recurrency as
a method of dealing with partial observability: Recurrency allows neural
networks to process inputs sequentially through time. We develop a recurrent-
neural-network-based controller called DRQN and show that in certain Atari
games, recurrent processing of inputs can be quite beneficial, particularly
when the inputs are observations generated from a noisy or partially observ-
able environment. DRQN is presented in full detail in Chapter 3.

2. Half-Field-Offense: An open-source environment for developing and
testing cooperative learning agents: The Half Field Offense (HFO) domain
is built on the RoboCup 2D soccer simulator and features a parameterized-
continuous action space in which discrete actions must paired with continu-
ous parameters. HFO supports single agent, ad-hoc, and multiagent learning.
This is the domain for exploring partial observability, parameterized action
space, and cooperative multiagent learning. Half-Field-Offense is presented
in Section 2.5.

3. Deep RL in parameterized action space: We tackle the full reinforcement
learning problem in the Half Field Offense domain. Specifically, we extend
an existing algorithm for for deep reinforcement learning in continuous action
space, making several modifications for improved learning in HFO’s param-
eterized action space. Chapter 4 discusses deep RL in HFO and provides
details on the techniques necessary for fast and stable learning.

4. An exploration of multiagent Deep RL in HFO: We explore cooperative
multiagent learning in the HFO domain. Specifically, we demonstrate how
parameter and memory sharing architectures can promote cooperative learn-
ing between deep reinforcement learning agent. Finally, we propose an ex-
periment to examine if two agents, given the optional ability to communicate
with each other, will learn to use language as part of coordinating towards
a common goal. We examine several different approaches for using learned
communication to achieve better cooperation. This contribution is spread
across Chapters 5 and 6.

5. Curriculum Learning in HFO: We present a method to enable learning

4

agents to perform well on tasks that have highly sparse rewards. Specifically,
we break down the target task into a curriculum of subtasks, learn each sub-
task, and use the resulting skills to learn the target task. Tasks are represented
to the agent using an embedding space, in which the network’s activations
are altered as a function of the active task. We demonstrate in Chapter 7 that
this architecture allows a single network to maintain high performance across
multiple tasks.

While the resulting agents are not quite ready for RoboCup competition,
taken together we believe these contributions represent a nontrivial step towards
addressing the thesis question. In the next section, we present a high-level overview
of the thesis.

1.3 Dissertation Overview

The remainder of this thesis is organized as follows: Chapter 2 presents
background on Markov Decision Processes (MDPs), Reinforcement Learning (RL),
Deep Learning, and the Atari Environment (ALE) and Half-Field-Offense envi-
ronemnt (HFO). These two environments are used throughout the remainder of the
thesis. Additionally, Chapter 2 describes two existing deep reinforcement learn-
ing algorithms, DQN and DDPG. These algorithms form the basis of the learning
agents in later chapters. Chapter 3 presents the first technical contribution, a deep
reinforcement learning architecture designed to combat partial observability in the
input space of a learning agent. Next, Chapter 4 presents an extension of Deep RL
into parameterized action space and demonstrates successful single agent learning
in Half-Field-Offense. Building on these single agent results, Chapter 5 exam-
ines approaches for cooperative multiagent deep reinforcement learning. In par-
ticular this chapter describes sharing gradients, experiences, and weights between
the agents. Examining another aspect of cooperation, Chapter 6 demonstrates that
agents can learn to communicate with each other in order to enhance cooperation.
Chapter 7 presents a curriculum learning approach for decomposing complex tasks
with sparse rewards into sequences of easier tasks. Finally, related work can be

5

found in Chapter 8. Chapter 9 discusses future work and concludes.
It is possible to understand much of the work in this thesis without having

to read it cover to cover. The related work in Chapter 8 can be understood on
its own. However, the majority of the other chapters assume basic knowledge of
reinforcement learning and neural networks, presented in Chapter 2. A brief review
of this chapter is recommend before attempting to understand later chapters.

Beyond the background, Chapter 3 on recurrent neural networks for partial
observability may also be understood on its own. The multiagent architectures in
Chapters 5-7 build on the architecture for single agent learning in parameterized
action space presented in Chapter 4. These chapters can also be understood at a
high level without knowing the specifics of the single agent architecture.

Figure 1.1 depicts the dependencies between the chapters. Finally, while
ever acronym is at least defined the first time it is used, there is a table of abbre-
viations located at the end of the thesis which may prove helpful if an unknown
acronym is encountered.

6

Chapter 4:
Deep RL in

Parameterized
Action Space

Chapter 3:
Deep RL for

partially observed
MDPs

Chapter 5:
Multiagent
Learning

Chapter 6:
Communication

Chapter 7:
Curriculum Learning

Chapter 2:
Background &
Related Work

Chapter 8: Related
Work

Figure 1.1: Arrows denote dependencies between thesis chapters. Chapters 5-7
build on the architecture and techniques presented in Chapter 4, but can also be
understood at a high level on their own.

7

Chapter 2

Background

This chapter presents the theoretical background underlying the algorithms
and concepts presented in later chapters. This chapter is designed to be under-
stood alone or as a precursor to the following chapters. We first present the Markov
Decision Process, or MDP, in short. The MDP is a theoretical foundation upon
which reinforcement learning is grounded. The next section discusses reinforce-
ment learning at a high level and presents two common RL algorithms: Q-Learning
and SARSA. Subsequently, we refocus the discussion on deep learning and present
the basics of deep neural networks. Meaningfully combining reinforcement learn-
ing with deep learning is a major focus of this thesis and we review the Deep Q-
Network (DQN) and Deep Deterministic Policy Gradients (DDPG) algorithms for
deep reinforcement learning in discrete and continuous action spaces.

2.1 Markov Decision Processes

The Markov Decision Process, or MDP, is a common paradigm for model-
ing sequential decision making problems, problems in which learning agents must
make repeated choices about what actions to perform and how to deal with the con-
sequences of those choices. In this thesis we will focus on MDPs in which time
is modeled as a sequence of discrete units called timesteps. At each timestep the
agents follow a fixed pattern of interaction with the MDP: first the agents perceive
the state of the world s, next each agent selects some action a to perform. Once
all agents have selected their actions, the state of the world advances to the next
timestep and the agents are each given a reward r indicating how well they are per-
forming the task. This cycle of perception and action continues until the end of the
episode. Episodes end when the goal has been achieved or some other termination
condition is met.

Formally an MDP is a 5-tuple (S,A, P,R, γ). S is a set possible states.

8

Each timestep the agent perceives the current state of the environment s ∈ S. A
is a set of possible actions available to the agent. The agent must choose which
action a ∈ A to select at each timestep. We assume the set of available actions does
not change as a function of time. P : S × A × S → [0, 1] is a transition function
which determines how the environment advances after actions have been selected.
Specifically, the environment provides a new state s′ ∼ P (s, a). R : S × A → R
is a reward function that provides the agent with a scalar reward at each timestep.
Finally γ is a scalar that specifies how much priority should be given to immediate
versus long-term rewards.

2.2 Reinforcement Learning

Broadly, reinforcement learning is concerned with choosing a sequence of
actions that maximizes cumulative reward. A reinforcement learning agent must
learn a policy π which is a function that maps from environment states s ∈ S to
actions a ∈ A. The learned policy is good if the sum of individual rewards accrued
throughout all timesteps of the episode is large. This discounted sum of accrued
rewards is referred to as the return J =

∑∞
t=0 γ

trt.
The challenge of reinforcement learning is to find an optimal policy π∗

which maximizes return. One common way of approaching this challenge is to
break the problem of learning a sequence of actions into many smaller problems:
that of learning the correct action to take at each state. Instead of directly learning
the best action to select, a common approach is to instead estimate expected sum of
long term rewards that will be accrued from taking a particular action in a particular
state. Such an estimate is referred to as a value function because it approximates
the sum of rewards or value.

This thesis will focus on learning Q-Values (also called action-values). A
Q-Value Qπ(s, a) is a scalar that estimates the expected sum of gamma-discounted
rewards that will be accrued by taking action a in state s and following policy π
thereafter. Q-Value estimates are iteratively refined by visiting the same s, a pair
in multiple episodes and averaging the resulting returns, or by using the Bellman

9

equation (Bellman, 1957) to estimate the Q-Value from the immediate reward and
the Q-Values of the next state and action:

Q(s, a) = R(s, a) + γQ(s′, a′)

This equation forms the basis of an algorithm called SARSA (Sutton and
Barto, 1998), in which Q-Values are iteratively refined by using experience tuples
(s, a, r, s′) gathered from interacting with the environment. The SARSA update is
a type of dynamic programming because the cached estimate of Q(s′, a′) is being
used to refine the estimate ofQ(s, a). By visiting a wide variety of state-action pairs
and iterating this update, Q-Value estimates will provably converge to the correct
estimates of long term reward Q∗(s, a). Using Q-Value estimates, it is possible to
recover a policy by selecting the action with the maximal Q-Value from the current
state. In this manner, a correct Q-Value function Q∗ directly produces an optimal
policy π∗.

Q-Learning (Watkins and Dayan, 1992) is another effective algorithm for
learning Q-Values. In contrast to SARSA, Q-Learning takes a max over all next
state actions:

Q(s, a) = R(s, a) + γmax
a′

Q(s′, a′)

By using a max, Q-Learning updates the Q-Value towards the best action,
possibly not the one that was actually selected. Such an update allows the agent to
select potentially bad exploratory actions, without having devasting effects on the
Q-Values. This distinction is known as on-policy vs. off-policy learning. SARSA is
on-policy because updates to Q-Values are performed directly on the actions taken
by the current policy. Q-Learning is off-policy since updates employ a max over all
possible actions, potentially updating with an action that was not actually taken by
the current policy.

Subsequent chapters will reinterpret the SARSA and Q-Learning updates in
the context of deep neural network. We next introduce neural networks and deep
learning.

10

2.3 Deep Neural Networks

Deep neural networks are parametric models composed of multiple stacked
layers of artificial neurons. They are accepted to be powerful general function ap-
proximators. In short, a deep network computes a nested function of the form:

ŷ = fk(Wk . . . f1(W1x+ b1) · · ·+ bk)

Input example x is transformed through k network layers into output pre-
diction ŷ. Each layer transforms its input, first multiplying by a weight matrix Wi,
adding on a vector of biases bi, and finally applying a nonlinear transform fi. The
final layer of the network represents its prediction ŷ. By comparing the prediction
ŷ to the correct label y, it is possible to determine if the network is performing
correctly and to train it to more closely approximate the target.

Specifically, neural networks are trained using the Backpropagation algo-
rithm (Werbos, 1974). Backpropagation seeks to minimize a loss function, typ-
ically the difference between the prediction and the correct label: L = |ŷ − y|.
Backpropagation provides gradients ∇θ(L) which specify how the parameters of
the network should be changed in order to reduce the loss. Throughout this thesis
we will use theta to denote the concatenation of all the parameters in the model
θ = (W1, b1,W2, b2, . . . ,Wk, bk).

The choice of nonlinear activation function greatly affects the depth and
training time of a neural network. The classic logistic sigmoid activation function
takes the form: f(x) = 1/(1 + e−x). This function was used to train neural net-
works for many years, but recently has been supplanted by the Rectified Linear
Unit (ReLU). ReLU units have an activation of the form f(x) = max(0, x) and
have been shown to result in much faster training of deep neural networks. Unless
otherwise noted, ReLU activation functions are used in every layer of every network
throughout this thesis.

Advances in deep learning also came in the form of more advanced opti-
mization methods. Backpropagation provides gradients which indicate directions
in parameter space of immediate change. These gradients may be used in vanilla

11

stochastic gradient descent (SGD). One important improvement on SGD was mo-
mentum. The innovation was to remember these gradients after each iteration of
backpropagation rather than discarding them. By maintaining a history of gradi-
ents, it’s possible to more quickly escape certain types of local optima by building
momentum in the direction of consistent gradients and removing momentum in the
directions of fluctuating gradients.

Further improvement came in the form of adaptive learning rate optimization
methods which maintain a per-parameter learning rate. Three examples of adap-
tive learning rate methods are RMSProp (Tieleman and Hinton, 2012), AdaDelta
(Zeiler, 2012), and Adam (Kingma and Ba, 2014). Adaptive learning rate methods
proved to be quite useful for reinforcement learning because of the changing nature
of the data. For example, consider an agent that inhabits a certain region of the
state space for an extended duration and then discovers a new region of the state
space. Under a fixed decaying learning rate, the agent’s learning rate may be too
small to effectively learn about the new region of state space it has discovered. With
an adaptive learning rate method, the agent’s learning rate can be automatically ad-
justed to reflect the new batch of experiences. Throughout this thesis we use the
Adam optimizer and the ReLU nonlinearity.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (LeCun et al., 1998) were a key in-
novation for learning from images. At a high level, CNNs are a method of sharing
weights across pixel space. Instead of learning a full weight matrix, a CNN instead
learns low-dimensional filters which are convolved across the input pixels. These
filters have been shown to learn hierarchical detectors for edges, image parts, and
full objects. CNNs have proven highly successful at static image recognition prob-
lems such as the MNIST, CIFAR, and ImageNet Large-Scale Visual Recognition
Challenge (Krizhevsky et al., 2012; Szegedy et al., 2014; Zeiler and Fergus, 2014).
By using a hierarchy of trainable filters and feature pooling operations, CNNs are
capable of automatically learning complex features required for visual object recog-
nition tasks achieving superior performance to hand-crafted features. Throughout

12

this thesis, we will employ convolutional layers when states are represented by im-
ages. Otherwise, standard fully-connected layers will be preferred.

Having introduced reinforcement learning and deep learning, we next present
the two main domains that will be used as testbeds in this thesis: the Arcade Learn-
ing Environment (ALE) and Half-Field-Offense (HFO).

2.4 Arcade Learning Environment

The Arcade Learning Environment (Bellemare et al., 2013) is an evaluation
platform in which agents can interact with Atari 2600 games. Each of the 61 sup-
ported games is its own environment and presents unique learning challenges to the
agent. Common across all games is the state, action, and reward representations.
These common representations make it feasible to evaluate a single learning agent
on many different tasks. In the remainder of this section, we review the state, action,
and reward representations for ALE.

2.4.1 ALE: State Space

The most natural state representation for Atari games is the game screen.
Game screens are 160 × 210 pixels in size and feature standard 3-channel RGB.
Processing a representation consisting of pixels requires a powerful and efficient
function approximator. Convolutional neural networks (Section 2.3.1) provide just
such a tool. Notably the pixel representation is exactly what is observed by a human
when playing the game. The work presented in Chapter 3 employs a preprocessed
version of this screen representation.

Of note, ALE also provides access to the RAM state of the Atari console.
The Atari 2600 had only 128 bytes (1024 bits) of RAM. While small, these RAM
bits are sufficient to completely restore the state of any Atari game.

13

2.4.2 ALE: Action Space

The action space of ALE consists of 18 discrete actions. To understand
these actions it is helpful to understand the physical controller: the Atari 2600 uses
a joystick that is capable of moving in the eight directions (North, South, East,
West) as well as combinations (North-East, South-West, etc), or not moving at all.
Thus, there are a total of 9 possible joystick positions. Additionally, there is a single
button. The Atari 2600 console registers combinations of the possible joystick states
with or without a button press: the 18 actions correspond to the 9 possible joystick
locations when the button is depressed and the 9 possible joystick locations when
the button is unperturbed.

Some games use only a subset of the 18 possible actions. For example, in
the game of Pong, only joystick movements in the North-South direction matter.
In other games, certain actions are illegal: in the game of Skiing, pressing the fire
button resets the player to the beginning of the course, and including it as a possible
action would result in learning agents that could reset the MDP. Fortunately, ALE
provides information for each game about which actions are legal, and which are
actually used by each game. We employ this information to reduce the size of the
action space for certain games.

Figure 2.1: The physical Atari 2600 features 18 discrete actions defined by the
positions of the joystick and button. Games are typically represented using the
160× 210 dimensional RGB screen representation. The picture on the right shows
an example game of Space Invaders.

14

2.4.3 ALE: Rewards

Rewards in ALE are largely based on accrued game score. By keeping track
of which RAM bits are used to encode the game score, ALE can determine the
current score of the game and provide a reward at each timestep equal to the change
in game score. One remaining difficulty is that the magnitude of reward varies from
game to game, making it difficult to directly assess the performance of a learning
agent. This has been addressed in the past by normalizing against a reference score
(Bellemare et al., 2013), comparing to human performance (Mnih et al., 2015), or
using Z-Scores (Hausknecht et al., 2013).

ALE is used at the primary environment in Chapter 3. The subsequent chap-
ters use the Half Field Offense domain, which we present now.

2.5 Half Field Offense Domain

RoboCup is an international robot soccer competition that promotes research
in AI and robotics. Within RoboCup, the 2D simulation league works with an ab-
straction of soccer wherein the players, the ball, and the field are all 2-dimensional
objects. However, for the researcher looking to quickly prototype and evaluate dif-
ferent algorithms, the full soccer task presents a cumbersome prospect: full games
are lengthy, have high variance in their outcome, and demand specialized handling
of rules such as free kicks and offsides.

The Half Field Offense domain1 abstracts away the difficulties of full RoboCup
and exposes the experimenter only to core decision-making logic, and to focus on
the most challenging part of a RoboCup 2D game: scoring and defending goals. In
HFO, each agent receives its own state sensations and must independently select
its own actions. HFO is naturally characterized as an episodic multi-agent POMDP
because of the sequential partial observations and actions on the part of the agents
and the well-defined episodes which culminate in either a goal being scored or the
ball leaving the play area. To begin each episode, the agent and ball are positioned

1Example videos of Half Field Offense games may be viewed at: Video: https://vid.me/
sNev Video: https://vid.me/JQTw Video: https://vid.me/1b5D.

15

https://vid.me/sNev
https://vid.me/sNev
https://vid.me/sNev
https://vid.me/JQTw
https://vid.me/JQTw
https://vid.me/1b5D
https://vid.me/1b5D

randomly on the offensive half of the field. The episode ends when a goal is scored,
the ball leaves the field, or 500 timesteps pass. The following subsections introduce
the low-level state and action space used by agents in this domain.

2.5.1 State Space

The agent uses a low-level, egocentric viewpoint encoded using 58 continuously-
valued features. These features are derived through Helios-Agent2D’s (Akiyama,
2010) world model and provide angles and distances to various on-field objects of
importance such as the ball, the goal, and the other players. Figure 2.2 depicts the
perceptions of the agent. The most relevant features include: Agent’s position, ve-
locity, orientation, and stamina; Indicator if the agent is able to kick; Angles and
distances to the following objects: Ball, Goal, Field-Corners, Penalty-Box-Corners,
Teammates, and Opponents. A full list of state features may be found at https:
//github.com/mhauskn/HFO/blob/master/doc/manual.pdf.

(a) State Space (b) Helios Champion

Figure 2.2: Left: HFO State Representation uses a low-level, egocentric viewpoint
providing features such as distances and angles to objects of interest like the ball,
goal posts, corners of the field, and opponents. Right: Helios handcoded policy
scores on a goalie. This 2012 champion agent forms a natural (albeit difficult)
baseline for comparison.

16

https://github.com/mhauskn/HFO/blob/master/doc/manual.pdf
https://github.com/mhauskn/HFO/blob/master/doc/manual.pdf

2.5.2 Action Space

Half Field Offense features a low-level, parameterized action space. There
are four mutually-exclusive discrete actions: Dash, Turn, Tackle, and Kick. At
each timestep the agent must select one of these four to execute. Each action has
1-2 continuously-valued parameters which must also be specified. An agent must
select both the discrete action it wishes to execute as well as the continuously valued
parameters required by that action. The full set of parameterized actions is:

• Dash(power, direction): Moves in the indicated direction with a scalar
power in [0, 100]. Movement is faster forward than sideways or backwards.
• Turn(direction): Turns to indicated direction.
• Tackle(direction): Contests the ball by moving in the indicated direction.

This action is only useful when playing against an opponent.
• Kick(power, direction): Kicks the ball in the indicated direction with a

scalar power in [0, 100]. All directions are parameterized in the range of
[−180, 180] degrees.

2.5.3 Teammates

Automated teammates and opponents in HFO use a policy derived from He-
lios, the 2012 RoboCup 2D champion team (Akiyama, 2010). This policy is de-
signed for full 11-versus-11 matches, but gracefully scales to any of the smaller
tasks in the HFO umbrella. As our benchmark results indicate, automated team-
mates and opponents using the Helios policy exhibit strong but not perfect policies.
More importantly, Helios teammates favor cooperation and will strategically pass
the ball to player-controlled agents. While some passes are direct, lead passes re-
quire the player-agent to quickly reposition in order to receive. When the player
has the ball, Helios teammates intelligently position themselves and will sprint to
receive a pass from the player.

17

2.5.4 Evaluation Metrics

Having presented the basic state spaces, action spaces, and NPCs featured in
the HFO Environment, we now address the important question of how to evaluate
the performance of HFO agents.

The HFO environment does not provide reward signals and instead indicates
the ending status of the game. HFO episodes end with one of the following termi-
nation conditions:

Goal: The offense scored a goal.
Captured (CAP): The defense gained control of the ball.
Out of Bounds (OOB): The ball left the play field.
Out of Time (OOT): No agent has approached the ball in the last 100 timesteps.

Using these termination conditions, we propose two evaluation metrics: Goal
Percentage and Time to Goal. The primary focus of learning in HFO is to score
goals when playing offense and prevent goals from being scored when playing de-
fense. The primary metric, Goal Percentage, the percentage of all trials that end
with a goal being scored, captures exactly this notion. The hallmark of an effective
offensive agent is a high goal percentage. A second metric, Time to Goal (TTG),
is defined as the number of timesteps required to score in each trial that culminates
with a goal. Efficient offensive agents typically seek to minimize time to goal, while
defenders strive to maximize this metric.

2.5.5 Learning Paradigms

The HFO Environment supports several learning paradigms: Single Agent
Learning, involves a lone offensive or defensive agent playing against one or many
opponents. In Ad Hoc Teamwork, the agent must learn to cooperate with one or
more unknown teammates without pre-coordinated strategies (Barrett, 2014; Stone
et al., 2010). In the case of HFO, learning agents have the opportunity to act as the
ad hoc teammate of the Helios agents. Finally, Multiagent Learning (see Chapter
5) places two or more learning agents on the same team with the shared objec-
tive of scoring or defending the goal. Known as Multiagent Reinforcement Learn-

18

ing (MARL), the challenge for these agents is to learn both individual competency
as well as cooperation (Tan, 1998). While not examined in this thesis, HFO also
supports configurations that blend these learning paradigms. For example, a team
could consist of several learning agents paired with one or more Helios teammates,
mixing multiagent learning with ad hoc teamwork. Additionally, HFO can create
multiagent scenarios in which agents have competing objectives, for example by
allocating some learning agents to play offense and others to play defense.

2.5.6 Related Work: RoboCup Soccer

Much of the work in this thesis takes place within the RoboCup 2D Half
Field Offense domain. RoboCup 2D soccer has a rich history of learning, which is
reviewed in this section.

In one of the earliest examples, Andre and Teller (1999) used Genetic Pro-
gramming to evolve policies for RoboCup 2D Soccer. By using a sequence of
reward functions, they first encourage the players to approach the ball, kick the
ball, score a goal, and finally to win the game. Similarly, our work features players
whose policies are entirely trained and have no hand-coded components. Our work
differs by using a gradient-based learning method and learning from demonstration
rather than a reward signal.

Competitive RoboCup agents are primarily hand-coded but may feature com-
ponents that are learned or optimized for better performance. Examples include the
Brainstormers who used neural reinforcement learning to optimize individual skills
such as intercepting and kicking the ball (Riedmiller and Gabel, 2007). However,
these skills were optimized in the context of a larger, already working policy. Sim-
ilarly, MacAlpine et al. (2015a) employed the layered-learning framework to incre-
mentally learn a series of interdependent behaviors. Such learning techniques have
been shown to be applicable to physical robots in addition to simulated ones (Kohl
and Stone, 2004; Hausknecht and Stone, 2010; da Silva et al., 2014). Instead of
optimizing small portions of a larger policy, we take the approach of learning the
full policy.

Another promising approach to learning in RoboCup 2D used planning in

19

conjunction with MAX-Q hierarchical value function decomposition of the action
space to drive learning (Bai et al., 2012, 2013). This framework has been imple-
mented by the WrightEagle team, winners of the 2013 and 2014 RoboCup 2D com-
petitions.

Recently, Barrett completed a thesis on Ad-Hoc teamwork and demonstrated
the continued relevance of HFO for exploring novel learning algorithms (Barrett,
2014; Barrett and Stone, 2015).

Masson and Konidaras explored reinforcement learning in parameterized ac-
tion spaces and formalized the concept of a Parameterized Action Markov Decision
Process (PAMDP) (Masson and Konidaris, 2015). Using a handcrafted HFO-like
domain, they learn a policy for scoring on a keeper.

There is much more work that uses the 2D RoboCup domain. The work in
this thesis differs from the above approaches by focusing on Deep RL as the learn-
ing method for RoboCup 2D. Additionally, this thesis is not targeted at producing
a competitive RoboCup team. Instead, we choose to focus on exploring different
the limits of current deep reinforcement learning approaches without the burden of
producing competition-ready agents. The next section describes two existing deep
reinforcement learning algorithms.

2.6 Deep Q-Network (DQN)

The amount of work combining deep learning with reinforcement learning
has expanded in the last few years. This section reviews the DQN algorithm for
learning in discrete action spaces.

Deep Q-Learning (Mnih et al., 2015) extends standard Q-Learning (Watkins
and Dayan, 1992) by using a deep neural network as a Q-Value function approx-
imator. For a review of Q-Learning see Section 2.2. Challenging reinforcement
learning domains such as Atari games feature far too many unique states to maintain
a separate estimate for each state-action. Instead a model is used to approximate
the Q-values and generalize between similar state-actions. Generalization allows
sensible Q-Value estimates to be derived for state-actions that have never been en-

20

countered before. Additionally, the large number of parameters in deep networks
allow performance and accuracy to scale with large amounts of experience data.

In the case of Deep Q-Learning, the model is a neural network parameterized
by weights and biases collectively denoted as θ. Q-values are estimated online by
querying the output nodes of the network after performing a forward pass given a
state input. Q-values estimated by the neural network are denoted Q(s, a|θ).

Updates are made to the parameters of the network to minimize the follow-
ing differentiable loss function:

L(s, a|θi) =
(
r + γmax

a′
Q(s′, a′|θi)−Q(s, a|θi)

)2 (2.1)

θi+1 = θi + α∇θL(θi) (2.2)

Since |θ| � |S×A|, the neural network model naturally generalizes beyond
the states and actions it has been trained on. However, because the same network
is generating the next state target Q-values that are used in updating its current
Q-values, such updates can oscillate or diverge (Tsitsiklis and Roy, 1997). Deep
Q-Learning uses two techniques to restore learning stability:

First, experiences et = (st, at, rt, st+1) are recorded in a replay queue D.
When performing updates, experiences are drawn at random from this queue. This
selection process decorrelates the agent’s current state with the states used in the
updates. Such a step is necessary in order to ensure the pool of experience that is
being drawn on for updates is not overly biased by the preferences of the current
policy. More recent studies have shed additional light on the utility of the replay
memory, as follows.

First, the A3C algorithm (Mnih et al., 2016) showed that with sixteen copies
of the same agent running in parallel environments, a replay memory is no longer
necessary. Instead, it suffices to simply update from the most recent experiences en-
countered by the different agents. Because the agents likely occupy different parts
of the state space, the diversity of experience is sufficient to obviate the need for a
replay queue. Second, in multiagent settings, Foerster et al. (2016a) show that the

21

replay memory didn’t help with learning. Finally, Schaul et al. (2015) showed that
prioritizing experiences in the replay memory could help DQN’s performance on
Atari games, in contrast to the standard method of selecting experiences at random.

In addition to the replay memory, the second main improvement was a sep-
arate, target network Q− that provides update targets to the main network. Q−

is identical to the main network except its parameters θ− are updated to match θ
at a slow frequency. The advantage of the target is that is decouples the feedback
resulting from the network generating its own targets. So far, target networks have
remained crucial for deep reinforcement learning.

Incorporating these improvements, we will now revisit the update equation.
Specifically, at each training iteration i, an experience et = (st, at, rt, st+1) is sam-
pled uniformly from the replay memory D. The loss of the network is determined
as follows:

Li(θi) = E(st,at,rt,st+1)∼D

[(
yi −Q(st, at; θi)

)2]
(2.3)

where yi = rt + γmaxa′ Q̂(st+1, a
′; θ−) is the update target given by the target

network Q̂. Updates performed in this manner have been empirically shown to be
tractable and stable (Mnih et al., 2015).

Deep, model-free RL in discrete action spaces can be performed using the
Deep Q-Learning method (Mnih et al., 2015) which employs a single deep network
to estimate the value function of each discrete action and, when acting, selects the
maximally valued output for a given state input. Several variants of DQN have been
explored including decaying traces (Narasimhan et al., 2015), double Q-Learning
(van Hasselt et al., 2015), and dueling networks (Wang et al., 2015). These networks
work well in continuous state spaces but do not function in continuous action spaces
because the output nodes of the network, while continuous, are trained to output Q-
Value estimates rather than continuous actions. The next section will present an
algorithm for handling continuous action spaces.

22

2.7 Continuous Action Space: DDPG

Extending deep RL to continuous action spaces, Lillicrap et al. (2015) in-
troduced the Deep Deterministic Policy Gradient (DDPG) algorithm. Based on the
Actor/Critic architecture (Sutton and Barto, 1998), this algorithm maintains sep-
arate networks: for the actor and the critic. The critic network is updated using
temporal difference learning, like in DQN. However, the actor’s policy is updated
from the gradients suggested by the critic network.

An Actor/Critic architecture (Sutton and Barto, 1998) provides one solution
to this problem by decoupling the value learning and the action selection. Rep-
resented using two deep neural networks, the actor network outputs continuous
actions while the critic estimates the value function. The actor network µ, parame-
terized by θµ, takes as input a state s and outputs a continuous action a. The critic
network Q, parameterized by θQ, takes as input a state s and action a and outputs a
scalar Q-Value Q(s, a). Figure 2.3 shows Critic and Actor networks.

Updates to the critic network are largely unchanged from the standard tem-
poral difference update used originally in Q-Learning (Watkins and Dayan, 1992)
and later by DQN:

Q(s, a) = Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
(2.4)

Adapting this equation to the neural network setting described above results
in minimizing a loss function defined as follows:

LQ(s, a|θQ) =
(
Q(s, a|θQ)−

(
r + γmax

a′
Q(s′, a′|θQ)

))2
(2.5)

However, in continuous action spaces, this equation is no longer tractable
as it involves maximizing over next-state actions a′. Instead we ask the actor net-
work to provide a next-state action a′ = µ(s′|θµ). This yields a critic loss with the

23

following form:

LQ(s, a|θQ) =
(
Q(s, a|θQ)−

(
r + γQ(s′, µ(s′|θµ)′|θQ)

))2
(2.6)

The value function of the critic can be learned by gradient descent on this
loss function with respect to θQ. However, the accuracy of this value function is
highly influenced by the quality of the actor’s policy, since the actor determines the
next-state action a′ in the update target.

The critic’s knowledge of action values is then harnessed to learn a better
policy for the actor. Given a sample state, the goal of the actor is to minimize the
difference between its current output a and the optimal action in that state a∗.

Lµ(s|θµ) =
(
a− a∗

)2
=
(
µ(s|θQ)− a∗

)2 (2.7)

The critic may be used to provide estimates of the quality of different ac-
tions but naively estimating a∗ would involve maximizing the critic’s output over
all possible actions: a∗ ≈ arg maxaQ(s, a|θQ). Instead of seeking a global maxi-
mum, the critic network can provide gradients which indicate directions of change,
in action space, that lead to higher estimated Q-Values: ∇aQ(s, a|θQ). To obtain
these gradients requires a single backward pass over the critic network, much faster
than solving an optimization problem in continuous action space. Note that these
gradients are not the common gradients with respect to parameters. Instead these
are gradients with respect to inputs, first used in this way by NFQCA (Hafner and
Riedmiller, 2011). To update the actor network, these gradients are placed at the
actor’s output layer (in lieu of targets) and then back-propagated through the net-
work. For a given state, the actor is run forward to produce an action that the critic
evaluates, and the resulting gradients may be used to update the actor:

∇θµµ(s) = ∇aQ(s, a|θQ)∇θµµ(s|θµ) (2.8)

Alternatively one may think of these updates as simply interlinking the actor

24

and critic networks: On the forward pass, the actor’s output is passed forward into
the critic and evaluated. Next, the estimated Q-Value is backpropagated through the
critic, producing gradients∇aQ that indicate how the action should change in order
to increase the Q-Value. On the backwards pass, these gradients flow from the critic
through the actor. An update is then performed only over the actor’s parameters.
Figure 2.3 shows an example of this update.

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

Critic

State

ᵘθμ

4 Actions 6 Parameters

ᵘθQ

Q-Value

Actor

Critic
auQ

(s
,a
)

Figure 2.3: Actor-Critic architecture (left): actor and critic networks may be
interlinked, allowing activations to flow forwards from the actor to the critic and
gradients to flow backwards from the critic to the actor. The gradients coming from
the critic indicate directions of improvement in the continuous action space and
are used to train the actor network without explicit targets. Actor Update (right):
Backwards pass generates critic gradients ∇aQ(s, a|θQ) w.r.t. the action. These
gradients are back-propagated through the actor resulting in gradients w.r.t. param-
eters∇θµ which are used to update the actor. Critic gradients w.r.t. parameters∇θQ

are ignored during the actor update.

25

2.7.1 Stable Updates

Updates to the critic rely on the assumption that the actor’s policy is a good
proxy for the optimal policy. Updates to the actor rest on the assumption that the
critic’s gradients, or suggested directions for policy improvement, are valid when
tested in the environment. It should come as no surprise that several techniques are
necessary to make this learning process stable and convergent.

Because the critic’s policy Q(s, a|θQ) influences both the actor and critic
updates, errors in the critic’s policy can create destructive feedback resulting in
divergence of the actor, critic, or both. To resolve this problem (Mnih et al., 2015)
introduce a Target-Q-Network Q′, a replica of the critic network that changes on a
slower time scale than the critic. This target network is used to generate next state
targets for the critic update (Equation 2.6). Similarly a Target-Actor-Network µ′

combats quick changes in the actor’s policy.
The second stabilizing influence is a replay memory D, a FIFO queue con-

sisting of the agent’s latest experiences (typically one million). Updating on expe-
riences sampled uniformly from this memory reduces bias compared to updating
exclusively from the most recent experiences.

Employing these two techniques the critic loss in Equation 2.6 and actor
update in Equation 2.7 can be stably re-expressed as follows:

LQ(θQ) = E(st,at,rt,st+1)∼D

[(
Q(st, at)−

(
rt + γQ′(st+1, µ

′(st+1))
))2]

(2.9)

∇θµµ = Est∼D
[
∇aQ(st, a|θQ)∇θµµ(st)|a=µ(st)

]
(2.10)

Finally, these updates are applied to the respective networks, where α is a
per-parameter step size determined by the gradient descent algorithm. Additionally,
the target-actor and target-critic networks are updated to smoothly track the actor

26

and critic using a factor τ � 1:

θQ = θQ + α∇θQLQ(θQ)

θµ = θµ + α∇θµµ

θQ
′
= τθQ + (1− τ)θQ

′

θµ
′
= τθµ + (1− τ)θµ

′

(2.11)

One final component is an adaptive learning rate method such as ADADELTA
(Zeiler, 2012), RMSPROP (Tieleman and Hinton, 2012), or ADAM (Kingma and
Ba, 2014).

2.8 Chapter Summary

This chapter presented background on Markov Decision Processes (MDPs),
the formalism underlying all of reinforcement learning. Additionally, the basic no-
tions of states, actions, and rewards will be used throughout this thesis. Reinforce-
ment learning provides a methodology for learning how to select actions in MDPs
in such a way as to maximize long term discounted rewards. We presented value
functions which estimate the sum of rewards resulting from taking a specific action
from a specific state. In order to learn a value function we reviewed the SARSA and
Q-Learning algorithms which use bootstrapping to estimate the value of a particular
state-action from the immediate reward and value of the next state-action. Finally,
this chapter presented background on deep neural networks, including discussion
of convolutional neural networks, nonlinear activation functions such as ReLU, and
solvers such as ADAM. Together these form the building blocks for the algorithms
presented in the chapters that follow.

Additionally, this chapter covered the Atari and Half-Field-Offense domains.
At a high level, the Atari domain fits well with the goals of robust domain-indepedent
learning because it contains so many diverse environments to interact with. An
agent that could learn effective control policies on the full set of Atari games is

27

far more convincing than an agent that can learn only on a single game. However,
the Atari domain is not without limitations: first, Atari games only feature discrete
actions, a simplifying assumption when compared to many real world and robotics-
based domains that require continuous control. Second, the vast majority of Atari
games are limited to single agent. The Half-Field-Offense domain addresses these
shortcomings. It features a parameterized-continuous action space and the ability to
learn with multiple agents. However, unlike Atari, the feature space of HFO is not
image-based and thus does not require convolutional neural network processing.
Additionally, while HFO features a diversity of different tasks, they all fall under
the heading of soccer. The set of different Atari games is broader and more varied.
Taken together, these domains represent a diverse set of tasks that spans visual im-
age and feature based perception, discrete and continuous action spaces, and single
and multiagent learning. Chapter 3 presents further work in the Atari domain and
chapters 4-7 pertain to HFO.

Finally, this chapter presented two methods for combining deep neural net-
works with reinforcement learning. The first method, Deep Q-Learning uses a deep
neural network as a function approximator to learn a critic - an estimator for the
Q-Value of each discrete action. Temporal difference updates allow the network to
bootstrap targets from a history of experiences stored in a replay memory. A target
network is used to improve stability of learning.

In continuous action space, the DDPG algorithm uses an actor-critic archi-
tecture where both actor and critic networks are approximated using deep neural
networks. Unlike DQN, the critic network takes an action as input and outputs
a Q-Value. The critic is trained using temporal difference updates and the actor
is trained by backpropagation - following the gradients that maximize the critic’s
estimated Q-Value. To ensure stability during learning, both the actor and critic
networks use target networks. Due to the difficulty of finding a max in continuous
action space, off-policy updates are approximated by using an action generated by
actor’s current policy.

28

Chapter 3

Deep RL for Partially Observed MDPs

Chapter 2 introduced the basics of deep learning and reinforcement learning
then touched on some specific algorithms for deep reinforcement learning includ-
ing DQN and DDPG. This chapter describes using recurrent neural networks to
extend DQN to help handle partial observability. To understand this chapter, a solid
understanding of Atari domain (presented in Chapter 2.4), MDPs and partial ob-
servability (Chapter 2.1) as well as the DQN algorithm is required. For additional
background on DQN, see Chapter 2.6. This chapter addresses the portion of the
thesis question regarding how deep neural networks can be leveraged to extend re-
inforcement learning towards domains featuring partial observability.1 This chapter
is the basis of thesis contribution 1.2

Deep Q-Networks (DQNs) have been shown to be capable of learning human-
level control policies on a variety of different Atari 2600 games (Mnih et al., 2015).
True to their name, DQNs learn to estimate the Q-Values (or long-term discounted
returns) of selecting each possible action from the current game state. Given that
the network’s Q-Value estimate is sufficiently accurate, a game may be played by
selecting the action with the maximal Q-Value at each timestep. Learning policies
mapping from raw screen pixels to actions, these networks have been shown to
achieve state-of-the-art performance on many Atari 2600 games.

However, Deep Q-Networks are limited in the sense that they learn a map-
ping from a limited number of past states, or game screens in the case of Atari
2600. In practice, DQN is trained using an input consisting of the last four states
the agent has encountered. Thus DQN will be unable to master games that require
the player to remember events more distant than four screens in the past. Put dif-
ferently, any game that requires a memory of more than four frames will appear
non-Markovian because the future game states (and rewards) depend on more than

1This Chapter is based in part on the following publication (Hausknecht and Stone, 2015).
2See list of thesis contributions in Chapter 1.2.

29

just DQN’s current input. Instead of a Markov Decision Process (MDP), the game
becomes a Partially-Observable Markov Decision Process (POMDP).

Real-world tasks often feature incomplete and noisy state information re-
sulting from partial observability. As Figure 3.1 shows, given only a single game
screen, many Atari 2600 games are POMDPs. One example is the game of Pong in
which the current screen only reveals the location of the paddles and the ball, but
not the velocity of the ball. Knowing the direction of travel of the ball is a crucial
component for determining the best paddle location.

(a) Pong (b) Frostbite (c) Double Dunk

Figure 3.1: Nearly all Atari 2600 games feature moving objects. Given only one
frame of input, Pong, Frostbite, and Double Dunk are all POMDPs because a single
observation does not reveal the velocity of the ball (Pong, Double Dunk) or the
velocity of the icebergs (Frostbite).

We observe that DQN’s performance declines when given incomplete state
observations and hypothesize that DQN may be modified to better deal with POMDPs
by leveraging advances in Recurrent Neural Networks. Therefore we introduce the
Deep Recurrent Q-Network (DRQN), a combination of a Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and a Deep Q-Network. Crucially,
we demonstrate that DRQN is capable of handing partial observability, and that
when trained with full observations and evaluated with partial observations, DRQN
better handles the loss of information than does DQN. Thus, recurrency confers

30

benefits as the quality of observations degrades. This result is the basis of the the-
sis contribution 1 regarding leveraging deep neural networks towards domains that
feature partial observability.

3.1 Partial Observability

In real world environments it is rare that the full state of the system can be
provided to the agent or even be determined. In other words, the Markov property
rarely holds in real world environments. A Partially Observable Markov Decision
Process (POMDP) better captures the dynamics of many real-world environments
by explicitly acknowledging that the sensations received by the agent are only par-
tial glimpses of the underlying system state. Formally a POMDP can be described
as a 6-tuple (S,A,P ,R,Ω,O). S,A,P ,R are the states, actions, transitions, and
rewards as before, except now the agent is no longer privy to the true system state
and instead receives an observation o ∈ Ω. This observation is generated from the
underlying system state according to the probability distribution o ∼ O(s). Deep
Q-Learning, as originally described (Mnih et al., 2015), has no explicit mechanisms
for deciphering the underlying state of the POMDP and is only effective if the ob-
servations are reflective of underlying system states. In the general case, estimating
a Q-value from an observation can be arbitrarily bad since Q(o, a|θ) 6= Q(s, a|θ).

Our experiments show that adding recurrency to Deep Q-Learning allows
the Q-network network to better estimate the underlying system state, narrowing the
gap between Q(o, a|θ) and Q(s, a|θ). Stated differently, recurrent deep Q-networks
can better approximate actual Q-values from sequences of observations, leading to
better policies in partially observed environments.

3.2 DRQN Architecture

To isolate the effects of recurrency, we minimally modify the architecture of
DQN, replacing only its first fully connected layer with a recurrent LSTM layer of
the same size. These changes are minimal in the sense that no new layers are added

31

and the number of nodes in each layer is unchanged. Alternative architectures are
presented in Section 3.10. Depicted in Figure 3.2, the architecture of DRQN takes a
single 84× 84 preprocessed image. Specifically, the first hidden layer convolves 32
8× 8 filters with stride 4 across the input image and applies a rectifier nonlinearity.
The second hidden layer convolves 64 4 × 4 filters with stride 2, again followed
by a rectifier nonlinearity. The third hidden layer convolves 64 3 × 3 filters with
stride 1, followed by a rectifier. The outputs from this convolutional stack are fed
to the fully connected LSTM layer (Hochreiter and Schmidhuber, 1997). Finally,
a linear layer outputs a Q-Value for each action. During training, the parameters
for both the convolutional and recurrent portions of the network are learned jointly
from scratch.

3.3 Stable Recurrent Updates

Updating a recurrent, convolutional network requires each backward pass
to contain many time-steps of game screens and target values. Additionally, the
LSTM’s initial hidden state may either be zeroed or carried forward from its previ-
ous values. We consider two types of updates:

Bootstrapped Sequential Updates: Episodes are selected randomly from
the replay memory and updates begin at the beginning of the episode and proceed
forward through time to the conclusion of the episode. The targets at each timestep
are generated from the target Q-network, Q̂. The RNN’s hidden state is carried
forward throughout the episode.

Bootstrapped Random Updates: Episodes are selected randomly from the
replay memory and updates begin at random points in the episode and proceed
for only unroll iterations timesteps (e.g. one backward call). The targets at each
timestep are generated from the target Q-network, Q̂. The RNN’s initial state is
zeroed at the start of the update.

Algorithm 1 provides pseudocode for both types of update. Sequential up-
dates have the advantage of carrying the LSTM’s hidden state forward from the
beginning of the episode. However, by sampling experiences sequentially for a full

32

Q-Values 18

LSTM 512

64

7 7

Conv3
64-filters
3× 3
Stride 1

64

9
9

Conv2
64-filters
4× 4
Stride 2

32

20
20

Conv1
32-filters
8× 8
Stride 4

1

84

84

. . .

Figure 3.2: DRQN convolves three times over a single-channel image of the game
screen. The resulting activations are processed through time by an LSTM layer. The
last two timesteps are shown here. LSTM outputs become Q-Values after passing
through a fully-connected layer. Convolutional filters are depicted by rectangular
sub-boxes with pointed tops.

episode, they violate DQN’s random sampling policy.
Random updates better adhere to the policy of randomly sampling experi-

ence, but, as a consequence, the LSTM’s hidden state must be zeroed at the start of
each update. Zeroing the hidden state makes it harder for the LSTM to learn func-
tions that span longer time scales than the number of timesteps reached by back
propagation through time.

Informal experiments comparing these two updates indicate that both types
of updates are viable and yield convergent policies with similar performance across

33

Algorithm 1 Recurrent Update Algorithms
1: procedure BOOTSTRAPPED SEQUENTIAL UPDATE

2: sample episode E randomly from D
3: h←< 0, . . . , 0 > . Initial LSTM hidden state is all zeroes.
4: n← 0 . Start update a timestep zero.
5: for timestep {tn . . . tn+unroll} ∈ E do
6: h← BPTT({tn . . . tn+unroll}, h) . Backpropagation through time.
7: n← n+ unroll . Unroll is 10 in experiments.
8:
9: procedure BOOTSTRAPPED RANDOM UPDATE

10: sample episode E randomly from D
11: sample n randomly from {0, . . . , |E| − unroll}
12: h←< 0, . . . , 0 >
13: timestep {tn . . . tn+unroll} ∈ E
14: BPTT({tn . . . tn+unroll}, h)

a set of games. Therefore, to limit complexity, all results herein use the randomized
update strategy. We expect that all presented results would generalize to the case of
sequential updates.

Having addressed the architecture and updating of a Deep Recurrent Q-
Network, we now show how it performs on domains featuring partial observability.

3.4 Atari Games: MDP or POMDP?

The state of an Atari 2600 game is fully described by the 128 bytes of con-
sole RAM. Humans and agents, however, observe only the console-generated game
screens. For many games, a single game screen is insufficient to determine the state
of the system. DQN infers the full state of an Atari game by expanding the state
representation to encompass the last four game screens. Many games that were
previously POMDPs now become MDPs. Of the 49 games investigated by (Mnih
et al., 2015), the authors were unable to identify any that were partially observable
given the last four frames of input.3 Since the explored games are fully observable

3Some Atari games are undoubtedly POMDPs such as Blackjack in which the dealer’s cards are
hidden from view. Unfortunately, Blackjack is not supported by the ALE emulator.

34

given four input frames, we need a way to introduce partial observability without
reducing the number of input frames given to DQN.

3.5 Flickering Pong POMDP

To address this problem, we introduce the Flickering Pong POMDP - a mod-
ification to the classic game of Pong such that at each timestep, the screen is either
fully revealed or fully obscured with probability p = 0.5. Obscuring frames in this
manner probabilistically induces an incomplete memory of observations needed for
Pong to become a POMDP.

In order to succeed at the game of Flickering Pong, it is necessary to integrate
information across frames to estimate relevant variables such as the location and
velocity of the ball and the location of the paddle. Since half of the frames are
obscured in expectation, a successful player must be robust to the possibility of
several potentially contiguous obscured inputs.

We train 3 types of networks to play Flickering Pong: the recurrent 1-frame
DRQN, a standard 4-frame DQN, and an augmented 10-frame DQN. The standard
4-frame DQN is trained in order to compare directly to previous work (Mnih et al.,
2015). The 1-frame DRQN is trained using BPTT for the last 10-frames, so it has an
effective memory of length 10. To make the comparison fair, we trained a version
of DQN that also has access to the same amount of history - e.g. 10 frames. Thus,
both 10-frame DQN and 1-frame DRQN have access to the same length of history
and only differ in their architecture. As Figure 3.5 indicates, providing more frames
to DQN improves performance. Nevertheless, even with 10 frames of history, DQN
still struggles to achieve positive scores.

Perhaps the most important opportunity presented by a history of game
screens is the ability to convolutionally detect object velocity. Figure 3.3 visualizes
the game screens maximizing the activations of different convolutional filters and
confirms that the 10-frame DQN’s filters do detect object velocity, though perhaps
less reliably than normal unobscured Pong.4

4(Guo et al., 2014) also confirms that convolutional filters learn to respond to patterns of move-

35

(a) Conv1 Filters

(b) Conv2 Filters

(c) Conv3 Filters

Figure 3.3: Convolution filters learned by 10-frame DQN on the game of Pong.
Each row plots the input frames that trigger maximal activation of a particular con-
volutional filter in the specified layer. The red bounding box illustrates the portion
of the input image that caused the maximal activation. Most filters in the first con-
volutional layer detect only the paddle. Conv2 filters begin to detect ball movement
in particular directions and some jointly track the ball and the paddle. Nearly all
Conv3 filters track ball and paddle interactions including deflections, ball velocity,
and direction of travel.

36

(a) Image sequences maximizing LSTM units

Figure 3.4: Frame sequences that maximally activate DRQN’s LSTM units. Each
row corresponds to a single LSTM unit (out of DRQN’s 512 LSTM units) and each
column depicts the 10-frame sequences that maximally activate that unit. In other
words, each row shows the five in-game scenarios that caused a specific LSTM
unit to maximally respond. The three LSTM units shown were selected because
they exhibited interesting and highly-interpretable patterns of behavior. Not all 512
LSTM units were as interpretable, but many were. In general, despite seeing only
a single frame at a time, individual LSTM units also detect high level events: the
agent missing the ball, ball reflections off of paddles, and ball reflections off the
walls.

37

Remarkably, DRQN performs well at this task even when given only one
input frame per timestep. With a single frame it is impossible for DRQN’s convolu-
tional layers to detect any type of velocity. Instead, the higher-level recurrent layer
must compensate for both the flickering game screen and the lack of convolutional
velocity detection. Even so, DRQN regularly achieves scores exceeding 10 points
out of a maximum of 21. Figure 3.4 confirms that individual units in the LSTM
layer are capable of integrating noisy single-frame information through time to de-
tect high-level Pong events such as the player missing the ball, the ball reflecting
on a paddle, or the ball reflecting off the wall.

DRQN is trained using backpropagation through time for the last ten timesteps.
Thus both the non-recurrent 10-frame DQN and the recurrent 1-frame DRQN have
access to the same history of game screens.5 DRQN makes better use of the limited
history to achieve higher scores.

Thus, when dealing with partial observability, a choice exists between using
a non-recurrent deep network with a long history of observations or using a recur-
rent network trained with a single observation at each timestep. Flickering Pong
provides an example in which a recurrent deep network performs better even when
given access to the same number of past observations as the non-recurrent network.
The performance of DRQN and DQN is further compared across as set of ten games
(Table 3.1), where no systematic advantage is observed for either algorithm.

3.6 Experimental Details

In all experiments reported in the remainder of this chapter, DRQN and DQN
policies were evaluated every 50,000 iterations by playing 10 episodes and averag-
ing the resulting scores. Networks were trained for 10 million iterations and used
a replay memory of size 400,000. Additionally, all networks used ADADELTA
(Zeiler, 2012) optimizer with a learning rate of 0.1 and momentum of 0.95. LSTM’s
gradients were clipped to a value of 10 to ensure learning stability. All other settings

ment seen in game objects.
5However, (Karpathy et al., 2015) show that LSTMs can learn functions at training time over a

limited set of timesteps and then generalize them at test time to longer sequences.

38

Figure 3.5: Flickering Pong

Figure 3.6: In the partially-observable Flickering Pong environment, DRQN proves
far more capable at handling the noisy sensations than DQN despite having only a
single frame of input. Lacking recurrency, 4-frame DQN struggles to overcome
the partial observability induced by the flickering game screen. This struggle is
partially, but not entirely, remedied by providing DQN with 10-frames of history.

39

0.0 0.2 0.4 0.6 0.8 1.0
Observation Probability

20

15

10

5

0

5

10

15

20
DRQN 1-frame
DQN 10-frame
DQN 4-frame

Figure 3.7: Policy Generalization

Figure 3.8: After being trained with observation probability of 0.5, the learned poli-
cies are then tested for generalization. The policies learned by DRQN generalize
gracefully to different observation probabilities. DQN’s performance peaks slightly
above the probability on which it was trained. Errorbars denote standard error.

40

were identical to those given in (Mnih et al., 2015). All networks were trained us-
ing the Arcade Learning Environment ALE (Bellemare et al., 2013). The following
ALE options were used: color averaging, minimal action set, and death detection.
DRQN is implemented in Caffe (Jia et al., 2014).

3.7 Generalization Performance

To analyze the generalization performance of the Flickering Pong players,
we evaluate the best policies for DRQN, 10-frame DQN, and 4-frame DQN while
varying the probability of obscuring the screen. Note that these policies were all
trained on Flickering Pong with p = 0.5 and are now evaluated against different p
values. Figure 3.7 shows that DRQN performance continues improving as the prob-
ability of observing a frame increases. In contrast, 10-frame DQN’s performance
peaks near the observation probability for which it has been trained and declines
even as more frames are observed. Thus DRQN learns a policy which allows per-
formance to scale as a function of observation quality. Such a property is valuable
for domains in which the quality of observations varies through time.

3.8 Evaluation on Standard Atari Games

We selected the following nine Atari games for evaluation: Asteroids and
Double Dunk feature naturally-flickering sprites making them good potential can-
didates for recurrent learning. Beam Rider, Centipede, and Chopper Command

are shooters. Frostbite is a platformer similar to Frogger. Ice Hockey and Double

Dunk are sports games that require positioning players, passing and shooting the
puck/ball, and require the player to be capable of both offense and defense. Bowl-

ing requires actions to be taken at a specific time in order to guide the ball. Ms

Pacman features flickering ghosts and power pills. These nine games span different
genres (shooting, exploration, sports, etc) and were selected to be a representative
subset of the full set of Atari games.

Given the last four frames of input, all of these games are MDPs rather than

41

POMDPs. Thus there is no reason to expect DRQN to outperform DQN. Indeed,
results in Table 3.1 indicate that on average, DRQN does roughly as well DQN.
Specifically, our re-implementation of DQN performs similarly to the original, out-
performing the original on five out of the nine games, but achieving less than half
the original score on Centipede and Chopper Command. DRQN performs outper-
forms our DQN on the games of Frostbite and Double Dunk, but does significantly
worse on the game of Beam Rider (Figure 3.9). The game of Frostbite (Figure 3.1b)
requires the player to jump across all four rows of moving icebergs and return to the
top of the screen. After traversing the icebergs several times, enough ice has been
collected to build an igloo at the top right of the screen. Subsequently the player can
enter the igloo to advance to the next level. As shown in Figure 3.9, after 12,000
episodes DRQN discovers a policy that allows it to reliably advance past the first
level of Frostbite.

DRQN ±std DQN ±std
Game Ours Mnih et al.
Asteroids 1020 (±312) 1070 (±345) 1629 (±542)
Beam Rider 3269 (±1167) 6923 (±1027) 6846 (±1619)
Bowling 62 (±5.9) 72 (±11) 42 (±88)
Centipede 3534 (±1601) 3653 (±1903) 8309 (±5237)
Chopper Cmd 2070 (±875) 1460 (±976) 6687 (±2916)
Double Dunk -2 (±7.8) -10 (±3.5) -18.1 (±2.6)
Frostbite 2875 (±535) 519 (±363) 328.3 (±250.5)
Ice Hockey -4.4 (±1.6) -3.5 (±3.5) -1.6 (±2.5)
Ms. Pacman 2048 (±653) 2363 (±735) 2311 (±525)

Table 3.1: On standard Atari games, DRQN performance parallels DQN, excelling
in the games of Frostbite and Double Dunk, but struggling on Beam Rider. Bolded
font indicates statistical significance (using a student’s t-test) between DRQN and
our reimplementation of DQN.

3.9 MDP to POMDP Generalization

Figure 3.7 shows that DRQN performance increases when trained on a POMDP
and then evaluated on a MDP. Arguably the more interesting question is the re-

42

Figure 3.9: Frostbite and Beam Rider represent the best and worst games for
DRQN. Frostbite performance jumps as the agent learns to reliably complete the
first level.

43

verse: can a recurrent network be trained on a standard MDP and then generalize
to a POMDP at evaluation time? To address this question, we evaluate the highest-
scoring policies of DRQN and DQN over the flickering equivalents of all 9 games
in Table 3.1. Figure 3.10 shows that while both algorithms incur significant per-
formance decreases on account of the missing information, DRQN captures more
of its previous performance than DQN across all levels of flickering. We conclude
that recurrent controllers have a certain degree of robustness against missing infor-
mation, even trained with full state information.

0.0 0.2 0.4 0.6 0.8 1.0

Observation Probability

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 O

ri
g
in

a
l
S
co

re

DRQN

DQN

Figure 3.10: When trained on normal games (MDPs) and then evaluated on flick-
ering games (POMDPs), DRQN’s performance degrades more gracefully than
DQN’s. Each data point shows the average percentage of the original game score
over all 9 games in Table 3.1.

3.10 Alternative Architectures

DRQN’s architecture, in which the LSTM layer is located directly after the
last convolutional layer (e.g. replacing DQN’s IP1 layer) was the best perform-
ing architecture of a number of candidates. Alternative architectures were evalu-

44

ated on the game of Beam Rider. We explored the possibility of either replacing
the first non-convolutional fully connected layer with an LSTM layer (LSTM re-
places IP1, the DRQN architecture described in this chapter) or adding the LSTM
layer between the first and second fully connected layers (LSTM over IP1). Results
strongly indicated LSTM should replace IP1. We hypothesize that having LSTM
replace IP1 allows LSTM direct access to the convolutional features. Additionally,
adding a Rectifier layer after the LSTM layer consistently reduced performance.

Description Percent Improvement
LSTM replaces IP1 709%
ReLU-LSTM replaces IP1 533%
LSTM over IP1 418%
ReLU-LSTM over IP1 0%

Table 3.2: Percentage improvement over ReLU-LSTM after IP1 Layer. Consistent
improvements are observed when not applying ReLU activation function to LSTM
outputs and also when locating the LSTM layer directly after the last convolutional
layer. Row 1 corresponds to the architecture used throughout the rest of the chapter.

Another possible architecture combines frame stacking from DQN with the
recurrency of LSTM. This architecture accepts a stack of the four latest frames
at every timestep. The LSTM portion of the architecture remains the same and
is unrolled over the last 10 timesteps. In theory, this modification should allow
velocity detection to happen in the convolutional layers of the network, leaving the
LSTM free to perform higher-order processing. This architecture has the largest
number of parameters and requires the most training time. Unfortunately, results
show that the additional parameters do not lead to increased performance on the set
of games examined. It is possible that the network has too many parameters and is
prone to overfitting the training experiences it has seen.

3.11 Computational Efficiency

Computational efficiency of RNNs is an important concern. We conducted
experiments by performing 1000 backwards and forwards passes and reporting the

45

average time in milliseconds required for each pass. Experiments used a single
Nvidia GTX Titan Black using CuDNN and a fully optimized version of Caffe.
Results indicate that computation scales sub-linearly in both the number of frames
stacked in the input layer and the number of iterations unrolled. Even so, models
trained on a large number of stacked frames and unrolled for many iterations are
often computationally intractable. For example a model unrolled for 30 iterations
with 10 stacked frames would require over 56 days to reach 10 million iterations.
Thus, the ability of an RNN to process information through time is counterbalanced
by the additional computational cost when training. In practice, the choice between
a recurrent and non-recurrent model will often depend on the characteristics of the
domain (e.g. partial observability) and the availability of computational resources.

Backwards (ms) Forwards (ms)
Frames 1 4 10 1 4 10
Baseline 8.82 13.6 26.7 2.0 4.0 9.0
Unroll 1 18.2 22.3 33.7 2.4 4.4 9.4
Unroll 10 77.3 111.3 180.5 2.5 4.4 8.3
Unroll 30 204.5 263.4 491.1 2.5 3.8 9.4

Table 3.3: Average milliseconds per backwards/forwards pass. Frames refers to the
number of channels in the input image. Baseline is a non recurrent network (e.g.
DQN). Unroll refers to an LSTM network backpropagated through time 1/10/30
steps.

3.12 Related Work

Previously, LSTM networks have been demonstrated to solve POMDPs when
trained using policy gradient methods (Wierstra et al., 2007). In contrast to policy
gradient, our work uses temporal-difference updates to bootstrap an action-value
function. Additionally, by jointly training convolutional and LSTM layers we are
able to learn directly from pixels and do not require hand-engineered features.

LSTM has been used as an advantage-function approximator and shown to
solve a partially observable corridor and cartpole tasks better better than comparable

46

(non-LSTM) RNNs (Bakker, 2001). While similar in principle, the corridor and
cartpole tasks feature tiny states spaces with just a few features.

In parallel to our work, (Narasimhan et al., 2015) independently combined
LSTM with Deep Reinforcement Learning to demonstrate that recurrency helps
to better play text-based fantasy games. The approach is similar but the domains
differ: despite the apparent complexity of the fantasy-generated text, the underlying
MDPs feature relatively low-dimensional manifolds of underlying state space. The
more complex of the two games features only 56 underlying states. Atari games,
in contrast, feature a much richer state space with typical games having millions of
different states. However, the action space of the text games is much larger with a
branching factor of 222 versus Atari’s 18.

3.13 Chapter Summary

Real-world tasks often feature incomplete and noisy state information, re-
sulting from partial observability. This chapter described our work to modify DQN
to handle the noisy observations characteristic of POMDPs by combining a Long
Short Term Memory with a Deep Q-Network. The resulting Deep Recurrent Q-

Network (DRQN), despite seeing only a single frame at each step, is still capable of
integrating information across frames to detect relevant information such as velocity
of on-screen objects. Additionally, on the game of Pong, DRQN is better equipped
than a standard Deep Q-Network to handle the type of partial observability induced
by flickering game screens.

Furthermore, when trained with partial observations, DRQN can generalize
its policies to the case of complete observations. On the Flickering Pong domain,
performance scales with the observability of the domain, reaching near-perfect lev-
els when every game screen is observed. This result indicates that the recurrent
network learns policies that are robust enough to handle missing game screens and
scalable enough to improve performance as observability increases. Generalization
also occurs in the opposite direction: when trained on standard Atari games and
evaluated against flickering games, DRQN’s performance generalizes better than

47

DQN’s at all levels of partial information.
Our experiments suggest that Pong represents an outlier among the exam-

ined games. Across a set of ten Flickering MDPs we observe no systematic im-
provement when employing recurrency. Similarly, across non-flickering Atari games,
there are few significant differences between the recurrent and non-recurrent player.
This observation leads us to conclude that while recurrency is a viable method for
handling state observations, it confers no systematic benefit compared to stacking
the observations in the input layer of a convolutional network. One avenue for fu-
ture research is identifying the relevant characteristics of Pong and Frostbite that
lead to better performance by recurrent networks.

48

Chapter 4

Deep RL in Parameterized Action Space

Building on the fundamentals presented in Chapter 2 as well as the DDPG
algorithm (Chapter 2.7), this chapter describes a successful application of deep re-
inforcement learning to the Half Field Offense Domain. This chapter assumes fa-
miliarity with the DDPG algorithm presented in Chapter 2.7 as well as the Half
Field Offense domain (Chapter 2.5). This chapter contributes to the portion of the
thesis question concerned with leveraging deep neural networks towards domains
that feature continuous parameterized action space and forms the basis of thesis
contribution 3: Deep RL in parameterized action space.1

Specifically, this chapter extends the Deep Deterministic Policy Gradients
(DDPG) algorithm (Lillicrap et al., 2015) (discussed in Chapter 2.7) into a param-
eterized action space. We document two modifications to the published version of
the DDPG algorithm: namely bounding action space gradients and on-policy up-
dates. We found these modifications necessary for stable learning in this domain
and we expect they will be valuable for future practitioners attempting to learn in
continuous, bounded action spaces.

Furthermore, this chapter demonstrates reliable learning, from scratch, of
RoboCup soccer policies capable of goal scoring. These policies operate on a low-
level continuous state space and a parameterized-continuous action space. Using a
single reward function, the agents learn to locate and approach the ball, dribble to
the goal, and score on an empty goal. The best learned agent proves more reliable
at scoring goals, though slower, than the hand-coded 2012 RoboCup champion.

Half-Field-Offense (see Chapter 2.5 for more details) is a research platform
for exploring single agent learning, multi-agent learning, and adhoc teamwork.
HFO features a low-level continuous state space and parameterized-continuous ac-
tion space. Specifically, the parameterized action space requires the agent to first

1This chapter is based in part on the following publication (Hausknecht and Stone, 2016a). I am
the primary author of the research in this chapter and the related publication.

49

select the type of action it wishes to perform from a discrete list of high level actions
and then specify the continuous parameters to accompany that action. This param-
eterization introduces structure not found in a purely continuous action space.

The rest of this chapter is organized as follows: we first present the reward
signal used in the HFO empty goal task. Next we discuss the architecture used for
the parameterized action space learning. Section 4.5 presents a method of bounding
action space gradients, and Section 4.8 describes a method for mixing off-policy
and on-policy updates. Finally, Section 4.7 covers experiments and results.

4.1 Reward Signal

True rewards in the HFO domain come from winning full games. However,
such a reward signal is far too sparse for learning agents to gain traction. Instead
we introduce a hand-crafted reward signal with four components: Move To Ball
Reward provides a scalar reward proportional to the change in distance between
the agent and the ball d(a, b). An additional reward Ikick of 1 is given the first time
the agent is close enough to kick the ball. Kick To Goal Reward is proportional
to the change in distance between the ball and the center of the goal d(b, g). An
additional reward is given for scoring a goal Igoal. A weighted sum of these compo-
nents results in a single reward that first guides the agent close enough to kick the
ball, then rewards for kicking towards goal, and finally for scoring. It was neces-
sary to provide a higher gain for the kick-to-goal component of the reward because
immediately following each kick, the move-to-ball component produces negative
rewards as the ball moves away from the agent. The overall reward is as follows:

rt = dt−1(a, b)− dt(a, b) + Ikickt + 3
(
dt−1(b, g)− dt(b, g)

)
+ 5Igoalt (4.1)

In addition to potentially biasing the optimal policy, it is disappointing that
reward engineering is necessary. However, the exploration task proves far too dif-
ficult to ever gain traction on a reward that consists only of scoring goals, because

50

acting randomly is exceedingly unlikely to yield even a single goal in any reason-
able amount of time. An interesting direction for future work is to find better ways
of exploring large state spaces. One recent approach in this direction, (Stadie et al.,
2015) assigned exploration bonuses based on a model of system dynamics.

4.2 Network Architecture

The architecture and update for DDPG is discussed in Chapter 2.7 and de-
picted in Figure 2.3. Both the actor and critic employ the same architecture: The 58
state inputs are processed by four fully connected layers consisting of 1024-512-
256-128 units respectively. Each fully connected layer is followed by a rectified
linear (ReLU) activation function with negative slope 10−2. Weights of the fully
connected layers use Gaussian initialization with a standard deviation of 10−2. Con-
nected to the final inner product layer are two linear output layers: one for the four
discrete actions and another for the six parameters accompanying these actions. In
addition to the 58 state features, the critic also takes as input the four discrete actions
and six action parameters. It outputs a single scalar Q-value. We use the ADAM
solver with both actor and critic learning rate set to 10−3. Target networks track the
actor and critic using a τ = 10−4. Complete source code for our agent is available
at https://github.com/mhauskn/dqn-hfo and for the HFO domain at
https://github.com/mhauskn/HFO/. Building on this architecture, we
now present the parameterized action space.

4.3 Parameterized Action Space Architecture

Following notation in (Masson and Konidaris, 2015), a Parameterized Ac-
tion Space Markov Decision Process (PAMDP) is defined by a set of discrete ac-
tions Ad = {a1, a2, . . . , ak}. Each discrete action a ∈ Ad features ma continuous
parameters {pa1, . . . , pama} ∈ Rma . Actions are represented by tuples (a, pa1, . . . , p

a
ma).

Thus the overall action space A = ∪a∈Ad(a, pa1, . . . , pama).
In Half Field Offense, the complete parameterized action space (Section

51

https://github.com/mhauskn/dqn-hfo
https://github.com/mhauskn/HFO/

2.5.2) isA = (Dash, pdash
1 , pdash

2)∪(Turn, pturn
3)∪(Tackle, ptackle

4)∪(Kick, pkick
5 , pkick

6).
The actor network in Figure 2.3 factors the action space into one output layer for
discrete actions (Dash,Turn,Tackle,Kick) and another for all six continuous pa-
rameters (pdash

1 , pdash
2 , pturn

3 , ptackle
4 , pkick

5 , pkick
6).

4.4 Action Selection and Exploration

Using the factored action space, deterministic action selection proceeds as
follows: At each timestep, the actor network outputs values for each of the four
discrete actions as well as six continuous parameters. The discrete action is chosen
to be the maximally valued output a = max(Dash,Turn,Tackle,Kick) and paired
with associated parameters from the parameter output layer (a, pa1, . . . , p

a
ma). Thus

the actor network simultaneously chooses which discrete action to execute and how
to parameterize that action.

During training, the critic network receives, as input, the values of the output
nodes of all four discrete actions and all six action parameters. We do not indicate
to the critic which discrete action was actually applied in the HFO environment or
which continuous parameters are associated with that discrete action. Similarly,
when updating the actor, the critic provides gradients for all four discrete actions
and all six continuous parameters. While it may seem that the critic is lacking
crucial information about the structure of the action space, our experimental results
in Section 4.7 demonstrate that the critic learns to provide gradients to the correct
parameters of each discrete action.

Exploration in continuous action space differs from that in discrete space.
We adapt ε-greedy exploration to parameterized action space: with probability ε, a
random discrete action a ∈ Ad is selected and the associated continuous parameters
{pa1, . . . , pama} are sampled using a uniform random distribution. Experimentally,
we anneal ε from 1.0 to 0.1 over the first 10, 000 updates. (Lillicrap et al., 2015)
demonstrate that Ornstein-Uhlenbeck exploration is also successful in continuous
action space.

52

4.5 Bounded Parameter Space Learning

The Half Field Offense domain bounds the range of each continuous param-
eter. Parameters indicating direction (e.g. Turn and Kick direction) are bounded in
[−180, 180] and parameters for power (e.g. Kick and Dash power) are bounded in
[0, 100]. Without enforcing these bounds, after a few hundred updates, we observed
continuous parameters routinely exceeding the bounds. If updates were permitted
to continue, parameters would quickly trend towards astronomically large values.
This problem stems from the critic providing gradients that encourage the actor net-
work to continue increasing a parameter that already exceeds bounds. We explore
three approaches for preserving parameters in their intended ranges:

Zeroing Gradients: Perhaps the simplest approach is to examine the critic’s
gradients for each parameter and zero the gradients that suggest increasing/decreasing
the value of a parameter that is already at the upper/lower limit of its range:

∇p =

∇p if pmin < p < pmax

0 otherwise
(4.2)

Where ∇p indicates the critic’s gradient with respect to parameter p, (e.g.
∇pQ(st, a|θQ)) and pmin, pmax, p indicate respectively the minimum bound, maxi-
mum bound, and current activation of that parameter.

Squashing Function: The hyperbolic tangent (tanh) squashing function is
used to bound the activation of each parameter. Subsequently, the parameters are re-
scaled into their intended ranges. This approach has the advantage of not requiring
manual gradient tinkering (∇p = ∇p), but presents issues if the squashing function
saturates.

Inverting Gradients: This approach captures the best aspects of the zero-
ing and squashing gradients, while minimizing the drawbacks. Gradients are down-
scaled as the parameter approaches the boundaries of its range and are inverted if the
parameter exceeds the value range. This approach actively keeps parameters within
bounds while avoiding problems of saturation. For example, if the critic continu-
ally recommends increasing a parameter, it will converge to the parameter’s upper

53

bound. If the critic then decides to decrease that parameter, it will decrease immedi-
ately. In contrast, a squashing function would be saturated at the upper bound of the
range and require many updates to decrease. Mathematically, the inverted gradient
approach may be expressed as follows:

∇p = ∇p ·

(pmax − p)/(pmax − pmin) if ∇p suggests increasing p

(p− pmin)/(pmax − pmin) otherwise
(4.3)

It should be noted that these approaches are not specific to HFO or parame-
terized action space. Any domain featuring a bounded-continuous action space will
require a similar approach for enforcing bounds. All three approaches are empiri-
cally evaluated the next section.

4.6 Gradient Bounding Results

We evaluate the zeroing, squashing, and inverting gradient approaches in the
parameterized HFO domain on the task of approaching the ball and scoring a goal.
For each approach, we independently train two agents. All agents are trained for 3
million iterations, approximately 20,000 episodes of play. Training each agent took
three days on a NVidia Titan-X GPU.

Of the three approaches, only the inverting gradient shows robust learning.
Indeed both inverting gradient agents learned to reliably approach the ball and score
goals. None of the other four agents using the squashing or zeroing gradients were
able to reliably approach the ball or score.

Further analysis of the squashing gradient approach reveals that parameters
stayed within their bounds, but squashing functions quickly became saturated. The
resulting agents take the same discrete action with the same maximum/minimum
parameters each timestep. Given the observed proclivity of the critic’s gradients to
push parameters towards ever larger/small values, it is no surprise that squashing
functions quickly become saturated and never recover.

54

Further analysis of the zeroing gradient approach reveals two problems: 1)
parameters still overflow their bounds and 2) instability: While the gradient zeroing
approach negates any direct attempts to increase a parameter p beyond its bounds,
we hypothesize the first problem stems from gradients applied to other parameters
pi 6= pwhich inadvertently allow parameter p to overflow. Empirically, we observed
learned networks attempting to dash with a power of 120, more than the maximum
of 100. It is reasonable for a critic network to encourage the actor to dash faster.

Unstable learning was observed in one of the two zeroing gradient agents.
This instability is well captured in the Q-Values and critic losses shown in Figure
4.1. It’s not clear why this agent became unstable, but the remaining stable agent
showed clear results of not learning.

These results highlight the necessity of non-saturating functions that effec-
tively enforce action bounds. The approach of inverting gradients was observed to
respect parameter boundaries (observed dash power reaches 98.8 out of 100) with-
out saturating. As a result, the critic was able to effectively shape the actor’s policy.
Further evaluation of the reliability and quality of the inverting-gradient policies is
presented in the next section.

4.7 Single Agent Learning

We further evaluate the inverting gradient agents by comparing them to an
expert agent independently created by the Helios RoboCup-2D team. This agent
won the 2012 RoboCup-2D world championship and source code was subsequently
released (Akiyama, 2010). Thus, this hand-coded policy represents an extremely
competent player and a high performance bar.

As an additional baseline we compare to a SARSA learning agent. State-
Action-Reward-State-Action (SARSA) is an algorithm for model-free on-policy
Reinforcement Learning (Sutton and Barto, 1998). The SARSA agent learns in
a simplified version of HFO featuring high-level discrete actions for moving, drib-
bling, and shooting the ball. As input, it is given continuous features that include the
distance and angle to the goal center. Tile coding (Sutton and Barto, 1998) is used

55

5000 10000 15000
Episode

0

2

4

6

8

10

12
R

ew
ar

d

5000 10000 15000

Episode

0

2

4

6

8

10

12

R
ew

ar
d

5000 10000 15000

Episode

0

2

4

6

8

10

12

R
ew

ar
d

0 1000 2000 3000
Critic Iteration (x1000)

0

2

4

6

Av
er

ag
e

C
rit

ic
 Q

-V
al

ue

0 1000 2000 3000

Critic Iteration (x1000)

0

100000

200000

300000
A

ve
ra

ge
 C

rit
ic

 Q
­V

al
ue

0 1000 2000 3000

Critic Iteration (x1000)

0.5

0.0

0.5

A
ve

ra
ge

 C
rit

ic
 Q

­V
al

ue

0 1000 2000 3000
Critic Iteration (x1000)

0

50000

100000

150000

200000

Av
er

ag
e

C
rit

ic
 L

os
s

(a) Inverting Gradients

0 1000 2000 3000

Critic Iteration (x1000)

0.0

0.5

1.0

1.5

2.0

A
ve

ra
ge

 C
rit

ic
 L

os
s

1e8

(b) Zeroing Gradients

0 1000 2000 3000

Critic Iteration (*1000)

0.0000

0.0005

0.0010

0.0015

0.0020
A

ve
ra

ge
 C

rit
ic

 L
os

s

(c) Squashing Gradients

Figure 4.1: Analysis of gradient bounding strategies: The left/middle/right
columns respectively correspond to the inverting/zeroing/squashing gradients ap-
proaches to handling bounded continuous actions. First row depicts overall task
performance: Only the inverting gradient approach succeeds in learning the soccer
task. Second row shows average Q-Values produced by the critic throughout the
entire learning process: Inverting gradient approach shows smoothly increasing Q-
Values. Zeroing approach shows instability in the critic. The squashing approach
shows stable Q-Values that accurately reflect the actor’s performance. Third row
shows the average loss experienced during a critic update (Equation 2.9): As more
reward is experienced critic loss is expected to rise as past actions are seen as in-
creasingly sub-optimal. Inverting gradients shows growing critic loss. Zeroing
gradients approach shows unstably large loss. Squashing gradients never discovers
much reward and loss stays near zero.

56

to generate state features over the continuous state space. Experiences collected by
playing the game are then used to bootstrap a value function.

To show that the deep reinforcement learning process is reliable, in addition
to the previous two inverting-gradient agents we independently train another five
inverting-gradient agents, for a total of seven agents DDPG1−7. All seven agents
learned to score goals. Comparing against the Helios’ champion agent, each of
the learned agents is evaluated for 100 episodes on how quickly and reliably it can
score.

Six of seven DDPG agents outperform the SARSA baseline, and remark-
ably, three of the seven DDPG agents score more reliably than Helios’ champion
agent. Occasional failures of the Helios agent result from noise in the action space,
which occasionally causes missed kicks. In contrast, DDPG agents learn to take
extra time to score each goal, and become more accurate as a result. This extra time
is reasonable considering DDPG is rewarded only for scoring and experiences no
real pressure to score more quickly. We are encouraged to see that deep reinforce-
ment learning can produce agents competitive with and even exceeding an expert
handcoded agent.

4.8 Mixing On-Policy and Off-Policy Updates

Temporal-Difference (TD) methods learn online directly from experience,
do not require a model of the environment, offer guarantees of convergence to op-
timal performance, and are straightforward to implement (Sutton and Barto, 1998).
For all of these reasons, TD learning methods have been widely used since the in-
ception of reinforcement learning. Like TD methods, Monte Carlo methods also
learn online directly from experience. However, unlike TD-methods, Monte Carlo
methods do not bootstrap value estimates and instead learn directly from returns.
Figure 4.3 shows the relationship between these methods.2

In this section, we focus on two methods: on-policy Monte Carlo (Sutton and
Barto, 1998) and Q-Learning (Watkins and Dayan, 1992). On-policy MC employs

2This section is based in part on the work published at (Hausknecht and Stone, 2016b).

57

5000 10000 15000
Episode

0

2

4

6

8

10

12
R

ew
ar

d

(a) Learning Curve

Scoring Avg. Steps
Percent to Goal

Helios’ Champion .96 72.0
SARSA .81 70.7
DDPG1 1 108.0
DDPG2 .99 107.1
DDPG3 .98 104.8
DDPG4 .96 112.3
DDPG5 .94 119.1
DDPG6 .84 113.2
DDPG7 .80 118.2

(b) Evaluation Performance

Figure 4.2: Left: Scatter plot of learning curves of DDPG-agents with Lowess
curve. Three distinct phases of learning may be seen: the agents first get small
rewards for approaching the ball (episode 1500), then learn to kick the ball towards
the goal (episodes 2,000 - 8,000), and start scoring goals around episode 10,000.
Right: DDPG-agents score nearly as reliably as expert baseline, but take longer
to do so. A video of DDPG1’s policy may be viewed at https://youtu.be/
Ln0Cl-jE_40.

on-policy updates without any bootstrapping, while Q-Learning uses off-policy up-
dates with bootstrapping. Both algorithms seek to estimate the action-value func-
tion Q(s, a) directly from experience tuples of the form (st, at, rt, st+1, at+1) and
both provably converge to optimality so long as all state-value pairs are visited an
infinite number of times and the behavior policy eventually becomes greedy. Both
methods are driven by temporal difference updates which take the following form,
where y is the update target and α is a stepsize:

Q(st, at) = Q(st, at) + α(y −Q(st, at))

The main difference between these methods may be understood by examin-
ing their update targets. The update targets for Q-Learning, n-step-Q-learning, and
on-policy MC may be expressed as follows:

58

https://youtu.be/Ln0Cl-jE_40
https://youtu.be/Ln0Cl-jE_40

On-PolicyOff-Policy

B
oo

ts
tra

p
N

o-
B

oo
ts

tra
p

SARSA

Off-policy MC

n-step-return
 methods

On-policy MC

Q-Learning

Figure 4.3: Relationship of RL algorithms according to whether they bootstrap the
value function and if they are on or off-policy. This work compares Q-Learning
updates with On-Policy Monte-Carlo updates. N-step-reward methods such as N-
step-Q-Learning bridge the spectrum between Q-Learning and on-policy Monte-
Carlo.

yq-learning = rt + γmax
a
Q(st+1, a)

yn-step-q = rt + · · ·+ γn−1rt+n + γn max
a
Q(st+n+1, a)

yon-policy-monte-carlo =
∞∑
i=t

γi−tri

As seen in the update, the on-policy MC targets are estimated directly from
the rewards received in the experience tuples. In contrast the Q-Learning target
truncates the reward sequence with its own value estimate.

One way of relating Q-Learning to on-policy MC is to consider n-step-return
methods. These methods make use of multi-step returns and are potentially more
efficient at propagating rewards to relevant state-action pairs. On-policy MC is
realized when n approaches infinity (or maximum episode length). Recently, multi-
step returns have been shown to be useful in the context of deep reinforcement
learning (Mnih et al., 2016).

59

4.8.1 Motivation for On-Policy Updates

Using deep neural networks to approximate the value function is a double-
edged sword. Deep networks are powerful function approximators and strongly
generalize between similar state inputs. However, generalization can cause diver-
gence in the case of repeated boostrapped temporal-difference updates. Let us con-
sider the case of the same Q-Learning update applied to a deep neural network
parameterized by θ:

Q(st, at|θ) = rt+1 + γmax
a
Q(st+1, a|θ)

If it is the case that rt+1 > 0 and st is similar to st+1, then Q-Value estimates
will quickly diverge to infinity as this update is repeated. The divergence is because
the network’s generalization causes the estimate of st+1 to grow with the estimate
of st, causing update targets to continually grow.

To address this problem a target network is used to make bootstrap updates
more stable (Mnih et al., 2015).3 By updating the target network at a slower rate
than the main network, it is possible to limit the generalization from st+1 to st,
stabilize the update targets, and prevent Q-Value divergence. Using τ (typically
.001) to govern the rate that the target network follows the main network, the same
update using a target network θ̂ takes the following form:

Q(st, at|θ) = rt+1 + γmax
a
Q(st+1, a|θ̂)

θ̂ = τθ + (1− τ)θ̂

On-policy Monte Carlo updates remove the need for a target network since
the target is computed directly from the rewards of the trajectory rather than boot-
strapped. Such an update makes sense particularly when there is reason to believe
that the neural network’s estimates of the next stateQ(st+1, a|θ̂) are inaccurate, as is
typically the case when learning begins. Additionally, Monte Carlo update targets
cannot diverge since they are bounded by the actual rewards received. However, on-

3Another way to address this problem is to not repeatedly update the same experience tuple.

60

policy MC updates suffer from the problem that exploratory actions may negatively
skew Q-Value estimates. We now address the issue of how to efficiently compute
on-policy MC targets.

4.8.2 Computing On-Policy MC Targets

We store on-policy targets yt in the replay memory by augmenting each tran-
sition to include the on-policy target: (st, at, rt, yt, st+1, at+1). As shown in Algo-
rithm 2, we first accumulate a full episode of experience tuples then work backward
to compute on-policy targets and add augmented experiences to the replay memory.
Once stored in the replay memory, on-policy MC targets can be accessed directly
from the augmented experience tuples without requiring any additional computa-
tion.

Algorithm 2 Compute On-Policy MC Targets
Given: Trajectory T0...n, Replay Memory D
R← 0
for t ∈ {n . . . 0} do

R← rt + γR
yt ← R
D ← (st, at, rt, yt, st+1, at+1)

4.8.3 Mixing Update Targets

Rather than using exclusively on-policy or off-policy targets it is possible,
and in many cases desirable, to mix on-policy MC targets with off-policy 1-step Q-
Learning targets. Mixing is accomplished using a β parameter in [0, 1]. The overall
mixed update target is expressed as follows:

y = β yon-policy-MC + (1− β) yq-learning

Like n-step-return methods, mixed targets present a way to tradeoff between
on-policy MC updates, and off-policy bootstrap updates. This way of mixing targets

61

could be considered a special case of eligibility traces (Sutton and Barto, 1998):
eligibility traces mix all n-step returns while this method mixes the one-step return
with the Monte Carlo return. In principle, mixing all n-step returns is more general,
but requires much more computation to execute in practice. In particular, each
n-step return must be truncated by a Q-Value estimate, which requires a forward
pass through the Critic network. Thus, computing all n-step returns for an episode
requires n forward passes from the critic network. While it would be possible to
reuse these n-step returns if sequentially updating every experience in an episode, in
practice it is beneficial to randomly sample experiences from a replay memory that
spans multiple episodes (see Chapter 2.6 for more details). This random sampling
makes it difficult to perform an efficient eligibility trace update.

Therefore we choose to sacrifice the precision gained from mixing all n-step
returns in favor of the efficiency from just mixing the one-step and Monte-Carlo
targets. This approach requires only a single forward pass over the critic network
to estimate the Q-Value of the 1-step target and empirically yields good results.

The next sections present results using mixed update targets for the cases
of discrete action space learning using DQN and continuous action space learning
using DDPG.

4.8.4 Scoring on a Goalie

As in real soccer, the task of scoring on a goal keeper is far more difficult that
that of scoring on an empty goal. The goal keeper’s policy was independently pro-
grammed by Helios RoboCup 2D team (Akiyama, 2010) and is highly adept. The
keeper continually re-positions itself to prevent easy shots and charges the striker if
it nears the goal. The keeper blocks any shots within its reach, but the size of the
goal allows a correctly positioned striker to score with a precise kick.

We modify the task initialization in order to emphasize goal scoring rather
than approaching the ball. Specifically, to begin each episode we initialize the agent
three fifths of the way down the field and give it possession of the ball. The agent
must learn to dribble and position itself as well as learn to precisely kick the ball at
open goal angles. Rewards in this task are the same as in the empty goal task: the

62

agent is rewarded for approaching the ball, moving the ball towards the goal, and
scoring.

Results in Figure 4.5 show that mixed updates are not only more stable
and higher performing, they are also necessary to learn to reliably score on the
keeper. Preferring off-policy targets yields the best performance on this task with
β = 0.2 exhibiting the fastest learning and and a final policy that successfully
scores goals every time in an evaluation consisting of 100 episodes. In contrast,
the expert hand-coded Helios offense agent scores 81.4% of the time against the
keeper. This offense agent was programmed by an independent team of human
experts specifically for the task of RoboCup 2D soccer. That it is significantly
outperformed by a learned agent is a testament to power of modern deep rein-
forcement learning methods. A video of the learned policy may be viewed at
https://youtu.be/JEGMKvAoB34.

4.9 Chapter Summary

This chapter presented two extensions of the DDPG algorithm that allowed
it to better handle the parameterized action space of the Half Field Offense domain.
Inverting action gradients, the first extension was motivated by the bounded nature
of the continuous action space in HFO. In order to encourage DDPG to respect the
bounds on each continuous HFO action, we presented an approach for inverting
action gradients. This approach inspects the gradients that flow from the critic
to the actor and modifies them in such a way that the actions smoothly approach
the upper or lower bounds of their range and without saturating. Compared to
two alternative approaches - squashing or zeroing gradients, the inverting gradients
shows the quickest and most stable learning on the HFO task of scoring on an empty
goal.

The second extension two DDPG was mixing on-policy updates with off-
policy targets. Standard DDPG uses an approximate off-policy update in which
the update target is computed by an approximate max over next state actions. We
demonstrated a computationally efficient method for computing on-policy Monte

63

https://youtu.be/JEGMKvAoB34

(a) β = 0 (b) β = 0.2

(c) β = 0.5 (d) β = 0.8

(e) β = 1

Figure 4.4: Performance of mixed-updates on empty goal task: The maximum
possible reward is 11. Purely off-policy updates (β = 0) achieve this maximum
reward but show inconsistent performance. All of the mixed updates achieve the
maximum task performance with pure Monte Carlo (β = 1) doing best. Note that
the scale of the y-axis changes between plots.

64

(a) β = 0 (b) β = 0.2

(c) β = 0.5 (d) β = 0.8

(e) β = 1

Figure 4.5: Performance of mixed-updates on Keeper task: On this task, only
mixed-updates (β = 0.2, 0.5) achieve the maximum reward of 6 and are able to
learn to reliably score on the keeper. Off-policy updates (β = 0) and on-policy
updates (β = 0.8, 1) never reliably learn to score. Note that the scale of the y-axis
changes between plots.

65

Carlo update targets and show that by mixing the standard off-policy targets with
the on-policy targets, superior performance and stability is achieved on the empty
goal HFO task as well as a 1v1 HFO task. In fact, only by including the on-policy
Monte Carlo targets was the agent able to learn to reliably score on a goal keeper.
These two extensions are used throughout the future chapters of this thesis.

66

Chapter 5

Multiagent Deep Reinforcement Learning

In order to get the most from this chapter, a working understanding Chapter
4 is beneficial. However, it is possible to interpret the multiagent architectures
without a full understanding of DDPG or parameterized action space learning. This
chapter addresses the portion of the thesis question regarding how multiple deep
reinforcement learning agents can learn to cooperate in a multiagent setting. It
forms the basis for thesis contribution 4: An exploration of multiagent deep RL.

Multiagent reinforcement learning (Littman, 1994; Tan, 1998) has taken
shape as an active area of research in its own right. Other topics of interest in a
multiagent environment, such as coordination (Tambe, 1997) and ad hoc teamwork
(Stone et al., 2010) have also been actively pursued. This chapter presents several
approaches for encouraging cooperation and coordination between multiple deep
reinforcement learning agents in the Half Field Offense domain. Fortunately, soccer
is a cooperative task because the offense and defense team benefit from using strate-
gies that involve passing the ball to other players and teammate-aware positioning.
However, cooperative behaviors are not easily learned by a single agent and, for
human soccer players, require practice before they may be executed smoothly. This
chapter first presents a multiagent version of the empty goal task and then presents
approaches designed to facilitate cooperation between the learning agents.

5.1 Multiagent Empty Goal Task

We introduce a multiagent version of the empty goal HFO task whose reward
function is given in Chapter 4.1. Similar to the single agent version, multiagent
empty goal requires the agents to locate and approach the ball, dribble the ball to
the goal, and score a goal. However, the multiagent version of the task modifies
the reward signal in three significant ways: first, the lion’s share of the goal scoring
reward (5 points) is given to the agent who kicked the ball into the goal. One

67

point of reward is provided to the teammate. Second, only the agent who currently
possesses the ball is rewarded for kicking the ball towards the goal. Third, as long
as neither agent has control of the ball, both agents are rewarded for moving towards
the ball. However, as soon as one agent has control of the ball, only it is rewarded
for moving towards the ball. Control of the ball is gained by being close enough
to kick the ball. This asymmetric reward function provides greater rewards to an
agent that is actively participating in the scoring process, while still providing small
rewards to the teammate. The reward function may be expressed as follows:

rt =


dt−1(a, b)− dt(a, b) + Ikickt + 3

(
dt−1(b, g)− dt(b, g)

)
+ 5Igoalt if on-ball

dt−1(a, b)− dt(a, b) no agent on-ball

Igoal teammate on-ball
(5.1)

In this multiagent task, we recognize several different measures of success.
At a minimum we desire at least one of the agents to learn a robust scoring behavior.
However, we prefer if both agents learn to become competent at the task. The
highest achievement would be if the agents can learn to actively share with each
other by passing the ball and speeding up the scoring process.

5.2 Cooperative vs. Non-Cooperative Tasks

The distinction between cooperative and non-cooperative tasks is an impor-
tant one. For a task to be cooperative, it must feature a reward function that pro-
vides maximal reward to each agent when that agent is acting cooperatively. In
other words, neither agent can maximize rewards by acting non-cooperatively.

Because of the one point of goal reward given to the teammate, both agents
are encouraged to find policies that reliably result in goals being scored. Thus, this
task may be considered cooperative. However, analyzing the multiagent soccer task
from a game theoretic perspective, each agent is most highly rewarded if it is the
only competent member of the team. Indeed, as shown in Chapter 4, this task can

68

be fully solved (in the sense that a goal is scored every episode) by a single agent.
In this light, there is little incentive for a competent agent to share reward with a
teammate, since it stands to lose reward.

Thus, this task is cooperative in the sense that both agents are incentivized
to make sure goals are reliably scored, but not so cooperative that the agents are
rewarded for passing. Indeed agents receive maximum reward for monopolizing
control of the ball. Having set the context for this task, the next sections present
several approaches for solving cooperative multiagent tasks.

5.3 Independent Learning Baseline

In the independent learning baseline, agents learn at the same time in the
same task, but employ no sophisticated techniques to encourage coordination or
cooperation. Whether or not they eventually cooperate depends upon the nature of
the task and the difficulty of learning cooperative behavior in that task. Specifi-
cally, in the independent learning case, both agents maintain their own actor-critic
networks, replay memories, and perform their own updates. The activity and be-
havior of the other agent is transmitted only through state features. In particular,
each agent cannot directly observe the actions taken by other agents. Instead, only
the effects of the action are observable (e.g. if a teammate kicks the ball, the agent
observes the ball gain velocity but will have to infer that a kick action was taken).
The difficulties of finding cooperative behavior are compounded by the nonstation-
arity of each agent’s policy. Deep reinforcement learning already uses techniques
such as the target network to increase learning stability in the single learning agent
case. It is reasonable to expect that nonstationarity introduced by multiple learn-
ing agents could compound the difficulty of stable learning. For these reasons, the
independent learning approach serves as a baseline.

69

5.4 Centralized Control

A second, more challenging baseline is centralized control - a single agent
that operates by concatenating the state space and action spaces of all agents. The
centralized control approach violates the assumption of autonomy that is normally
required of each player in domains such as HFO.1 The centralized control approach
removes the nonstationarity encountered by having separate policies for each learn-
ing agent. Essentially, the centralized controller converts a multiagent task into
a single agent task with and expanded state and action space. However, the cen-
tralized controller will likely encounter difficulty from learning in the expanded
state space and action space. Nonetheless, the centralized controller represents a
sophisticated baseline that we expect will be able to directly learn a solution that
maximizes overall total reward. Figure 5.1 depicts the centralized architecture.

5.5 Parameter Sharing

Sharing parameters of the neural networks between the different agents was
shown to benefit DDRQN agents who were tasked with solving riddles (Foerster
et al., 2016a). Fundamentally, sharing parameters encourages similar behaviors
between the agents. In the extreme case, if the agents shared all weights, they would
exhibit exactly the same policy, and their actions would only differ as a function of
the different states they encountered.

Depending on the domain, it may or may not be advantageous to have agents
with identical policies. In the real game of soccer, players assume different roles
- each of which has a different optimal policy. However, for straightforward HFO
tasks such as scoring on the empty goal, cooperative behavior may be achieved by
identical policies.

However, a general parameter sharing approach is not limited to share all the
parameters or none of them. Instead we share the parameters for a fixed number of

1Of note, the small sized RoboCup league features centralized control. However, most of the
standard RoboCup leagues including Standard Platform, 3D-simulation, and 2D-simulation require
each player to operate autonomously.

70

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Actor

Critic

State

6 Parameters4 Actions

State

Figure 5.1: The Centralized Architecture: combines the state perceptions and
actions spaces of two or more agents into a single decision making entity. This ap-
proach circumvents the nonstationarity of multiagent learning by lumping multiple
agents into a single entity. The increased state action space size may make learning
more difficult.

71

layers. Figure 5.2 depicts two agents sharing parameters for two layers. By sharing
parameters from selected layers, the agents can strike a balance between having
unique policies and sharing parameters.

In choosing which layers of the network to share parameters, we suspect
that sharing parameters between the lower layers of the networks is more beneficial
than sharing parameters in the upper layers of the networks. The lower layers are
responsible for basic processing of state features while the upper layers are more
instrumental in choosing which actions are selected by the network. To share the
upper layers of the networks would make little sense as the processing in the upper
layers is dependent on the parameters of the lower layers. In the best case, if both
agents had the same lower layers, then the result would be identical polices. In the
worst case, the parameters of the lower layers of each agent would be different and
enforcing shared upper layers would result in unstable policies. To avoid this prob-
lem, we advocate sharing parameters starting with the lowest layers of the network
and going upwards. Sharing parameters in this manner encourages the agents to
have the same low-level processing of state features but still allows specialization
in the higher layers of the network, allowing each agent to develop a unique policy.

Besides encouraging similarity between agents, sharing also has the advan-
tage of allowing agents to learn faster from a limited number of experiences. This
speedup results from having twice as many gradients, generated from experiences
of both agents, applied to the same set of shared parameters. Similarly, sharing pa-
rameters reduces the memory footprint of both the actor and critic networks since
the total number of unique parameters is reduced. The savings in memory could
subsequently be used to increase the number of nodes in each network.

One final consideration is whether to share parameters between agents for
both the actor and critic networks or just one of the two. Only sharing actor pa-
rameters would enforce similar policies, but these policies could be pushed in dif-
ferent directions by the different critics. Sharing only critic parameters would help
encourage similar gradients, but may not sufficiently constrain similarity between
actor networks. We choose to share parameters for a given number of layers in both
the actor and critic networks.

72

State

4 Actions 6 Parameters

256

ReLU

128

ReLU

Q-Value

256

ReLU

128

ReLU

4 Actions 6 Parameters

256

ReLU

128

ReLU

Q-Value

256

ReLU

128

ReLU

State

1024

ReLU

512

ReLU

1024

ReLU

512

ReLU

Critics

Actors

Figure 5.2: The Parameter Sharing Architecture shares the weights of a certain
number of layers between the actor and critic networks of two or more agents.
Sharing parameters encourages similar policies between the agents and can expedite
the learning process due to the double gradients in the shared layers. This figure
depicts two shared layers in both the actor and critic networks.

73

5.6 Memory Sharing

In addition to sharing parameters, we also examine the case in which agents
learn from experiences selected randomly from a shared replay memory. In this ap-
proach, both agents share a single replay memory, both add their most recent expe-
riences to the shared memory, and both perform updates from experiences selected
at random from the shared memory. A shared memory encourages similar behavior
from both agents since both learn from the same pool of experiences. As soon as a
single agent learns to score a goal, both agents can leverage this experience to learn
how to score. Since updates are performed from experiences selected at random,
it’s possible that the agents may randomly sample different experiences and learn
different policies. However, in expectation, both of the agents will encounter many
of the same experiences.

In the future it would be interesting to identify which experiences are most
important for learning and transmit these experiences to the teammate. Something
like the priority replay memory (Schaul et al., 2015) could be used to identify the
most formative experiences of each agent.

In many ways, a shared replay memory has a similar effect to shared param-
eters. Both approaches encourage similar policies to be learned, but the parameter
sharing approach is much more direct, since it enforces similarity by making the
function approximators directly resemble each other. The shared memory approach
is more indirect in the sense that similar policies are only derived by processing
similar experiences. Both approaches encourage similarity, but whether or not sim-
ilarity leads to cooperation depends on the task.

We have presented several multiagent architectures: a centralized control
baseline, an architecture for sharing of parameters between the actor and critic net-
works, and a method for sharing experience replay buffers between different agents.
The next section evaluates these architectures on a multiagent version of the soccer
task.

74

5.7 Results: Multiagent Empty Goal Task

Experimentally, we compare the paradigms of independent learning, cen-
tralized control, parameter sharing, and replay memory sharing on the multiagent
empty goal task (Section 5.1). Figure 5.4 shows the goal percentages and learning
curves achieved by the independent learning and centralized control baselines. To
summarize, both of these approaches result in exactly one agent learning to perform
the task and the other agent showing no ability. In the case of independent learning,
one agent, by chance, always learns how to perform the task before the other. This
competent agent then maximizes its own rewards by continuing to score goals. The
other agent has even less opportunity to learn the task since its teammate quickly
moves the ball.

The case of centralized control is even more exaggerated: the centralized
controller learns to use one agent exclusively for scoring goals, and learns to walk
the second agent away from the ball entirely. Both of these controllers solve the
underlying task, in the sense that goals are scored every episode, yet exhibit very
little cooperation or coordination between agents.

Figure 5.5 depicts the performance of the agents utilizing the parameter shar-
ing architecture. These agents share two layers in both the actor and critic networks.
Similar to the independent learning case, one of the two agent learns to score before
the other (e.g. before iteration 300,000). However, subsequently, the second agent
gains competency in the task and both agents eventually end up sharing the rewards
equally. In contrast to the independent learning baseline, in which the second agent
could never learn to score, the shared weights from the first agent allow the second
agent to also learn to score. Implicit in the actor network’s shared weights was
knowledge about an effective policy for scoring and in the critic’s shared weights,
better Q-Value estimation. Observing the resulting policies (Video: http://

www.cs.utexas.edu/˜larg/hausknecht_thesis/shareparams_2layer.

mp4) shows cooperative behaviors such as passing emerge between the two agents.
The memory sharing architecture, like parameter sharing, also results in both

agents learning effective policies for scoring goals. Unlike parameter sharing, mem-

75

http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparams_2layer.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparams_2layer.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparams_2layer.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparams_2layer.mp4

ory sharing features no delay between the time the first and second agents gain
competency. Instead both agents track nearly the same learning curve and both are
reliably scoring by 250,000 iterations. Note that the 250,000 iterations required to
solve the task with the memory sharing approach is slightly slower than the param-
eter sharing approach, in which the first agent learned to score after only 150,000
iterations.

From these results we conclude in order to facilitate robust learning from
both agents, it is necessary to have some type of sharing between the agents: both
the parameter sharing and memory sharing approaches result in both agents learning
to score goals rather than a single agent dominating the task. The next section
examines the same approaches applied to the more difficult task of scoring on a
goal keeper.

(a) Per-Agent Reward (b) Goal Percentage

Figure 5.3: The Independent Learning: baseline shows strong performance
from Agent-0 who learns to fully perform the task by iteration 150,000. Agent-
1 never learns to perform the task as a result of Agent-0 continually possess-
ing the ball. Video: http://www.cs.utexas.edu/˜larg/hausknecht_
thesis/2v0_joint.mp4

76

http://www.cs.utexas.edu/~larg/hausknecht_thesis/2v0_joint.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/2v0_joint.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/2v0_joint.mp4

(a) Reward (b) Goal Percentage

Figure 5.4: Centralized Controller: The centralized controller learns to rely on
one of the two agents to solve the task and ignores the second agent. Such behavior
makes sense given the competitive nature of the reward function (Section 5.1). Note
that the reward graph (left) shows the reward of the centralized agent which is a
sum of the rewards achieved by each individual agent. Video: http://www.cs.
utexas.edu/˜larg/hausknecht_thesis/centralized_2v0.mp4

(a) Per-Agent Reward (b) Goal Percentage

Figure 5.5: Parameter Sharing results in both agents learning to score goals and
share the ball. In this experiment, the first two layers of the agents actor and
critic networks were shared (as seen in Figure 5.2). As can be seen in the reward
curves, Agent-1 first becomes competent at the task, but due to the shared weights,
Agent-0 quickly also learns. As a result Agent-1’s total reward is reduces when
Agent-0 shares the goals. Video: http://www.cs.utexas.edu/˜larg/
hausknecht_thesis/shareparams_2layer.mp4

77

http://www.cs.utexas.edu/~larg/hausknecht_thesis/centralized_2v0.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/centralized_2v0.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/centralized_2v0.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparams_2layer.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparams_2layer.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparams_2layer.mp4

(a) Per-Agent Reward (b) Goal Percentage

Figure 5.6: Replay Memory Sharing results in both agents learning to complete
the task and sharing in the resulting rewards. In contrast to parameter sharing,
both agents in the replay memory sharing setting learn competency at the same
time, rather than one learning first and transmitting knowledge (in the form of
weights) to its teammate. Video: http://www.cs.utexas.edu/˜larg/
hausknecht_thesis/sharereplay_2v0.mp4

5.8 Results: Multiagent Soccer vs. Keeper

As discussed in Chapter 4.8.4, learning to score on a keeper is a much more
challenging task than scoring on an empty goal. Like the empty goal task, scoring
on a keeper requires the offensive agents to locate, approach and dribble the ball.
However, the offense agents now need to contend with a goal keeper using a hand-
coded policy created by the Helios RoboCup team. The reward function used by
the agents is identical to the reward function of the multiagent empty goal task
(Equation 5.1), and provides rewards for approaching the ball, moving the ball to
the goal, and scoring.

The benefit of this increased difficulty is an increased incentive for the agents
to work together. Specifically, if the agents learn to pass the ball before shooting,
they can effectively create a much larger goal opening than if a single agent was to
approach the goal and shoot. The same tactic is often used in real soccer games, in
the form of a cross kick.

78

http://www.cs.utexas.edu/~larg/hausknecht_thesis/sharereplay_2v0.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/sharereplay_2v0.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/sharereplay_2v0.mp4

We analyze the independent learning, centralized control, parameter shar-
ing, and memory sharing approaches on the 2v1 task. Experimentally, due to the
increased difficulty of the 2v1 scenario, we provide 10-million training iterations
rather than the 1-million used in the empty goal experiment.

As before, the centralized controller (Figure 5.7) learns to exclusively rely
on one of the two agents to approach the ball and move the ball towards the goal.
Reliable scoring is not achieved and the final policy simply dribbles the ball towards
the goal, taking advantage of the reward provided for minimizing ball-goal distance,
but then lets the ball be captured by the keeper.

Sharing parameters (Figure 5.8) results in both agents nearly solving the
task. Examining the learned policies (Video: http://www.cs.utexas.edu/

˜larg/hausknecht_thesis/shareparam_2v1_1.mp4), both agents demon-
strate the capacity to approach the ball and dribble towards the goal. However, only
Agent-0 learns to take shots on goal. Agent-1 dribbles the ball close to the goal but
stops at a distance that prevents the goalie from capturing the ball. Next, Agent-1
waits for Agent-0 to approach the ball and shoot on goal. By waiting near the ball,
Agent-1 ensures the episode does not end prematurely due to the 100-timestep limit
of no agent touching the ball. The agents do not exhibit passing behavior or any
more sophisticated coordination than holding the ball. However, even the holding
strategy is effective enough to result in successful goals in roughly eighty percent
of the episodes.

Finally, the memory sharing architecture (Figure 5.9) results in performance
of both agents staying near identical throughout the learning process. Indeed, when
observing the learned policies, it is apparent that both agents can effectively ap-
proach, dribble, and shoot on goal. Thus, in this regard, the agents are even more
capable than in the parameter sharing case. However, coordinated passes or cross
kicks are still notably absent and policies reliable enough to score every episode
are not found. To summarize, the most coordination is observed from the replay
memory sharing architecture, with the parameter sharing coming in a close sec-
ond. In general, we expect that the memory sharing approach would be similar to a
version of parameter sharing in which all the layers were shared between the actor

79

http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparam_2v1_1.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparam_2v1_1.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparam_2v1_1.mp4

and critic. As before, the centralized controller fails to learn to coordinate the two
agents.

(a) Reward (b) Goal Percentage

Figure 5.7: Centralized Controller (2v1): Like in the empty goal case, the central-
ized controller again learns to rely on only one of the two agents to handle the ball.
This agent learns to approach the goal, but doesn’t learn a robust policy for shooting.
Note that the reward of the centralized agent (left) is the sum of the rewards of the
individual agents. Agents are evaluated for 100 episodes and in the goal percentage
graph (right), occasionally an agent will score one goal during the 100 episodes.
Each goal corresponds to a peak in the graph. Video: http://www.cs.
utexas.edu/˜larg/hausknecht_thesis/centralized_2v1.mp4

5.9 Analysis: Parameter Sharing

This section explores two aspects of parameter sharing: how many layers of
the network to share and whether to share parameters between the actor network,
critic network, or both. Specifically, Figure 5.10 shows results from the multiagent
empty goal task when sharing a different number of layers in both the actor and
critic networks. As the number of shared layers increases, the policies and rewards
achieved by both agents become increasingly similar. When sharing four layers, the
agents failed to robustly learn to perform the task, and score only occasional goals.
These results suggest that sharing one or two layers results in the best performance.

80

http://www.cs.utexas.edu/~larg/hausknecht_thesis/centralized_2v1.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/centralized_2v1.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/centralized_2v1.mp4

(a) Per-Agent Reward (b) Goal Percentage

Figure 5.8: Parameter Sharing (2v1) results in both agents learning to approach
the ball and dribble towards the goal. However, only Agent-0 learns a policy for
shooting on goal. Agent-1 assists by dribbling the ball towards the goal and keep-
ing possession of the ball while Agent-0 is en route. Video: http://www.cs.
utexas.edu/˜larg/hausknecht_thesis/shareparam_2v1_1.mp4

(a) Per-Agent Reward (b) Goal Percentage

Figure 5.9: Replay Memory Sharing (2v1) results in both agents learning to com-
plete the task and sharing in the resulting rewards. In contrast to parameter sharing,
both agents in the replay memory sharing setting learn competency at the same
time, rather than one learning first and transmitting knowledge (in the form of
weights) to its teammate. Video: http://www.cs.utexas.edu/˜larg/
hausknecht_thesis/sharedreplay_2v1.mp4

81

http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparam_2v1_1.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparam_2v1_1.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/shareparam_2v1_1.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/sharedreplay_2v1.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/sharedreplay_2v1.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/sharedreplay_2v1.mp4

(a) Share 1-Layer (b) Share 2-Layers

(c) Share 3-Layers (d) Share 4-Layers

Figure 5.10: Number of shared layers influences similarity of policies. When shar-
ing only the lowest layer of the network, the policies of the different agents can be
significantly different. Sharing two or more layers results in very similar policies
whose performance is highly coupled. The most robust goal scoring is observed
when sharing only one or two layers.

82

We now compare sharing parameters between just the actor or just the critic
network. For this experiment, we share the two lowest layers of the chosen networks
and evaluate on the multiagent empty goal task. Results in Figure 5.11 show that
sharing parameters in the actor network leads to less similar policies than sharing
parameters in the critic network. Perhaps the best explanation for this phenomenon
is that the weights of the actor network stem from the gradient updates originating
from the critic network. Therefore, similar critics will lead to similar gradients and
result in similar actor networks. In general, it seems to be a safe bet to simply share
parameters between both the actor and critic networks.

(a) Share Actor Network (b) Share Critic Network

Figure 5.11: Sharing parameters between the two lowest layers in only the actor
networks results in dissimilar policies that require over 1-million iterations to both
learn to score. Sharing parameters in critic networks results in more similarity
between policies.

5.10 Chapter Summary

In general, multiagent reinforcement learning is a difficult proposition due to
the challenge of discovering cooperative behavior and combating the non-stationarity
introduced by time-varying policies from the different agents. Additionally, single
agent deep reinforcement learning is not always stable in the sense that policies
occasionally collapse or diverge. These difficulties are only compounded as the

83

number of learning agents increases. Nonetheless, this chapter demonstrates that
cooperative multiagent learning is possible and analyzes approaches that facilitate
stability and coordination between agents.

This chapter presented several different approaches for multiagent learning
and evaluated them on two different multiagent tasks. At a high level, the intuition
underlying many of the multiagent architectures is sharing. Sharing has two main
advantages: First, if the agents can share parameters or experiences, they can boot-
strap their learning not only from their own trajectories, but also their teammates’.
Second, sharing parameters or experiences can help multiple agents achieve more
stable policies by canceling out the perturbations inherent in a single agent’s learn-
ing.

The nature of the learning task greatly influences the potential for coordina-
tion. We present two multiagent HFO tasks: coordinating with a teammate to score
on and empty goal and coordinating with a teammate to score on a keeper. Both
tasks heavily reward the agent that scores the goals, so a scoring agent has incentive
to develop exclusive competency at the task. However, when sharing either param-
eters or replay memories, both agents learn to perform the task and occasionally
exhibit cooperative behavior such as passing the ball.

In the case of scoring on a goal keeper, the sharing architectures again have
top performance. However, no approach learns to perform this task perfectly and
high-level coordinated plays such as cross kicks are lacking. Despite the fact that
coordinated plays could increase performance of both agents, at least in the 2v1
task, we hypothesize that such behaviors are simply too hard to discover for our
proposed architectures. For example, to perform a successful cross, both the kicking
and receiving agents must correctly position themselves on the field. Next, the
kicking agent must kick across the field, in a direction that the reward function will
penalize. Finally, the receiving agent must be able to stop the ball and then kick
on goal. The challenge of discovering and stabilizing such a cooperative behavior
remains an open question.

In general, we are encouraged by the ability of sharing architectures to facil-
itate coordination between agents. The next chapter moves a step beyond sharing

84

and investigates active communication between agents.

85

Chapter 6

Communication

This chapter examines how deep reinforcement learning agents can use ac-
tive communication to facilitate coordination. In order to get the most from this
chapter, it helps to understand Chapter 4, particularly the architecture for learning
in parameterized action space. Additionally, from Chapter 2, a basic understanding
of backpropagation and deep neural networks is helpful. This chapter relates to
thesis contribution 3: an exploration of multiagent deep RL in HFO.

The multiagent architectures presented in Chapter 5 were designed to facil-
itate coordination between multiple deep reinforcement learning agents. Indeed,
in many of the domains, coordinated behaviors are found after tens of thousands
of episodes of experience. However, in the real world, coordination between hu-
mans is often achieved far more quickly through spoken language. Humans can
identify a problem that needs to be solved, communicate about how each member
of a team should address the problem, and cooperatively solve the problem. Thus,
when confronted with a problem, communication serves two main roles: first, com-
munication helps to create a cooperative strategy for solving the problem. Second,
communication may be further used as a part of this strategy while solving the
problem.

Consider the example problem of Patrick moving to a new apartment. Patrick
has a number of furniture items that he would like moved from his old apartment
to his new one, and has invited a number of friends over to help with the moving
process. First Patrick discusses which pieces of furniture he wants moved to the
new apartment and which will be discarded. Next, Patrick and friends form small
groups to move the heavy items to the new apartment. During the process of mov-
ing a heavy item, Patrick’s friends must communicate to decide when to take rests,
how to carry bulky items around corners, and which way to rotate the item to fit it
through the door. This communication is accomplished through a shared language.
This scenario highlights the importance of communication for solving cooperative

86

tasks: Patrick and friends first communicated a strategy for cooperatively solving
the task, and then employed further communication when enacting that strategy.
One can imagine the difficulty of moving if Patrick were unable to communicate
which items he wanted moved or the location of his new apartment.

In the Half Field Offense environment, communication is a staple of orga-
nized team play. The HFO server allows each agent to send a single message of
limited size every timestep. This message is heard by surrounding agents on both
teams in the next timestep. Often, RoboCup teams will use obfuscated messages
so their intent is hard to decipher by the opposing team. We will utilize this com-
munication channel as a means to achieve further coordination between learning
agents.

This chapter builds on the architecture presented in Chapter 4 for deep re-
inforcement learning in parameterized action space. In particular, communication
actions are added to the agent’s action space in the form of additional continuous
actions. Each communication action transmits a single continuous value. Addi-
tionally, the state space of the agents is modified to include additional features for
receiving incoming messages. In particular, the communication messages are con-
tinuous values and are transmitted, without modification, to the teammate on the
next timestep, where they are concatenated with the agent’s normal state features.
The number of communication actions determines the bandwidth of the communi-
cation channel and is a hyper-parameter. In general, we expect that more channels
have the potential to facilitate more complex communication, at the cost of increas-
ing the size of the action space. The experiments in this chapter typically use either
one or four communication actions. Figure 6.1 depicts the actor-critic architecture
with added communication actions. We next present several approaches for using
active communication to achieve cooperation.

6.1 Baseline: Independent Communication

The natural baseline is to allow the agents to use their communication ac-
tions as normal continuous actions and enforce no standardization or communica-

87

Actions Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU
Actor

Critic

Comm

State Comm

Figure 6.1: Communication Architecture appends continuous communication ac-
tions to the action space of the agent. Incoming messages received from other
agents are concatenated with the agent’s state space.

tion protocol. In essence, the agents may choose to transmit whatever messages
they wish and pay attention to the incoming communication if they find it useful,
or to entirely ignore the teammate’s messages. We expect that communication of
this form is likely to suffer from non-stationary induced by the changing policies of
both agents. As a result, we hypothesize that it would be difficult for a stable and
useful communication protocol to exist between the agents.

Relating to the work of Foerster et al. (2016b), the independent communica-
tion method is termed Reinforced Inter-Agent Learning (RIAL) because each agent
uses independent reinforcement learning to determine the communicated messages.

6.2 Teammate Communication Gradients

When humans encounter a new task, they often create new vocabulary to
compactly describe important characteristics of the task. Nearly every hobby, skill,
or sport has its own specialized vocabulary. For example, in the sport of rock climb-

88

ing, there are special terms to describe different rock formations, body positions,
hold types, etc. This new vocabulary is developed and refined over the lifetime of
the activity. Often, new vocabulary is driven by the need to quickly describe ele-
ments of the real world that are difficult to capture using only existing vocabulary.
It is this drive that fosters the development of new vocabulary or alteration of the
existing protocol.

The teammate communication gradients approach mirrors this process: at
a high level, this update allows agents to influence the communication strategy of
their teammates through shared gradients applied to the teammates’ communication
actions. These gradients inform the teammate about how it can alter its messages in
the direction of increasing rewards. This process is loosely analogous to developing
new vocabulary or altering an existing communication protocol to solve a new task.

As shown in Figure 6.2, the teammate communication gradients update con-
sists of two main steps: first, each agent’s critic network computes a gradient spec-
ifying how the communication actions of the teammate should change. Second,
these gradients are passed between agents and each agent’s actor network is up-
dated using the gradients supplied from the teammate. Note the communication
update only applies to communication actions, and normal actions are still updated
according to the standard actor-critic update described in Chapter 2.7.

Because teammate communication gradients are directly shared between
agents, the typical boundary that divides independent agents is broken. However, it
is only necessary to break this barrier during the training phase. At evaluation time,
the agents act fully autonomously and use only the official HFO communication
channels. In this way, the process of sharing gradients can be considered central-
ized training, followed by a decentralized execution. This is a common paradigm
in RoboCup: teams will program a shared communication protocol when preparing
for the competition and use the pre-developed protocol at competition time to send
messages.

89

Actor Actor

Critic Critic

state comm statecommaction action

state state

T=1

T=0

Agent 0 Agent 1

(a) Forward Pass

Actor Actor

Critic Critic

state comm statecommaction action

state state

T=1

T=0

Agent 0 Agent 1

(b) Backward Pass

Figure 6.2: Teammate Communication Gradients Update: In the forward pass,
the communication actions taken by each agent are concatenated with the state of
the teammate in the next timestep. The critic evaluates the current state, the agent’s
action, and the teammate’s message. In the update, each agent’s current commu-
nication action replaces the one found in the replay memory. The backwards pass
modifies the actor network’s action in accordance with the agent’s own critic net-
work. However, the communication actions are modified in accordance with the
teammate’s critic network.

90

6.3 Grounded Semantic Network (GSN)

Semantics is the branch of linguistics and logic concerned with meaning. Ul-
timately, the agents need to establish a meaningful communication protocol grounded
in the state, action, and reward functions of the task. Such a protocol should answer
the questions of 1) what to communicate about, and 2) how to communicate it. We
expect that the necessary things to communicate will vary from task to task and an
ideal approach should be able to adapt the communication protocol to the task at
hand.

The grounded semantic network (depicted in Figure 6.3) fulfills these cri-
teria by learning a model of the teammate’s one-step reward, conditioned on the
teammate’s action and the agent’s state-observation. The hidden-layer activations
of this model are communicated to the teammate as a message. The communication
protocol learned by the GSN is grounded in the observation space and reward func-
tion of the task and embodies a semantic mapping: a transformation from concept
to message.

From the perspective of Agent-1, a GSN learns a mapping from the obser-
vation o(1) and teammate action a(2) to teammate reward r(2). The network contains
two major parts: a message extractor m(1) = M(o(1); θm) which maps the agent’s
observation into a message, and a one-step reward model r̂(2) = R(m(1), a(2); θr)

that predicts the teammate’s immediate reward. Composing these components, the
GSN computes the following function:

r̂(2) = R
(
M
(
o(1); θm

)
, a(2); θr

)
(6.1)

GSN training follows a supervised learning paradigm. Given experience tu-
ple (o(1), a(2), r(2)), the GSN is trained to regress its predictions towards the rewards
of the teammate, minimizing the following loss function:

L(θr, θm) = E(o(1),a(2),r(2))

[(
r(2) −R

(
M(o(1); θm), a(2); θr

))2]
(6.2)

91

o(1)

r(2)

128

ReLU

256

ReLU

64

ReLU

64

ReLU

m(1) a(2)

θr

θm

Figure 6.3: The Grounded Semantic Network predicts the teammate’s one-step
reward r(2) conditioned on the agent’s current observation o(1) and teammate’s ac-
tion a(2). The message m(1) is an intermediate layer in this network, and learns a
compact representation of the current observation that is useful for predicting team-
mate reward. The activations of the message layer are transmitted to the teammate
as the message. Training a GSN requires direct access to the teammate’s actions
and rewards. However, at test time, only the agent’s observations are required to
generate the message.

92

Similarly to teammate communication gradients, GSN follows a centralized
training procedure with decentralized execution: during training, GSN requires di-
rect access to the teammate’s actions and rewards. Direct access breaks the stan-
dard boundaries between independent agents. However, at execution time, only the
agent’s current observation is required to generate a message.

6.3.1 Stability

In the context of deep reinforcement learning, experience tuples are gener-
ated from interactions with the environment, stored in a replay queue, and sampled
randomly for updates. Unlike standard supervised learning from a fixed dataset,
there is a dangerous loop in which the policies of the agents affect the messages
generated by the GSN, which, in turn, affect the policies of the agents. Without
care, such a loop can result in instability or collapse of the communication protocol
and the agents’ policies. Such failures were observed in preliminary experiments.
To alleviate this danger, we train the GSN with a learning rate of 10−6, an order
of magnitude smaller than the learning rate used to train the agents’ policies. This
reduced learning rate encourages slow changes to the GSN and allows the agents to
smoothly adapt to alterations in the communication protocol.1

6.3.2 Limitations

Intuitively, the GSN combats partial observability of the multiagent envi-
ronment by learning a transformation of the agent’s observation that is relevant for
predicting the teammate’s reward. In essence, if there is information available in
Agent-1’s observations that could help Agent-2’s performance, the GSN will learn
to extract and communicate this information. However, the GSN is not conditioned
on Agent-1’s policy and cannot extract the intentions of Agent-1. The abilities and
limitations of the GSN are explored further in the experiments below.

The next sections evaluate the approaches of independent communication,

1No systematic stability gains were observed from using target networks or reducing the ratio of
GSN updates versus policy updates.

93

teammate communication gradients, and GSN on two cooperative multiagent do-
mains.

6.4 Results: Say My TID Task

Say My TID is a two-player game in which each agent is assigned a secret
number (or Thread Identifier - TID), represented by a single floating point value.
The goal is for each agent to help its teammate correctly guess its hidden number.
This domain uses a single communication action, so each agent is allowed to send
one floating point value every timestep. Both agents are rewarded for minimizing
the distance between the teammate’s message m ∈ R1 and their own hidden value
h. Specifically, reward for Agent-1 is rt = α/eβ(h−mt−1)2 , where m is the message
sent by the teammate in the last step, α = .1 and β = 50 are constants controlling
the magnitude and decay of reward. Reward is symmetric for Agent-2. Because
episodes are constrained to last at most 100 timesteps, the maximum achievable re-
ward is 10. Since the secret number of each agent is hidden from the teammate, this
task can only be solved by the agents communicating which messages are correlated
with high reward.

Examining the results, the independent communication baseline is unable
to solve this task. Since the independent communication approach lacks a way of
establishing a stable communication protocol, it is not surprising that independent
communication agents cannot solve this task. Figure 6.4 shows that in the process
of exploration, both agents do, at times, get close to saying the TID of their team-
mate. However, since each agent is trying to maximize its own rewards and has no
established protocol for asking the teammate to communicate specific values, there
are no signs of convergence or learning.

In Figure 6.5, by harnessing the extra communication channel, agents us-
ing the teammate communication gradients approach can find stable policies that
maximize reward. This is possible because the teammate gradient update allows
each agent to influence the messages that its teammate utters. Indeed, following the
communication gradients provided by the teammate results in quick convergence to

94

the optimal solution.
Say My TID is an instance of a class of domains in which rewards corre-

spond only to content of communicated messages, rather than interactions with the
environment. Shown in Figure 6.6, these domains highlight a limitation of GSN:
the inability to directly alter communication following a reward gradient. In such
domains, DIAL remains the method of choice since it can directly alter the content
of messages in the direction of higher rewards. The next section explores a more
complex task.

(a) Learning Curve (b) Update Loss

Figure 6.4: Independent Communication fails to solve Say My TID Task. Left:
there is no systematic increase in reward for either of the agents. Right: Neural
network loss remains stable until the end of the learning process, when instability is
observed. The failure to learn follows from the lack of an established protocol for
communicating the needs of teammates.

6.5 Blind Move to Ball Task

The goal of the Blind Move to Ball task is for a sighted agent to steer a blind
agent towards the ball using only communication. This task is performed by a blind
agent and a sighted agent. The blind agent cannot see anything on the field: its
normal state features are present but constantly zeroed. It can only hear incoming
communication messages, which are appended to its state and are not zeroed. The

95

(a) Learning Curve (b) Update Loss

Figure 6.5: Teammate Communication Gradients solves Say My TID Task.
Left: reward quickly increases to the maximum achievable reward of 10. Right:
Update loss remains stable throughout the learning process. Success is achieved by
each agent altering the messages of its teammate towards higher individual reward.

(a) Learning Curve (b) Update Loss

Figure 6.6: GSN fails to solve Say My TID Task. Because GSN is trained to
predict rather than maximize teammate reward it cannot solve the Say My TID
task. GSN learns messages correlated with teammate rewards rather than messages
maximizing teammate reward.

96

sighted agent has normal observations but cannot move (specifically it can still turn
but cannot dash). Both agents are rewarded for minimizing the distance between
the blind agent and the ball: rt = dt−1(a, b)− dt(a, b). At the start of each episode,
the blind agent, teammate, and ball are initialized randomly on the field. Episodes
end when the blind agent reaches the ball or 100 timesteps pass. Since the blind
agent cannot see the ball, the only way to solve this task is for the sighted agent to
learn a stable protocol for directing the blind agent towards the ball. It is impossible
for either agent to solve the task alone or without communication.

6.6 Results: Blind Move to Ball

The independent communication baseline in Figure 6.7 reaches moderate
performance levels, but lacks stability to maintain them. We suspect this lack of
stability results from non-stationary communication protocols. The teammate com-
munication gradients approach completely fails to solve the Blind Move to Ball task
using one, two, or four communication actions. As shown in Figure 6.8 no learning
is seen, despite having one million iterations to find a stable communication proto-
col. Finally, as shown in Figure 6.9, GSN learns a communication protocol capable
of solving the Blind Move to Ball task. To further understand this result, we analyze
the details of the approaches.

The downfall of the teammate communication gradients approach is that the
communication gradients are not grounded in reality. Specifically, the blind agent
communicates what it wants to hear (via communication gradients), but that does
not mean what it wants to hear actually reflects reality. For example, the blind agent
wants to hear that the ball is directly in front of it, because it can easily obtain re-
ward from dashing forward. So the blind agent shapes the teammate’s messages
to always say that the ball is directly ahead. However, in reality, the ball may or
may not actually be directly ahead of the blind agent, and as seen in the results,
a communication protocol not grounded in reality has little practical value. The
teammate communication gradient approach works well on domains such as Say
My TID where reward stems directly from the communicated message. In such

97

cases, it is only necessary to optimize the content of the messages, and communi-
cation does not need to be grounded in reality. In contrast, GSN learns a commu-
nication protocol that is correlated with teammate reward and remains grounded by
the actual state of the environment. GSN performance is best on domains in which
communication is used as a means to achieve a goal in the environment.

It should be noted that the normal move to ball task is typically solved by a
sighted agent within 50,000 iterations, compared to the 400,000 iterations required
by the GSN to solve the Blind Move to Ball task.2 However, the GSN faces two
major challenges that collectively explain the longer learning times. First, GSN
must bootstrap a communication protocol while also bootstrapping policies for both
agents. Second, a communicated message features a one step delay before it is
received. So even a blind agent using a perfect communication protocol would not
be as capable as a sighted agent, since the sighted agent does not suffer any delays
in information. For reference, a sighted agent with a single step state delays takes
200,000 iterations to master the move to ball task: four times as long as the agent
with no state delay, but still twice as fast as the GSN agent.

6.7 Analysis

We perform an ablation analysis on policies learned in the Blind Move to
Ball task by disabling communication and re-evaluating the learned policies of
each agent. Policies learned by independent communication and teammate com-
munication gradient approaches remain unchanged when communication is dis-
abled, indicating that communicated messages are not actively used by the blind
agent. In contrast, GSN’s policy is adversely affected by a lack of communication:
without guidance from the sighted agent, the blind agent walks directly forward
regardless of the location of the ball Video: http://www.cs.utexas.edu/

˜larg/hausknecht_thesis/GSN_MoveToBall_NoComm.mp4.
In order to further analyze the communication protocol learned by GSN on

the blind soccer task, Figure 6.10 visualizes the space of messages sent by the

2See Figure 7.3 for single agent performance.

98

http://www.cs.utexas.edu/~larg/hausknecht_thesis/GSN_MoveToBall_NoComm.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/GSN_MoveToBall_NoComm.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/GSN_MoveToBall_NoComm.mp4

(a) Evaluation Performance (b) Reward

(c) Steps per Episode (d) Actor Average Q-Value

Figure 6.7: Independent Communication Baseline fails to solve the Blind Move
to Ball task. Using 4 communication actions, some evidence of learning is ob-
served, but the resulting policy is not stable and cannot maintain high perfor-
mance. This instability is likely caused by the changing nature of each agent’s
communication actions. Video: http://www.cs.utexas.edu/˜larg/
hausknecht_thesis/BlindMTB_CommAct4.mp4

99

http://www.cs.utexas.edu/~larg/hausknecht_thesis/BlindMTB_CommAct4.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/BlindMTB_CommAct4.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/BlindMTB_CommAct4.mp4

(a) Evaluation Performance (b) Reward

(c) Steps per Episode (d) Actor Average Q-Value

Figure 6.8: Teammate Communication Gradients fails to solve the Blind
Move to Ball task. This particular experiment uses 4 communication actions.
No evidence of learning is observed in this experiment or in similar experi-
ments using 1 or 2 communication actions. The policy is stable and the learn-
ing process does not experience divergences or collapse, but is simply unable
to learn. Video: http://www.cs.utexas.edu/˜larg/hausknecht_
thesis/BlindMTB_CommAct1_ApproxGrad.mp4

100

http://www.cs.utexas.edu/~larg/hausknecht_thesis/BlindMTB_CommAct1_ApproxGrad.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/BlindMTB_CommAct1_ApproxGrad.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/BlindMTB_CommAct1_ApproxGrad.mp4

(a) Evaluation Performance (b) Reward

(c) Steps per Episode (d) Actor Average Q-Value

Figure 6.9: GSN solves Blind Move to Ball task: GSN achieves the maximum
reward of 0.6. Note the variance of rewards is high because total reward is propor-
tional to the distance between the blind agent and the ball. Random initialization
of agents and ball on the field results in high variance of reward even for a per-
fect agent. Video: http://www.cs.utexas.edu/˜larg/hausknecht_
thesis/GSN_MoveToBall.mp4

101

http://www.cs.utexas.edu/~larg/hausknecht_thesis/GSN_MoveToBall.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/GSN_MoveToBall.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/GSN_MoveToBall.mp4

sighted agent using t-SNE (van der Maaten and Hinton, 2008). As shown in the
figure, there is a strong correlation between the content of the message and the
action selected by the teammate in the next timestep. This correlation illustrates that
messages contain information that is useful for the blind agent to decide what high-
level action it should select. Qualitatively, this shows that the GSN has correctly
found a communication protocol that is useful for the task.

Figure 6.10: t-SNE Visualization of Communicated Messages: t-SNE shows
a 2-dimensional projection of 4-dimensional messages sent by the sighted agent
while performing the Blind Move to Ball task. Messages with similar content are
mapped close to each other in the figure. Each message is colored according to the
action taken by the blind agent in the next timestep: black dots correspond to Dash
actions and white dots are Turn actions. The fact that black dots are clustered in one
region of the space and white in the other shows that content of the sighted agent’s
messages is correlated with the actions selected by the blind agent.

Finally, it helps to visualize the messages and the policy at the same time.
Video: http://www.cs.utexas.edu/˜larg/hausknecht_thesis/gsn_
vis.mp4 shows a t-SNE visualization of messages being created as the agents
perform the task. From this video, it is clear that the messages indicate how far the
blind agent is from the ball, as well as whether to turn or dash.

102

http://www.cs.utexas.edu/~larg/hausknecht_thesis/gsn_vis.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/gsn_vis.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/gsn_vis.mp4

6.8 Related Work

There is an extensive body of literature on communication between rein-
forcement learning agents (Tan, 1998; Panait and Luke, 2005; Zhang and Lesser,
2013).

Stroupe et al. (Stroupe et al., 2001) show that a blindfolded robot is able to
track a moving soccer ball by using the observation of two sighted teammates. This
work reinforces the idea that multiple agents can overcome partial observability by
fusing distributed sensor readings. However, these robots rely on a pre-established
rather than learned communication protocol.

Kalyanakrishnan has explored the communication of values between agents
(Kalyanakrishnan et al., 2007). In particular, his agents transmit experiences to
each other, similar to a selective version of memory sharing (Section 5.6). These
messages include the full state of the agent, the action selected, and the rewards
received.

Recently there have been several advances in deep multiagent reinforcement
learning. Foerster et al. (2016a) describe an approach used to train multiple re-
current Deep Q-Networks to solve two riddle domains. The authors describe three
alterations to standard DQN that were necessary for robust learning: first they pro-
vided each agent’s previous action as input to the next timestep. Second, they shared
the parameters between the networks of each agent - so in effect, only one network
is learned by all the agents. Third, they found it necessary to disable experience
replay. With these modifications, they show positive results on two well-known
riddles, where the discrete action space of the agent involves communicating with
the other agents. These results are encouraging as they show that multiple agents
can learn a stable protocol for performing cooperative tasks.

Extending this work, Foerster et al. (2016b) explores additional approaches
for learning communication between agents. The two approaches presented are
Reinforced Inter-Agent Learning (RIAL) and Differentiable Inter-Agent Learning
(DIAL). RIAL is similar to the previous work in that two DQN agents share net-
work parameters and learn to communicate simply by interacting with the environ-

103

ment. On the other hand, DIAL, involves not only sharing network parameters but
also sharing communication gradients between the agents. The DIAL paradigm
involves a centralized learning phase where communication gradients assist the dis-
covery of a stable communication protocol, followed by a decentralized execution
phase. These approaches are validated on the same two riddles used in the last work
and it is shown that DIAL is able to reach optimal performance faster than RIAL,
indicating that fully-differentiable communication is a benefit for multiagent learn-
ing. The communication architectures presented in Chapter 6 draw on similar ideas
to RIAL and DIAL. The main difference is that communication in this thesis takes
places over a continuous rather than discrete communication channel, eliminating
the need for a discretize/regularize unit. Additionally, our experiments focus on
solving problems in which communication is only a small part of the larger mul-
tiagent task and the agents need to learn a significant amount of task-based skills
before communication can even be successfully leveraged. We hypothesize that real
world domains are similar in that individual competency is a prerequisite to fruitful
cooperation.

6.9 Chapter Summary

This chapter was predicated on the idea of using communication to achieve
greater cooperation between agents. To investigate this idea, we modified the action
space of HFO agents to include one or more continuous communication actions.
Using these communication actions, agents can transmit real-valued messages to
their teammates. However, there is no preset communication protocol specifying
what should be transmitted or what a message means. Instead, the agents must
learn how to communicate effectively with each other in order to solve a task.

We presented several methods for learning communication: the independent
communication baseline treats communication actions the same way as standard
actions and uses gradients generated from the critic network to alter the commu-
nicated messages. Teammate communication gradients is an approach for sharing
communication gradients between agents and allows each agent to alter the mes-

104

sages sent its teammate in the direction of higher rewards.
Finally, the Grounded Semantic Network is a trainable model that learns a

task-dependent communication protocol for solving cooperative multiagent tasks.
We introduced and evaluated the GSN and competing approaches on two domains
- the Say My TID task rewarded optimizing the content of messages, and the Blind
Move to Ball task used communication as a means to solve a guide a blind agent
towards a soccer ball. GSN outperforms the other two approaches on the Blind
Move to Ball task. Analyzing the communicated messages shows that the commu-
nication protocol is highly correlated to the actions selected by the blind teammate.
In general, these results highlight the ability of deep reinforcement agents to learn
a communication protocol that overcomes partial observability and help facilitate
cooperation between independent agents.

105

Chapter 7

Curriculum Learning

Many of the tasks presented in earlier chapters have relied upon hand-designed
reward functions that provide the agent with frequent, informative rewards. How-
ever, in HFO, true rewards should correspond to winning soccer games, or scoring
goals. In practice, this type of reward function provides far too infrequent rewards
for Deep RL agents to boostrap a policy from scratch. This chapter focuses on cur-
riculum learning as an approach towards using sparse, unbiased reward functions.
To understand this chapter, it is necessary to understand the basics of reinforcement
learning and deep learning presented in Chapter 2. Additionally, familiarity with
the actor-critic architecture (Chapter 4) for learning in parameterized action space is
helpful. This chapter addresses thesis contribution 5: curriculum learning in HFO.

At a high level, this chapter presents curriculum learning approaches used to
divide the complex task of playing soccer into smaller, more manageable subtasks
of approaching the ball, kicking the ball to the goal, dribbling, and passing. In order
to learn the complex original soccer task, the agent must first learn a curriculum of
easier subtasks. To this end, we first present a motivating discussion that illumi-
nates the difficulty of hand-designing unbiased reward functions. Building on this
motivation, we present related work that has addressed the problem of learning in
complex domains with sparse reward signals, and discuss the curriculum approach
we used to tackle the soccer task with on a sparse goal-based reward function.

7.1 On the Design of Reward Functions

True, unbiased rewards in the HFO domain come from scoring or defending
goals. However, using only goal reward results in learning agents not seeing even
a single positive reward. Conceptually, to score a goal, the agent must approach
the ball and kick towards the goal. In practice, a randomly exploring agent never
makes it to the ball, much less kicks towards the goal. In other words, such a reward

106

signal is far too sparse for learning agents to gain traction. Instead, in Chapter 4.1,
to solve the single agent soccer task we introduced a hand-crafted reward signal
with four components: Move To Ball Shaping-Reward provides a scalar reward
proportional to the change in distance between the agent and the ball d(a, b). An
additional shaping-reward Ikick of 1 is given the first time each episode the agent
is close enough to kick the ball. Kick To Goal Shaping-Reward is proportional
to the change in distance between the ball and the center of the goal d(b, g). An
additional true reward is given for scoring a goal Igoal. A weighted sum of these
components results in a single reward that first guides the agent close enough to
kick the ball, then rewards for kicking towards goal, and finally for scoring. The
reward function (reproduced from Equation 4.1 in Chapter 4) is:

rt = dt−1(a, b)− dt(a, b) + Ikickt + 3
(
dt−1(b, g)− dt(b, g)

)
+ 5Igoalt (7.1)

It is disappointing that reward engineering is necessary. However, with a
sparse reward function the exploration task proves far too difficult because acting
randomly in the low-level action space is exceedingly unlikely to yield even a sin-
gle goal. The hand-engineered reward function provide a figurative trail of bread-
crumbs: enough information to allow the agent to bootstrap its policy from random
actions all the way to scoring goals. However, a major concern is that the shaping
rewards could result in a learned policy which is suboptimal with respect to the true
task of scoring goals.

7.2 Limitations of Potential-Based Shaping Rewards

Ng et al identify a class of potential-based shaping reward functions which
guarantee that optimal policies found in the reward-shaped MDP are still optimal
in the original MDP (Ng et al., 1999). They prove that any potential-based shaping

107

reward F (s, a, s′) is both necessary and sufficient to preserve optimality:

F (s, a, s′) = γΦ(s′)− Φ(s) (7.2)

Where Φ(s) is a an arbitrary potential function of the state. In Equation 7.1, Move
To Ball and Kick To Goal components satisfy these requirements since they are
differences of potential functions over consecutive states. Since the true task re-
ward is the reward for scoring a goal, the only component of the reward function
not guaranteed to preserve optimality is the shaping reward given for getting close
enough to kick the ball.

In this light, it would be ideal if we could leverage shaping rewards to aid in
the design of unbaised reward functions. Unfortunately, the theoretical guarantees
given by potential-based shaping functions do not hold for the HFO domain and
instead result in biased policies.

Ng et al. (1999) claims in Remark 2 that “All policies are optimal under a
potential-based shaping function.” This statement is true when there exists a single
terminal state and episodes only end when the terminal state is reached. In such
a situation, any policy that reaches the terminal state will have collected the same
amount of potential reward.

However, in HFO, episodes end in a variety of ways: scoring a goal, running
out of time, or ball being captured by defense. This multitude of terminal states
violates the claim above. Consider the Move To Ball shaping reward, which is a
difference of potential functions. A policy that moves the agent away from the ball
ends the episode by running out of time and receives negative reward, while the
policy that moves the agent toward the ball ends the episode with positive reward
when time expires. Clearly, it is not the case that all policies are optimal under the
move to ball potential-based shaping function.

On the other hand, if HFO episodes were allowed to run for an infinite
amount of time and only terminated when the agent reached the ball, then any pol-
icy that eventually reached the ball would be optimal, and the move to ball shaping
reward would be unbiased. To summarize, potential functions look like an enticing
framework for designing unbaised reward functions, but are inapplicable to domains

108

featuring multiple terminal states, such as HFO.
The suboptimality of the hand-designed reward function in Equation 7.1 be-

comes more apparent in the multiagent case when two agents are tying to coordinate
to score goals. If both agents use the reward function in Equation 7.1, one agent
learns to approach the ball, dribble, and score goals. The other agent learns to fol-
low directly behind the first, collecting move to ball and kick to goal rewards in the
process. Specifically, the following agent is still rewarded for its teammate kicking
the ball toward the goal and scoring. This following behavior would be suboptimal
in the presence of an opposing keeper, since the following agent is badly positioned
to receive a pass or take a shot on goal. For this reason, the multiagent task (dis-
cussed in Chapter 5.1) uses a hand-designed reward function that rewards only the
agent on the ball. However, even this reward function has limitations. Namely, it
does not provide rewards/encourage agents to pass or position themselves to receive
passes.

In general, hand-designing reward functions becomes more complicated in
the multiagent case: How much reward should be given for a teammate scoring
versus the agent? Should an agent be encouraged to move away from the ball if its
teammate is already approaching it? Should an agent be rewarded if its teammate
moves the ball towards the goal? How should agents be rewarded for passing? How
much suboptimality will be introduced by a mistake in weighting these different
rewards? In many senses, hand-designing a reward function for a complex task can
be as difficult as hand-coding a policy to solve that task. Therefore, this chapter
presents approaches capable of learning from the sparse goal reward. The next
section discusses related approches for handling sparse rewards.

7.3 Related Work

Complex tasks such as those with sparse rewards require more sophisticated
approaches than plain DQN or DDPG. DQN and DDPG rely on frequent, if small,
rewards in order to bootstrap an effective policy. If rewards are too sparse, the
exploration policies used by DQN/DDPG will be unable to reliably encounter any

109

positive reward and will be starved of the gradients needed to bootstrap a good
policy. There are a variety of ways to address domains with sparse reward signals.

One category of methods for dealing with sparse rewards seeks to enhance
the agent’s exploration strategy. For example, one way to motivate exploration is
to look for novel states to visit. Intrinsic motivation approaches reward the agent
for visiting new and unexpected environment states. Often the agent may maintain
a model of the environment and state transition function. The agent is intrinsically
rewarded when it encounters a sensation that disagrees with its model predictions
(Hester and Stone, 2015). As the model is continually refined, these intrinsic re-
wards will become less frequent and the agent will have visited more of the state
space. Another approach (Bellemare et al., 2016) encourages visitation of novel
states by using a neural network to maintain an approximate state visitation count.

Another category of methods rely on videos of the correct solution to the
task, typically obtained by recording a human or oracle performing the task. Next,
the reward function that is motivating the behavior of the human or oracle can be
estimated by using a technique called inverse reinforcement learning (IRL). Inverse
reinforcement learning is typically quite hard because of the vast number of possible
reward functions that could be correctly estimated as driving the policy of the oracle
agent. However, there has been some preliminary work on IRL in the context of
robotics learning (Finn et al., 2016).

Another category of methods are designed to solve the Optimal Rewards
Problem (ORP). Early work on optimal rewards (Singh et al., 2010) used an evo-
lutionary approach to create reward functions that lead to success across environ-
ments. The recent work of Liu et al (Liu et al., 2014, 2012; Sorg et al., 2010)
describe a multiagent architecture where each agent employs a gradient-based al-
gorithm to learn its own reward function. Evaluations on two multiagent domains
show that the learned reward functions outperform simply using a team-based re-
ward. However, this approach relies on the agents being able to plan in the given
domain and could encounter difficulties in a model-free setting such as HFO.

Another approach is to break the target task down into a curriculum of sub-
tasks. Narvekar et al. (Narvekar et al., 2016) presents a methods for creating a

110

curriculum of source tasks which can be leveraged to learn a target task. In order
to create new source tasks, a parameterized model of the domain is leveraged along
with observed trajectories of the agent performing the target task. Results are shown
on Ms. Pac-Man and a version of Half Field Offense that uses high-level discrete
actions. The results show that the use of a curriculum can speed up learning on the
target task and lead to higher asymptotic performance. In contrast, our work uses
a target task (Soccer) featuring a reward function that is too sparse to learn alone.
The curriculum is necessary to even begin to tackle this target task.

Broadly, curriculum learning is based on the idea that skills and knowledge
gained in one task may be transferred to the next task. Transfer learning has been
the topic of much study with several approaches being proposed in the area of deep
reinforcement learning. In particular the Actor-Mimic architecture (Parisotto et al.,
2015) trains a single policy network that learns how to act in a set of distinct tasks
by using the guidance of several expert teachers. Similarly, Rusu et al. (Rusu et
al., 2015) introduce a Policy Distillation method for transferring policies between
Deep Q-Networks and show that transfer can be achieved between tasks in the Atari
domain.

The progressive neural network (Rusu et al., 2016) presents another ap-
proach for transfer learning. The progressive architecture learns a network column
for each task and uses lateral connections between columns to allow transfer of
information between older tasks and newer ones. The benefit of such an architec-
ture is that it never forgets how to perform older tasks (since weights are frozen).
However, the drawback is that the number of parameters in the network increases
as each new task is added.

In the transfer learning setting, Guo et al (Guo et al., 2013) train a reward
mapping function that can provide good initial guidance reward functions for new
tasks. By leveraging good optimal rewards from previous tasks in the sequence,
they can provide good initial guesses of guidance reward for new tasks. Such a
framework could be useful extended in HFO in the context of learning task embed-
dings for new tasks.

Layered Learning (MacAlpine et al., 2015b; Whiteson and Stone, 2003;

111

Stone and Veloso, 2000) is a hierarchical learning paradigm that breaks a com-
plex task into many smaller subtasks. Learning begins separately with each of the
subtasks and then proceeds upwards in the hierarchy to the complex target task.
Layered learning has been effective in both 2D and 3D RoboCup simulated soccer
domains (MacAlpine et al., 2015b; Stone and Veloso, 2000). Other hierchical de-
composition approaches (Bai et al., 2012, 2013) also build on the similar intuition
of solving a difficult task by breaking it down into a hierarchy of smaller, solvable
subtasks.

7.4 Approach

The approach we take is one of breaking down the primary task into many
different subtasks such as moving to the ball, dribbling the ball, passing the ball,
and kicking towards the goal. Each individual task is easy to learn using a simple
reward function, and together these subtasks contribute to the overall skills an agent
will need in order to play an effective game of soccer. By first learning each of the
subtasks, the agent can harness this knowledge to then tackle the complex original
task. The sparse goal reward will no longer be as daunting because the skills the
agent has learned can be leveraged in order to access more promising parts of the
state space than random exploration could.

In this chapter, both the subtasks and their reward functions are manually
created and serve as a way of transferring domain specific knowledge to the agent.
However, just the tasks alone are often not sufficient for learning, especially if one
task requires skills that are learned in another. Instead, Curriculum Learning posits
that if the agent is presented with a sequence or curriculum of tasks in such as way
that the knowledge learned in each task is utilized in the next task, the agent will
be able to more quickly and effectively learn to perform the target task. In the next
section, we present the different subtasks that contribute to the soccer curriculum.

112

7.5 Move To Ball Task

In the move to ball task, the agent and ball are initialized randomly on the
field. The agent is rewarded for approaching the ball, specifically for minimizing
the distance between itself and the ball. Episodes end when the agent reaches the
ball or if the ball is not touched within 100 timesteps. This is the most basic task
and has no prerequisites. Additionally, it corresponds directly to the first part of the
reward function given in Chapter 4.1.

rt = dt−1(agent, ball)− dt(agent, ball)

7.6 Kick to Goal Task

The kick to goal task initializes the agent randomly with possession of the
ball. The agent is rewarded for minimizing the distance between the ball and the
goal. Episodes end when a goal is scored, the ball goes out of bounds, or the ball
is untouched for 100 timesteps, or a maximum of 500 timesteps pass. In order to
correctly perform this task, the agent must already know how to approach the ball,
otherwise it will be unable to kick towards the goal more than once. The reward
function of the kick to goal task corresponds directly to the second part of the reward
function given in Chapter 4.1.

rt = dt(ball, goal)− dt−1(ball, goal)

7.7 Soccer Task

This is the classic soccer task: the agent is initialized randomly on the offen-
sive half of the play field, away from the ball. The agent is only rewarded one point
for scoring a goal and gets zero reward for all other timesteps. In order to perform
the soccer task, the agent should know how to move to the ball and kick towards the
goal. Without understanding these subtasks, the sparse goal reward is very difficult

113

to obtain and will render the task impossible for the agent. The agent is given 500
steps to solve this task, however the task is also terminated if the ball is kicked out
of bounds or remains untouched for 100 timesteps.

Having presented the move to ball and kick to goal subtasks, as well as the
soccer target task, the next section presents methods that allow a single agent to
learn all of these tasks.

7.8 Task Embedding

One challenge of learning from a curriculum of tasks is informing the agent
which task is currently active. Because the tasks all share the same state space and
action space (defined in Chapter 2.5.1), the agent does not implicitly know which
task it is in. This is mainly a problem if the reward functions for the different
tasks in the curriculum are very different. An unaware agent may inadvertently ac-
crue negative rewards simply by performing the wrong actions for the current task.
Since all tasks have identical state representations, it is necessary to identify which
task is currently active, so the agent knows which reward function is governing the
environment.

Moreover, the question of how to encode a task is crucial. An ideal task
encoding would capture enough information to allow the agent to understand how
the task should be performed, but otherwise remain as compact as possible. Let
us assume we have a fixed curriculum with some finite set of n tasks. Each task
may be represented by an integer 0 . . . n denoting its index in the set. However, an
integer task representation, when paired with a neural network, is less than ideal.
Typically, a n-dimensional one-hot representation could be used. However, such a
representation provides little information beyond which task is active: it is a very
simple representation of the task.

Instead of a one-hot vector, the architectures presented below use an em-
bedding layer to create a vector representation of each task T1 . . . Tn. These vector
representations may be thought of as similar to word embeddings (Mikolov et al.,
2013), where the content conveyed is the objective of the task rather than the mean-

114

ing of the word. In contrast to the one-hot representation, a vector representation is
more descriptive and can capture similarities between tasks. Specifically, the task
embedding is created by projecting the n-dimensional one-hot task representation
i ∈ Rn into a d-dimensional embedding vector T ∈ Rd using an embedding matrix
W emb ∈ Rd×n.

T = W embi

Where the embedding weightsW emb are initialized randomly, but can also be learned
as the network is updated. The size of the one-hot vector i is determined by the num-
ber of unique tasks in the curriculum, and the dimension d of the task embedding
vector is a hyperparameter. The experiments in the following sections use 8 and
128-dimensional embedding vectors.

The following sections explore different approaches to using this task em-
bedding vector. Specifically, the State Embedding and Weight Embedding approaches
use the task embedding in different ways to inform the agent of how it should act in
the current task.

7.9 State Embedding Architecture

The state embedding approach builds on the standard actor-critic architec-
ture (presented in Chapter 4) for learning in parameterized action space. The state
embedding approach concatenates the task embedding vector with the agent’s state
representation. This happens in states processed by both the actor and critic net-
works. By making the embedding a part of the state, the agent can choose to pay as
much or little attention to the embedding as it desires.

The advantage of the state embedding approach is simplicity. However, this
approach has the disadvantage of increasing the size of the agent’s state representa-
tion, potentially making learning task more difficult. Additionally, because the task
embedding is a part of the state space, we do not modify the weights of the task
embedding matrix W emb, meaning that the embedding vectors for each task remain
static. The state embedding architecture is depicted in Figure 7.1.

115

7.10 Weight Embedding Architecture

The weight embedding approach conditions the activations of the actor and
critic networks on the task embedding vector. Specifically, the activations of the
task embedding vector multiplicatively interact with the activations of the agent’s
network:

o = W dec(W ench�WT) + b

Where h ∈ Rd are the activations of layer n of agent’s network, T ∈ Rc is the task
embedding vector. These quantities are transformed into the same f dimensional
space using matrices W enc ∈ Rf×d and W ∈ Rf×c. They are then element-wise
multiplied (� operator) and transformed into the decoded output space o by weight
matrix W dec and bias vector b.

It is possible to vary the dimension of the embedding space f : Larger f will
be able to capture more information at the cost of more parameters to optimize. In
the experiments that follow we employ a 128-dimensional f , but expect that a wide
variety of dimensionalities would provide similar results.

Additionally, it is also possible to decide which layer or layers of the agent’s
network interact with the task embedding. Intuitively, layers lower in the network
have more to do with processing the state inputs, while the higher layers are more
concerned with action selection and Q-Value estimation. We choose to use the 2nd-
to-last layer of the actor network to interact with the task embedding vector. This
way, the action selection will be highly influenced by the task embedding, but the
network will still have a chance to share common lower layers across tasks.

At a high level, the weight embedding architecture allows the network to
conditionally alter its output as a function of the active task. Additionally, in con-
trast to the state embedding approach, the weight embedding does not suffer the
disadvantage of increasing the dimension of the state space. Finally, the weight
embedding approach allows the agent to learn the weights W emb of the task embed-
ding vector, and customize it for the task at hand. The weight embedding approach
is motivated by the action conditional video prediction architecture used in (Oh et

116

al., 2015), in which predicted video frames were condition on the action selected
by the agent. Both task embedding architectures are shown in Figure 7.1.

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

i

Task Embedding

Wemb

(a) State Embedding

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

i

Task Embedding

128

Wemb

WWenc

Wdec

(b) Weight Embedding

Figure 7.1: Task Embedding Architectures: The current task index i is provided
as input to the network and converted into a task embedding vector. The State
Embedding architecture simply concatenates the task embedding vector with the
current state. In contrast, the Weight Embedding architecture uses a multiplicative
interaction between the embedding and the second-to-last layer of the network.
Note that the same embedding operations are applied to both the actor and critic
networks.

117

7.11 Curriculum Ordering

The previous section presented two different ways of informing the agent of
the current active task. However, a higher level question is how the tasks in the cur-
riculum should be ordered through time to achieve the best learning performance.
Admittedly, the notion of “best learning performance” is ambiguous, and could be
interpreted to mean a) the fewest number of episodes required to reach a target
level of performance on all tasks, or b) the number of episodes required to reach a
threshold level of performance only on the final task. In this chapter we strive for
simultaneous competence on all tasks in the curriculum and judge the performance
of agents by the number of episodes that are required to learn to perform all the
tasks in the curriculum.

The next section introduces random and sequential curriculum learning meth-
ods for ordering tasks through time. Both methods are orthogonal and complimen-
tary to the task embedding approaches presented in Section 7.8.

7.11.1 Random Curriculum

The random curriculum selects a random task from the set of possible tasks
at each episode. This simple approach serves as a baseline for future comparison.
The advantage of a random curriculum is that, given an infinite learning time, each
task will be visited an infinite number of times, so if the agent is capable of learning
all the tasks, this curriculum will permit it to do so. The disadvantage is that the
agent may be presented with advanced tasks before it has developed the necessary
capabilities to address them. Thus, all other things being equal, we expect that
the random curriculum will require a large number of episodes in order to reach a
threshold of competence across all tasks.

7.11.2 Sequential Curriculum

The sequential curriculum, shown in Algorithm 3, utilizes prior knowledge
in the form of a task ordering. It begins by presenting the easiest task in the curricu-

118

lum again and again until the agent develops competence. The sequential curricu-
lum then moves to the next easiest task and presents that task until mastery. This
pattern continues until either the agent masters all of the tasks, or it loses compe-
tency on some previous task. In the latter case, the sequential curriculum will revisit
the previous tasks long enough for competency to be regained.

By leveraging prior knowledge about the difficulty of different tasks, and
learning each task in order of easiest to most difficult, we expect that the sequential
curriculum will allow the agent to more quickly become compentent on the full set
of tasks than the random curriculum. For example, by first learning the Move To
Ball and Kick To Goal tasks, the agent can then start to tackle the more difficult
Soccer task.

In order to reassess the agent’s performance on prior tasks, we leverage re-
wards from routine policy evaluations. More specifically, every 10,000 iterations
the agent’s current policy is evaluated across all tasks. The resulting performance
is used to decide if competence on the current task has been achieved or if a pre-
vious task needs to be revisited. Since policy evaluation is a part of the learning
algorithm (Chapter 4), no additional work is needed to determine if performance is
falling short on previous tasks.

To determine if an agent has mastered a task T , it is necessary to have an
upper bound Rmax

T on the possible return that is achievable in each task. This upper
bound is used to determine a performance threshold for that task of .8 ∗ Rmax

T . If
the agent is above the performance threshold, we say it has mastered the task and is
allowed to proceed to the next text. Conversely, if it is below the threshold, it needs
to spend more time learning that task.

In order to determine Rmax
T for each task, we rely on human knowledge of

the reward function combined with prior performance of agents trained on that par-
ticular task. In summary, performance thresholds are used to determine when tasks
need to be revisited and must be manually defined for each task in the curriculum.

Having presented the Random and Sequential Curricula for ordering the se-
quence of tasks, as well as different embedding methods to make the agent aware of
the current task, we now present results of curriculum learning in the various HFO

119

subtasks.

Algorithm 3 Sequential Curriculum Learning
1: procedure LEARN SEQUENTIAL CURRICULUM

2: current task index i = EvaluateTasks()
3: for iteration < max iter do
4: PlayEpisode(Ti) . Learn on task Ti
5: if iteration %10, 000 == 0 then
6: i = EvaluateTasks() . Update current task index
7:
8: procedure EVALUATETASKS

9: for i ∈ {1 . . . |T |} do
10: average return Ravg = Evaluate(Ti)
11: if Ravg < .8×Rmax

T then
12: return i

return |T | . Return final task

7.12 Task Embedding Sanity Check

To illustrate the necessity for task embeddings (Section 7.8), we present a
curriculum composed two tasks: MoveToBall and MoveAwayFromBall. As their
names imply, these tasks respectively reward the agent for approaching and moving
away from the ball. The maximum expected returns for the move to ball and move
away from ball tasks respectively are 0.6 and 0.7.

Results in Figure 7.2 show that without the benefit of a task embedding
the agent has no way of knowing whether it should approach or retreat from the
ball. As a result the agent cannot master either of the tasks within the one-million
iterations allocated. However, when the agent is made aware of the current task
using an embedding, both the state embedding and weight embedding approaches
result in mastery of both tasks. All embedding approaches perform equally well on
this curriculum, and simply illustrate the necessity of informing the agent about the
current task. The next section presents a more challenging curriculum.

120

(a) No Embedding (b) 8-Dim State Embedding

(c) 128-Dim State Embedding (d) Weight Embedding

Figure 7.2: Move To/Away From Ball Performance: Evaluation performance as
a function of iteration on MoveToBall and MoveAwayFromBall tasks for three dif-
ferent task embeddings. No embedding results in low performance on both of the
tasks. Embedding the task vector as a part of the agent’s state space (either using
8 or 128 dimensions) results in both tasks being learned. Finally, using the weight
embedding approach, both tasks are also quickly learned. Performance (plotted on
the y-axis) is the achieved return divided by the maximum possible task-specific
return.

121

7.13 Results: Soccer Curriculum

The intention of the soccer curriculum is to learn a policy for scoring on
an empty goal. This curriculum employs three tasks: MoveToBall, KickToGoal,
and Soccer. MoveToBall and KickToGoal can be learned on their own, but both
skills are required for Soccer. The maximum expected returns for MoveToBall,
KickToGoal, and Soccer tasks respectively are 0.6, 0.4, and 1.0. We present re-
sults comparing a) Random Curriculum with the Sequential Curriculum and b) the
three different methods of task embedding - No Embedding, State Embedding, and
Weight Embedding.

Results, shown in Figure 7.3 show that both the sequential and random cur-
riculums paired with no task embeddings or state embeddings fails to yield appre-
ciable learning on the soccer task. The move to ball and kick to goal tasks are
learned in varying amounts of time. Only the weight embedding approach results
in stable learning of all three tasks.

Comparing the random and sequential curricula, we see that in all cases,
the sequential curriculum results in tasks being learned in fewer episodes than the
random curriculum. In the case of this 3-task sequence, the random curriculum is
largely wasting time by presenting the soccer task before the other two tasks have
been mastered. We suspect this effect would be more pronounced as the number
of tasks in the curriculum grows and the number of dependencies between tasks
increases.

Using the task embedding and curriculum in conjunction allows the agent to
robustly learn the soccer task using only the sparse goal reward. However, there is a
price to be paid: in particular, it takes approximately one order of magnitude more
updates than the hand-designed reward function to learn the soccer task (see Chap-
ter 4.7 for learning curves). However, we suspect that for tasks more complicated
than soccer it will be impossible to hand-design a reward function and a curriculum
learning approach may be the only viable alternative.

122

(a) Random-No Embedding (b) Random-State Embedding

(c) Random-Weight Embedding (d) Sequential-No Embedding

(e) Sequential-State Embedding (f) Sequential-Weight Embedding

Figure 7.3: Soccer Curriculum Performance: These plots compare the perfor-
mance of sequential and random curriculums using no task embeddings, state em-
beddings, and weight embeddings. Each plot shows the performance of the agent
when evaluated for 100 episodes on each of the tasks: MoveToBall, KickToGoal,
and Soccer. Sequential curriculum with weight embeddings is the quickest to reach
high performance across all tasks. 123

7.14 Ablation Experiment

The importance of the full set of tasks in the soccer curriculum may be fur-
ther analyzed by performing an ablation experiment in which tasks are omitted
from the curriculum. Specifically, we select the best performing architecture, the
sequential curriculum using the weight embeddings, and analyze learning perfor-
mance when either the Move to Ball or Kick to Goal task is eliminated from the
curriculum.

Figure 7.4 shows the learning curves for the ablation experiments. In both
cases, the first task is mastered (either Kick to Goal or Move to Ball), but no
progress is made on the Soccer task. Visualizing the best-scoring policies, it is ap-
parent that the agent who did not have the move to ball task cannot reliably approach
the ball (Video: http://www.cs.utexas.edu/˜larg/hausknecht_thesis/
SeqCurric_Ablate_MTB.mp4).

Interestingly, the agent without the kick to goal task could reliably move to
the ball in the Move to Ball task, but did not reliably approach the ball in the Soccer
task (Video: http://www.cs.utexas.edu/˜larg/hausknecht_thesis/
SeqCurric_Ablate_KTG.mp4). Thus even though the knowledge (e.g. weights)
for moving to ball is present, it is not expressed in the Soccer task. The lack of re-
ward for moving to the ball in the Soccer task likely accounts for this unexpected
behavior.

The results of this ablation experiment, while perhaps unsurprising, lend cre-
dence to the notion that each task in the curriculum is effectively teaching the agent
a particular skill, and if coverage of the skills required to perform the target task
is incomplete, then target task performance suffers. Thus, for successful curricu-
lum learning it is necessary to identify all the skills needed in the target task and
construct subtasks to train each skill.

124

http://www.cs.utexas.edu/~larg/hausknecht_thesis/SeqCurric_Ablate_MTB.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/SeqCurric_Ablate_MTB.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/SeqCurric_Ablate_MTB.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/SeqCurric_Ablate_KTG.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/SeqCurric_Ablate_KTG.mp4
http://www.cs.utexas.edu/~larg/hausknecht_thesis/SeqCurric_Ablate_KTG.mp4

(a) Ablate MoveToBall (b) Ablate KickToGoal

Figure 7.4: Ablation experiment: In the soccer curriculum, when either the Move
to Ball or Kick to Goal task is removed from the curriculum, subsequent learning
fails on the Soccer task.

7.15 Analysis of Sequential Curriculum

This section analyzes the tasks visited by the sequential curriculum and
demonstrates that 1) the sequential curriculum must continue to revisit earlier tasks
in order to maintain high performance and 2) if the sequential curriculum does not
revisit earlier tasks, performance on the target task can become unstable. Figure 7.5
shows that a stable sequential curriculum continues to visit all of the tasks in order
to maintain high performance across the set. Moreover, if the sequential curriculum
does not have the ability to revisit older tasks, we observe that performance on the
soccer task, the final task of the curriculum, while initially high, subsequently drops.
Thus, mastery of the full set of tasks comes only through continual re-exposure to
every task in the curriculum.

In future work it would be interesting to maintain separate replay memory
buffers for each task. Then, rather than having to revisit older tasks in the curricu-
lum, an agent could simply update its policy using experiences saved in that task’s
replay buffer. Since these experiences were sufficient to learn the task in the first
place, it is reasonable to assume they could be sufficient to maintain knowledge of
that task without needing to sample new experiences from it.

125

Figure 7.5: Sequential Curriculum does not learn stable policies without the
ability to revisit older tasks: Left: to maintain high performance on all tasks, the
sequential curriculum must periodically revisit all the tasks. Plotting TaskID (0
is MoveToBall, 1 is KickToGoal, and 2 is Soccer) over time shows that all tasks
are periodically visited when using the sequential curriculum learning presented in
Algorithm 3. Right: If revisits to older tasks are disallowed, after learning MoveTo-
Ball and KickToGoal, the performance on soccer shows initial success (goal scoring
episodes terminate with reward 1) followed by unlearning and subsequent failure.
To maintain a high success rate on the final task, it is necessary to revisit the Move-
ToBall and KickToGoal tasks.

126

Another possibility would be to maintain separate functional regions, or sep-
arate networks entirely, for each different task. This way, not forgetting how to
perform a task would be as simple as freezing the weights for the functional region
associated with that task. The weight embedding approach moves in this direction
by allowing the network to tailor its activations and embeddings for each task.

7.16 Chapter Summary

This chapter presented a framework for learning from a curriculum of tasks.
Curriculum learning is motivated from the difficulty at designing reward functions
for complex tasks that are informative, hard to exploit, and don’t lead to biased or
suboptimal policies. Instead of trying to design a reward function for a difficult task,
it is often possible to break that task down into smaller subtasks, where each subtask
corresponds to a skill that is necessary in the difficult task. The reward functions
for each subtask are much easier to design and harder to exploit. By learning each
task in the curriculum, an agent works its way towards developing the necessary
skills to tackle the difficult task. Additionally if the skills encoded in each subtask
are fully learned, the difficult task can use a highly sparse reward function that will
lead to little bias in the resulting policy.

However, tackling a sequence of tasks introduces new difficulties. Namely,
the agent needs to be informed of the task that is currently active. This chapter pre-
sented two methods for converting the current task index into a vector embedding
and providing this embedding to the agent. The state embedding method concate-
nated this vector with the agent’s current state while the weight embedding method
conditioned the activations of the network on the current task. We presented exper-
imental results showing the necessity of using some type of task embedding when
learning a curriculum of tasks and showed that, in general, the weight embedding
approach offered better learning performance compared to the state embeddings.

Finally, we demonstrated that the order in which the tasks are presented to
the agent can have an impact on the number of episodes required to learn. We
introduced a sequential curriculum which presents tasks sequentially starting from

127

the easiest and working towards the hardest. Compared to randomly selecting a
task at each episode, the sequential curriculum reduces the time needed to master
the full curriculum of tasks. Results were shown for a curriculum of tasks that lead
to a policy capable of approaching the ball and scoring goals.

In general, curriculum learning offers an appealing way of avoiding hand-
designed reward functions. However, it requires a substantial amount of expert
knowledge in the form of a task decomposition, reward functions for each of the
subtasks, and an ordering over difficulty of tasks. Additionally, results show that
stable learning requires revisits to each of the subtasks and much more total expe-
rience than a hand-designed reward function. In light of these difficulties, it makes
sense to hand-design reward functions whenever possible, and reserve techniques
like curriculum learning for tasks too complex to design informative reward func-
tions.

This chapter concludes the contributions of this dissertation. The final chap-
ter summarizes and concludes.

128

Chapter 8

Related Work

Although there has been much research in the field, this is among the first
dissertations about deep reinforcement learning. Notable exceptions include Rein-
forcement Learning for Robots Using Neural Networks (Lin, 1992) and Motor Skill
Learning with Local Trajectory Methods (Levine, 2014). Compared to the related
work sections found in most chapters, this chapter presents a more high-level per-
spective on the field of deep reinforcement learning and attempts to elucidate the
relationship between the work in this thesis and the larger body of deep reinforce-
ment learning. This chapter may be understood at a high level on its own.

Due to the scalability issues of tabular reinforcement learning, it is common
to employ some type of function approximation when learning a value function.
The idea of using neural networks as function approximators for reinforcement
learning agents has existed for quite some time. However, neural networks con-
sisting of more than a few layers were notoriously difficult to train using backprop-
agation, suffering from vanishing gradients, which today is recognized as a problem
stemming from the ubiquitous use of the sigmoid nonlinearity which provides in-
formative gradients only over a small portion of the activation range.

Instead of neural networks, many reinforcement learning practitioners chose
to use linear function approximation (LFA), which yielded more traction for the-
oretical analysis of convergence properties (Tsitsiklis and Roy, 1997; Melo and
Ribeiro, 2007; Melo et al., 2008). The downside of LFA was the lack of represen-
tational power: in practice it was necessary to either engineer good features for the
agent to use or stick with simple domains. Other researchers preferred more pow-
erful function approximators such as forests of decision trees (Hester and Stone,
2015). These models sacrificed the theoretical guarantees of LFA but often worked
better in practice.

Despite the difficulties of backpropagation, some researchers persisted with
neural network function approximators. However, they used evolutionary approaches

129

to optimize either the topology or parameters of the networks, sometimes in combi-
nation with backpropagation (Whiteson, 2007), and sometimes alone (Stanley and
Miikkulainen, 2002). While ineffective at optimizing large networks, evolution-
ary methods could often discover compact networks that did a reasonable job at
representing the value function or policy (Hausknecht et al., 2013).

The neural network resurgence began with Deep Belief Networks showing
impressive generative modeling capabilities (Hinton et al., 2006). More results soon
hinted at the ability of unsupervised neural networks like auto-encoders to discover
features and learn representations (Le et al., 2012). Soon after, discriminative neu-
ral networks with many stacked layers started to be vastly more tractable to train.
This was made possible by the abundance of parallel computing power embodied
by GPUs as well as the use of nonlinearities like Rectified Linear Units (ReLU)
which went a long way to ameliorate the problem of vanishing gradients. Neural
network ideas developed twenty or thirty years ago such as convolutional networks
(LeCun et al., 1998) and Long Short Term Memory (Hochreiter and Schmidhuber,
1997) were suddenly not only applicable, but yielding state-of-the-art results on
nearly every domain they were applied to. Deep discriminative neural networks
were performing tasks like image recognition that were considered impossible just
a couple years before.

The power of neural networks was evident, and the time was right for them
to be applied to reinforcement learning. Some early works began to show that like
image recognition, reinforcement learning agents could now harness pixels repre-
sentations (Lange et al., 2012). However, stability of deep neural networks used for
reinforcement was less than desirable. The breakthrough came in the form of the
Deep Q-Network (Mnih et al., 2015), which showed robust learning on a variety of
Atari games using raw pixels as input. From a technical standpoint, DQN demon-
strated the use of target networks, experience replay, and adaptive learning rate opti-
mizers to stabilize neural network training in the context of reinforcement learning.
With these developments, deep reinforcement learning was born and with it came
a variety of works extending and improving DQN. Like with the neural network
resurgence, old ideas from reinforcement learning were suddenly not only appli-

130

cable, but also offering state-of-the-art performance when paired with deep neural
networks. Some ideas that found traction were double Q-Learning (van Hasselt et
al., 2015), advantage learning (Wang et al., 2015; Schulman et al., 2015b), priori-
tizing experience replay (Schaul et al., 2015), and recurrent networks (Hausknecht
and Stone, 2015).

Extending deep reinforcement algorithms into continuous action spaces is an
important step towards real-world domains such as robotics, which require agents
to use continuous controls like real-valued torques applied to actuators. Several ap-
proaches for continuous control using deep neural networks have emerged. Actor-
critic architectures such as Deep Deterministic Policy Gradients (Lillicrap et al.,
2015) (see Section 2.7) maintain separate neural networks for learning a policy
(actor) and a value function (critic). However, the learning is still driven by tradi-
tional Bellman-style updates. Alternative architectures such Normalized Advantage
Functions (NAF) represent the Q-function in such a way that its maximum can be
determined easily during the Q-learning update. Parameterizing the Q-function as a
quadratic allows NAF to use only a single network, making it considerably simpler
than DDPG (Gu et al., 2016). Other approaches to continuous control avoid Bell-
man updates altogether, instead preferring policy gradients. Policy gradient meth-
ods (Schulman et al., 2015b,a) directly alter the policy of the agent in the direction
of higher rewards, simply by increasing the probabilities of actions in good trajecto-
ries. All of these methods show promise in continuous action space and more work
is needed to understand the tradeoffs between the different algorithms. Since robots
typically have tens to hundreds of actuators that all need to be controlled at the same
time, future algorithms will need to be able to function in higher-dimensional action
spaces than are possible currently.

Novel advances in deep neural networks and deep reinforcement learning
continue to drive the field. One of the most promising recent directions is exter-
nal memory. Integrating read/write memory into a deep reinforcement learning
agent can help the agent better recall events or sensory input from many steps ago.
This information can be helpful for dealing with partial observability and creating
history-aware policies. The LSTM controller in models like DRQN takes a first

131

step in this direction, but differentiable memory agents are capable of handing de-
pendencies far more complex than LSTM alone (Oh et al., 2016). However, the
effective size of the external memory is still limited and addressing mechanisms
need to improve before external memories can grow hold and recall hundreds or
thousands of items.

There are several notable bastions that even today remain unconquered. One
of the most prominent is the lack of high performing model-based reinforcement
learning approaches. The typical promise of model-based reinforcement learning is
the ability to learn good policies from fewer experiences by needing to revisit states
less often. In the Atari domain, high quality predictions of next states have already
been achieved (Oh et al., 2015). However, when planning over long horizons, small
errors in models tend to accumulate and magnify, leading model-based deep RL
agents to make incorrect decisions. These errors are often cited as the primary rea-
son why model-based RL has yet to match the power of model-free approaches like
DQN. For this reason, Stochastic Value Gradients (SVG), one of the few existing
approaches for model-based RL (Heess et al., 2015) computes value gradients using
historical trajectories rather than ones simulated by the model. To address this chal-
lenge would require more precision on the part of deep neural networks or a better
way of estimating model error and an understanding of when to stop planning.

As reinforcement learning agents become more capable, they begin to be
exposed to domains that are increasingly complex. As a by-product, reinforcement
learning practitioners are beginning to realize that the design of reward functions
for complex tasks is no longer scalable. Hand-designed reward functions are sub-
ject to being gamed by agents that can find a way to generate more reward without
performing the task as intended (Amodei et al., 2016). Additionally, current rein-
forcement learning agents have trouble with highly sparse rewards and often work
best with reasonably frequent rewards. In general, designing non-sparse rewards is
harder than the design of sparse rewards, which can often consist of simply giving
positive reward at a goal state and zero reward otherwise. There are several possible
directions for addressing this challenge.

First, better exploration through reward shaping (Ng et al., 1999) or intrin-

132

sic motivation (Chentanez et al., 2005) could hold the key to learning with sparse
rewards. There has been work on improving exploration in deep reinforcement
learning agents using a variety of methods (Stadie et al., 2015; Bellemare et al.,
2016). Future work on improved exploration would fit well with model-based rein-
forcement learning since learning a model of the environment has no dependency on
receiving frequent rewards. Thus, a model-based agent may be particularly suited
for a domain with highly sparse rewards.

Other approaches to learning with sparse rewards seek to leverage external
sources of information. Inverse reinforcement learning (IRL) assumes access to
only expert trajectories and will attempt to estimate a reward function that explains
the behavior of the experts. Work in deep-IRL shows promise, but is still very
young (Wulfmeier et al., 2015). Imitation learning and learning from demonstration
also fall into the category of methods that rely on external information rather than
rewards, but have difficulty with policy improvement in the context of deep RL: it
is possible to learn a policy by mimicking expert data, but trying to improve that
policy is far more difficult.

Finally, transfer and curriculum learning seek to leverage skills from related
tasks towards a new task, perhaps one featuring sparse rewards. There has been
a reasonable amount of work on transfer learning for deep RL (Rusu et al., 2016;
Parisotto et al., 2015; Rusu et al., 2015), with findings generally suggesting that
positive transfer is quite possible in this context. Curriculum learning in Chapter
7 echoes this trend. We are beginning to struggle with the limitations of scalar
reward functions, and in the future, learning agents will need to be able to shape
their policies in response to feedback from a diverse set of sources - other agents
and humans to name a few.

Scaling deep reinforcement learning beyond simulated domains is an ongo-
ing endeavor. In particular, there is much potential for physically embodied learn-
ing agents, e.g. robotics. The typical challenges for learning agents in the physical
world are myriad: agents must handle highly noisy perceptions, work with con-
tinuous actuators that often alter behavior after continuous operation, contend with
realistic factors such as hardware malfunction and limited power supply. For all of

133

these reasons, the majority of deep reinforcement learning research, including this
thesis, has taken place in simulation. Deep reinforcement learning algorithms typ-
ically require large amounts of experience to learn good policies and the prospect
of collecting hundreds of thousands of episodes of robot experience is daunting.
However, there are a few researchers who have made notable headway learning on
physical robots (Levine et al., 2015; Finn et al., 2015; Finn and Levine, 2016), em-
ploying trajectory optimization to reduce the amount of data that needs to be collect
on the robot or many robots that can collect data in parallel. Further advances in
robotics will likely be made through more sample efficient deep RL algorithms as
well as more reliable hardware.

Advantages in single agent capabilities will have to also come with advances
in interpretability and safety of agents. This is particularly important when agents
begin to inhabit or interact with real world systems. The challenges in AI safety
are very real and will need to be thought about carefully to prevent learning agents
from interacting harmfully with the existing world.

Future advances in deep reinforcement learning will likely leverage further
advances in function approximation power of deep neural networks, or continue the
trend of using using human brain regions as loose inspiration for agent based neural
architectures. In addition to memory, agents stand to gain from incorporating active
planning, language, reasoning, and perhaps even emotion. The work of improving
the capabilities of learning agents will likely continue for the foreseeable future.

134

Chapter 9

Future Work, Discussion, and Conclusion

Cooperation is the process where groups of organisms act together for mu-
tual benefit. Symbiotic relationships in nature show that cooperation is achievable
and beneficial for different groups of organisms. For example, honey bees help
flowers reproduce by collecting pollen which they consume for its protein content.
Bacteria, living in the human digestive tract benefit humans by fermenting dietary
fiber into fatty acids, which are absorbed more easily than the unfermented fiber
would be. Many more symbiotic relationships exists and illustrate that by working
together, independent agents can achieve far more than would be possible alone.

Cooperation and symbiosis in nature evolve over hundreds or thousands of
years. However, in human society, cooperation can happen much more quickly
and is often facilitated through active communication, an understanding of another
person’s goals, and the ability to understand how individual action can be applied to
achieve a common goal. This thesis takes a small step towards better understanding
the principles and architectures that aid cooperative deep multiagent reinforcement
learning. We have demonstrated the approaches presented can help learning agents
cooperate on shorter timescales than in nature, by leveraging techniques such as
communication and sharing.

This chapter summarizes the thesis, revisits the thesis question and contri-
butions, identifies avenues for future research, and concludes.

9.1 Thesis Summary

A main idea in this thesis is leveraging the power of deep neural networks
to improve and capabilities of reinforcement learning agents. Chapter 2 reviews the
fundamentals of deep neural networks and reinforcement learning. Additionally,
this chapter introduces the Arcade Learning Environment and Half-Field-Offense
domains which are used in later chapters. Finally, it reviews well known algo-

135

rithms that combine deep neural networks with reinforcement learning: Deep Q-
Networks and Deep Deterministic Policy Gradients. These method represent the
starting points for the algorithmic contributions of later chapters and the founda-
tions of our deep reinforcement learning agents.

Building on the success of DQN, Chapter 3 introduces DRQN, a recur-
rent convolutional network intended to combat the partial observability in Atari
games. Compared to standard DQN, DRQN is capable of processing information
over longer time scales, conditioning the agent’s policy on a greater amount of his-
tory. The ability to incorporate information through time is particularly useful when
individual game screens may be obscured or occluded, in which case the locations
and velocities of on-screen objects can only be successfully inferred from a history
of past screens. Results demonstrate that DRQN achieves superior performance on
certain Atari games that feature flickering screens. Analysis shows that the recurrent
layers in the neural network are capable of inferring velocity of on-screen objects
even though only a single screen is observed at a time. This result indicates that
recurrent networks can be used in the context of reinforcement learning to extract
salient information through time and learn a policy robust to partial observations.

Chapter 4 focuses on single agent deep reinforcement learning in parameterized-
continuous actions space. To handle continuous action spaces, an actor-critic ar-
chitecture based on the Deep Deterministic Policy Gradients (DDPG) algorithm is
used: the actor is responsible for learning a policy whose outputs correspond to the
continuous actions in the domain, while the critic learns an action-value (Q-value)
estimator. Learning in parameterized action space rather than purely continuous
space requires several adaptations: first we presented a method for stably bounding
the activations of continuous parameters into fixed ranges. This step is necessary
due to the limitations imposed by the Half-Field-Offense domain on the ranges of
continuous actions. Additionally, we detailed an algorithm to combine off-policy
bootstrap targets with on-policy Monte-Carlo targets when updating the critic net-
work. We empirically demonstrate that using this hybrid update increases learning
speed and policy stability. Building on these innovations, the chapter presented
successful learning on single agent simulated soccer against an empty goal and

136

against a keeper. The architecture and updates for single agent learning are lever-
aged throughout the remainder of the thesis.

Chapter 5 examines multiagent scenarios in Half Field Offense. In order to
coordinate multiple agents, we evaluate several approaches motivated by the idea of
sharing between agents. The first approach is sharing parameters between layers of
the actor and critic networks that represent each agent. Another approach is main-
taining a shared replay queue that both agents store experience to and update from.
Results show that both approaches can help all offense agents learn to perform the
task. In contrast, without sharing parameters or memories, only one agent learns
to perform the task and the other does not. Fundamentally, the sharing approaches
encourage policy similarity between the agents. In domains where policy similarity
engenders cooperation, sharing either parameters or experiences can lead to coop-
erative behavior. The limitation of this approach are seen on more challenging tasks
such as soccer against a keeper, in which similarity between agents is not sufficient
to guarantee success. Such complex tasks likely require more specialization of each
agent.

Chapter 6 investigates different ways in which active communication be-
tween agents can enhance cooperation. We augment the actor-critic architecture
with additional continuous actions that are used to broadcast real-valued messages
between agents. Using this communication channel, agents have the potential to
strategize and overcome deficiencies in any single agent’s observations. However,
as our results show, communication actions alone are often not enough to achieve
cooperation. Instead algorithmic change to the learning process of both agents
is needed to ensure stable communication protocols are established between the
agents. One such algorithm is referred to as teammate communication gradients.
This approach involves sharing gradients of communication actions between the
two agents. In this manner, each agent can influence the content of the messages
sent by its teammate. This approach is shown to be highly effective in domains
where the reward signal is directly tied to content of the transmitted messages. An-
other approach, the Grounded Semantic Network, learns a communication protocol
grounded in the states and rewards of the task. Our results indicate that this ap-

137

proach is more effective for complex tasks in which communication is used as a
means to achieve some objective in the environment, rather than an end in and of
itself. The Grounded Semantic Network is validated in a task in which a sighted
agent must guide its blind teammate to the soccer ball using only communication.
Analysis of the learned communication protocol reveals that the blind agent’s policy
is highly dependent on the messages sent by its sighted teammate. The limitations
of the Grounded Semantic Network are demonstrated in a domain where reward
is tied directly to the content of the transmitted messages. In this case, other ap-
proaches that directly optimize content of messages achieve superior performance.

Finally, Chapter 7 examines the problem of curriculum learning in the con-
text of deep reinforcement learning agents. This chapter is motivated by the diffi-
culty of designing effective reward functions for complex tasks. A promising alter-
native is curriculum learning, in which a complex task is decomposed into multiple
simpler tasks, each of which corresponds to a single skill. The agent then learns to
perform each task, leveraging the skills from earlier tasks to assist its learning of
later tasks. We present an architecture for conditioning the weights of the agent’s
actor and critic networks on the current task and demonstrate successful curricu-
lum learning across a set of three tasks that involve moving to the ball, kicking the
ball towards the goal, and scoring a goal. Compared to alternative approaches, our
architecture shows quicker and more stable learning across a curriculum of tasks.
Through ablation analysis we demonstrate that each of the tasks in the curriculum
is necessary and the skills learned by the agent are all leveraged in the final soccer
task. The limitation of curriculum learning is the requirement to manually create a
set of tasks as well as the increased amount of time required to learn each task in the
sequence. Despite these limitations, this chapter highlights curriculum learning as
a potential method to avoid the need to hand-design reward functions for complex
tasks.

Taken together, these chapters illustrate the power of combining deep neu-
ral networks with reinforcement learning. Resulting algorithms are able to learn
from low-level representations such as pixels, incorporate information over many
timesteps, act in continuous spaces, and cooperate with other agents. This thesis has

138

introduced deep reinforcement learning algorithms applicable to single and multi-
agent domains that take steps to accomplish these objectives. The resulting agents
have only been tested in small scenarios are not ready to tackle the full ten ver-
sus ten RoboCup competition. The specific contributions are outlined in the next
section.

9.2 Contributions

This thesis addresses the following questions: 1) How can the power of
Deep Neural Networks be leveraged to extend Reinforcement Learning towards
domains featuring partial observability, continuous parameterized action spaces,
and sparse rewards? 2) How can multiple Deep Reinforcement Learning agents
learn to cooperate in a multiagent setting?

We address each part of the thesis question separately. First, How can the

power of Deep Neural Networks be leveraged to extend Reinforcement Learning

towards domains featuring partial observability, continuous parameterized action

spaces, and sparse rewards? Chapters 3-4 are devoted to answering this question.
Specifically, Contribution 1 is an exploration of recurrency as a method of dealing
with partial observability. The Deep Recurrent Q-Network in Chapter 3 described
an algorithm for using recurrent neural network architectures to learn policies that
are capable of incorporating observations across many timesteps. Such policies are
more resistant to partial observations or noise in the observation space at any single
timestep. DRQN forms the basis of Contribution 1.

Thesis Contribution 3 addresses the second part of this question by combin-
ing deep neural networks and reinforcement learning on domains featuring contin-
uous parameterized action spaces. Chapter 4 forms the basis of this contribution by
describing a deep reinforcement learning algorithm tailored for the parameterized
continuous action space of Half Field Offense. Our algorithm has several improve-
ments over standard DDPG, an existing deep reinforcement learning algorithm for
continuous action space learning. In particular, we describe a method to ensure the
agent respects the boundaries each continuous action and a modified update which

139

involves mixing on-policy and off-policy targets.
Returning to the question of domains featuring partial observability, Chapter

6 presents the Grounded Semantic Network, a method for learning a task-dependent
communication protocol. Specifically, the GSN is able to handle the partial observ-
ability present in a multiagent setting by learning a communication protocol that
transmits information to the teammate that may be lacking from their state observa-
tions. The Blind Move to Ball task (found in Chapter 6.5) is a good example of how
the GSN can learn a communication protocol that combats the lack of information
experienced in a partially observable domain. Formally, the GSN is part of Contri-
bution 4: an exploration of multiagent Deep reinforcement learning. However, we
view it as also contributing a perspective on overcoming partial observability.

Finally, Contribution 5 of the thesis explores curriculum learning, a method
for handling tasks with sparse rewards. In fulfillment of this contribution, Chapter
7 presents a novel approach to curriculum learning that allows the policies of the
agent to be conditioned on the current task. In a sense, this contribution is orthog-
onal to the other chapters of the thesis as the approach of conditioning the agent’s
policy on the task can be applied to any of the tasks examined throughout this thesis.
The main difficulty is breaking a target task into smaller subtasks and the providing
the extra training time required to solve each of these subtasks and then address the
target task. However, the extra time investment is worthwhile in domains that are
too complicated to design unbiased non-sparse reward functions.

The second part of the thesis question asks: How can multiple Deep Re-

inforcement Learning agents learn to cooperate in a multiagent setting? Thesis
Contribution 4 addresses this question, by extending the deep reinforcement learn-
ing agents presented in Chapter 4 into cooperative multiagent domains and iden-
tifying several approaches that help encourage both agents to cooperatively solve
multiagent tasks. Chapter 5 describes parameter sharing and memory sharing ap-
proaches which encourage policy similarity between the agents. In many tasks,
similar policies can be quite beneficial, and our results show that memory sharing
and parameter sharing can help both agents to learn to cooperate on a goal-scoring
task that is otherwise dominated by a single agent.

140

To further aid coordination, Chapter 6 investigates how active communica-
tion between agents can be learned in cooperative settings. As results show, simply
adding communication actions is often not sufficient to achieve a stable or fruit-
ful communication protocol between agents. One promising method is Teammate
Communication Gradients 6.2 which transfers gradients on communication actions
between teammates. We demonstrate this approach is effective for a class of do-
mains in which the content of the message is directly tied to the reward function.
Another approach is the Grounded Semantic Network 6.3 which we show to be the
effective in domains featuring partial observability and asymmetric information. In
such domains, the GSN allows the agents to learn a stable communication protocol
and successfully cooperate to solve the task. Overall, these results show that com-
munication can be integrated with existing deep reinforcement learning methods
and can also be a strongly positive force for promoting cooperation between agents.

Together, these chapters represent an exploration of deep multiagent rein-
forcement learning in domains featuring partial observability, parameterized con-
tinuous action spaces, and cooperative multiagent settings. We believe that they
advance the power of combining deep neural networks and reinforcement learning
for scaling agents towards cooperative behaviors in complex domains.

9.3 Short Term Future Work

The work presented in this thesis is only a first step rather than a complete
answer to the thesis questions. There are many avenues for future work. We discuss
some of short term ideas in this section and long term ideas in the next.

The work of combining advances in deep neural networks with reinforce-
ment learning continues with more vigor than ever before. There is continued
progress leveraging new neural network architectures such as differentiable read/write
memory and attention to solve ever increasingly difficult tasks (Oh et al., 2016).
Because there are many potential ways to improve single agent deep reinforce-
ment learning and this thesis is specialized in multiagent reinforcement learning,
we choose to focus our suggestions for future work on multiagent problems.

141

9.3.1 Alternative DRQN Architectures

While DRQN (in Chapter 3) showed increased performance on certain Atari
games, there were others in which the performance was lower than DQN’s. Com-
paring DRQN to DQN, one of the most striking differences is that DQN is able to
utilize its convolutional layers to extract velocities of on-screen objects. In contrast
DRQN’s convolutional layers are given only a single screen per step as input and
thus cannot recognize velocity. Instead, DRQN needs to allocate capacity of its
recurrent fully-connected layers to recognize object velocity. Lower performance
of DRQN in certain games may be an effect of the fully-connected capacity being
used to detect object velocity rather than learning a good policy. A middle ground
between both approaches would be to present DRQN with a stack of game screens
at each timestep. This would allow DRQN to both extract velocity with the con-
volutional network as well as using recurrency to find policies resistant to partial
observations. Such an approach would necessarily involve training networks with
even more parameters.

9.3.2 Better Task Performance

There is much room for improving performance on Atari games and Half-
Field-Offense tasks. In particular, of the HFO domains introduced in this thesis, the
task of two offensive agents cooperating against a goal keeper remains unsolved.
Additionally, there are a whole range of more complex HFO tasks involving more
offensive teammates and more defensive opponents. Furthermore, we have not
investigated the capabilities of learning agents to play defense in HFO. The perfor-
mance of existing algorithms on these tasks could be established relatively quickly.
Achieving higher performance on these more complex tasks would likely take more
time.

9.3.3 Combining GSN and Curriculum Learning

A GSN learned over a curriculum of tasks would need to establish a com-
munication protocol able to encompass all the necessary concepts for each task in

142

the curriculum. It may be possible to learn such a protocol by conditioning the ac-
tivations of the GSN on the embedding of the current task, analogous to the way
the agent’s actor and critic networks were conditioned in Chapter 7. This would
not necessarily create a single protocol, but would instead allow the GSN to switch
between protocols learned for each of the tasks.

9.4 Long Term Future Work

Having discussed short term future work, we now devote some time to long
term ideas for future work.

9.4.1 Teammate Modeling

In the multiagent domains throughout this thesis, each agent perceived its
teammate through a limited number of features in its observation space. No ex-
plicit modeling of the teammate’s behavior or intentions was done. An interesting
question would be how to better model a teammate and whether or not a teammate
model would be helpful in completing a task. We delve further into these questions
below:

One interesting question is that of Embodied Imitation Learning. Specifi-
cally, consider the problem of an expert agent attempting to demonstrate how to
perform a task to a novice agent. If the novice agent had direct access to the expert’s
states and actions, it would be straight-forward for the novice to learn a high-quality
policy through supervised learning from the expert’s actions. Such approaches have
been heavily studied under the name of imitation learning and learning from demon-
stration (Argall et al., 2009; Atkeson and Schaal, 1997).

However, in the real world, a novice agent is instead embodied in the envi-
ronment and can only observe the expert through it’s observation space. In particu-
lar, it does not have direct access to the states seen by the expert or the actions taken.
How can the novice agent relate its observations of the expert to how it should act?
More specifically, how can the novice agent realize that its observation of the expert
agent corresponds to an individual similar to itself that is demonstrating a solution

143

to the task? Furthermore, how can the novice agent infer the states seen and actions
taken by the expert only from observing the effects on the state of the world? Per-
haps these questions can be answered in part through a model of the expert agent.
In biology, the concept of mirror neurons plays a similar role: mirror neurons al-
lows us to recognize the similarity between ourselves and others. An analogue in a
learning agent could provide a starting point for addressing these questions.

Beyond imitation learning, teammate modeling can be generally useful for
cooperation (Stone et al., 2000; Barrett et al., 2012; Zhou and Shen, 2011; Kok and
Vlassis, 2002). For example, it may be possible to better cooperate with a teammate
when you can predict what actions it will take. Barrett showed that teammate mod-
els could be effectively utilized in a predator prey domain to achieve better coop-
erative performance (Barrett, 2014). However, current approaches for model-based
reinforcement learning are struggling due to problems of compounding model error
through time. An erroneous or mis-specified teammate model could serve to mag-
nify these errors. Thus, we expect that advances in single agent model-based deep
reinforcement learning will be necessary before teammate modeling will bear fruit.

9.4.2 Adversarial Multiagent Settings

The work in this thesis only touched on cooperative domains. A large class
of multiagent problems not addressed by this thesis are adversarial multiagent do-
mains, in which agents must compete to maximize rewards. The approaches for
sharing parameters and learning communication protocols would not be ideal for
adversarial situations. New architectures and algorithms would need to be devel-
oped to solve questions such as the following:

How to protect communications intended for teammates from being inter-

preted and used by opponents? For example, many RoboCup teams use encrypted
communications in order to prevent opponents from comprehending the intent of
their players through the broadcast messages. What types of deep reinforcement
learning algorithms would be necessary to help encourage safe communications in
the presence of an adversary? Recent work shows that neural networks can learn
a system for symmetric encryption and decryption that fools an adversary network

144

(Abadi and Andersen, 2016).
Do deep reinforcement learning agents need to be modified in order to achieve

continually improving policies in an adversarial self-play context? In particular, it
would be ideal if both agents could learn approximately optimal adversarial poli-
cies through self-play. However, it is possible that one agent may dominate the
other, resulting in no further learning. We suspect there are algorithms that could
provide better empirical results on bootstrapping high performing and stable deep
reinforcement learning policies through adversarial self-play. Similar ideas in deep
learning have been examined in the context of two-player mini-max games found
in Generative Adversarial Networks (GANs) (Goodfellow et al., 2014).

9.4.3 Quantitative Analysis of Reward Functions

This thesis qualitatively analyzed the reward functions of different tasks to
determine whether or not they encouraged cooperation between both agents or en-
couraged a single agent to dominate the task. More generally, it would be interest-
ing to see what types of quantitative analyses could be applied to reward functions.
Intuitively, it seems that particular types of multiagent tasks are better solved by dif-
ferent approaches (e.g. sharing vs. communication), and one of the most important
factors determining which approach is more effective would be understanding the
properties of the reward function. There are existing algorithms such as Nash-Q and
FF-Q (Hu and Wellman, 2003; Littman, 2001) that are designed for learning Nash
Equilibria and correlated equilibria (Greenwald and Hall, 2003). It remains future
work to use existing multiagent learning concepts to find the optimal and expected
behavior of agents under different types of reward functions. Such analysis may
provide insight into the successful development of multiagent reward functions or
approaches for fostering cooperation between agents.

9.5 Conclusion

The fields of artificial intelligence and reinforcement learning are rapidly
changing with the advent of increasing processing power and the development of

145

powerful general-purpose neural network function approximators. This thesis pre-
sented several algorithms that combine deep learning with reinforcement learning
in single and multiagent domains. Results across multiple domains indicate that
successful cooperation can be achieved by sharing parameters, replay memories,
and communication protocols. We expect that further improvements in cooperation
may be achieved through better modeling of teammates and improving the indi-
vidual capabilities of deep reinforcement learning agents. This work represents a
small step towards the development of capable and cooperative agents. Although
many open questions remain to be answered, we believe there is good reason to be
optimistic about what the future of intelligent agents holds.

146

Appendix A

Abbreviations

Abbreviation Explanation
MDP Markov Decision Process (Chapter 2.1)
RL Reinforcement Learning (Chapter 2.2)
HFO Half Field Offense Domain (Chapter 2.5)
ALE Arcade Learning Environment (Chapter 2.4)
CNN Convolutional Neural Network (Chapter 2.3.1)
DQN Deep Q-Network (Chapter 2.6)
DDPG Deep Deterministic Policy Gradients (Chapter 2.7)
DRQN Deep Recurrent Q-Network (Chapter 3)
POMDP Partially Observable Markov Decision Process (Chapter 3.1)
LSTM Long Short Term Memory (Hochreiter and Schmidhuber, 1997)
GSN Grounded Semantic Network (Section 6.3)
ReLU Rectified Linear Unit (nonlinearity)

147

Appendix B

Online Materials

A directory containing the videos referenced throughout this thesis can be
found at: http://www.cs.utexas.edu/˜larg/hausknecht_thesis.

Source code for the Half Field Offense domain (Section 2.5) can be found
at: https://github.com/LARG/HFO.

Source code for DRQN (Chapter 3) can be found at: https://github.
com/mhauskn/dqn/tree/recurrent.

Source code for learning in parameterized action space (Chapter 4) as well as
multiagent learning approaches (Chapter 5) can be found at: https://github.
com/mhauskn/dqn-hfo.

Source code for communication and curriculum learning (Chapters 6-7) can
be found at: https://github.com/mhauskn/dqn-hfo/tree/scenario.

Source code is provided as is without warranty of any kind. The authors
stress that code above is used for research and is not of production quality. Use of
the above source code will likely require time to understand, use, and extend.

148

http://www.cs.utexas.edu/~larg/hausknecht_thesis
https://github.com/LARG/HFO
https://github.com/mhauskn/dqn/tree/recurrent
https://github.com/mhauskn/dqn/tree/recurrent
https://github.com/mhauskn/dqn-hfo
https://github.com/mhauskn/dqn-hfo
https://github.com/mhauskn/dqn-hfo/tree/scenario

References

Martn Abadi and David G. Andersen. Learning to protect communications with
adversarial neural cryptography. arXiv preprint, 2016.

Hidehisa Akiyama. Agent2d base code, 2010.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. Concrete problems in AI safety. CoRR, abs/1606.06565, 2016.

David Andre and Astro Teller. Evolving Team Darwin United. Lecture Notes in
Computer Science, 1604:346, 1999.

Brenna Argall, Sonia Chernova, Manuela M. Veloso, and Brett Browning. A sur-
vey of robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration. In
Proc. 14th International Conference on Machine Learning, pages 12–20. Morgan
Kaufmann, 1997.

Aijun Bai, Feng Wu, and Xiaoping Chen. Online planning for large MDPs with
MAXQ decomposition. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems-Volume 3, pages 1215–1216. Inter-
national Foundation for Autonomous Agents and Multiagent Systems, 2012.

Aijun Bai, Feng Wu, and Xiaoping Chen. Towards a principled solution to sim-
ulated robot soccer. In RoboCup 2012: Robot Soccer World Cup XVI, pages
141–153. Springer, 2013.

Bram Bakker. Reinforcement learning with Long Short-Term Memory. In Advances
in Neural Information Processing Systems 14 [Neural Information Processing
Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver,
British Columbia, Canada], pages 1475–1482. MIT Press, 2001.

Samuel Barrett and Peter Stone. Cooperating with unknown teammates in complex
domains: A robot soccer case study of ad hoc teamwork. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 2010–2016,
January 2015.

149

Samuel Barrett, Peter Stone, Sarit Kraus, and Avi Rosenfeld. Learning teammate
models for ad hoc teamwork. In AAMAS Adaptive Learning Agents (ALA) Work-
shop, June 2012.

Samuel Barrett. Making Friends on the Fly: Advances in Ad Hoc Teamwork. PhD
thesis, The University of Texas at Austin, Austin, Texas, USA, December 2014.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279, jun 2013.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-
ton, and Rémi Munos. Unifying count-based exploration and intrinsic motiva-
tion. CoRR, abs/1606.01868, 2016.

Richard Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, USA, 1 edition, 1957.

Nuttapong Chentanez, Andrew G. Barto, and Satinder P. Singh. Intrinsically mo-
tivated reinforcement learning. In L. K. Saul, Y. Weiss, and L. Bottou, editors,
Advances in Neural Information Processing Systems 17, pages 1281–1288. MIT
Press, 2005.

Bruno Castro da Silva, Gianluca Baldassarre, George Konidaris, and Andrew G.
Barto. Learning parameterized motor skills on a humanoid robot. In ICRA,
pages 5239–5244. IEEE, 2014.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion.
CoRR, abs/1610.00696, 2016.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter
Abbeel. Learning visual feature spaces for robotic manipulation with deep spatial
autoencoders. CoRR, abs/1509.06113, 2015.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep in-
verse optimal control via policy optimization. CoRR, abs/1603.00448, 2016.

Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson.
Learning to communicate to solve riddles with deep distributed recurrent q-
networks. CoRR, abs/1602.02672, 2016.

150

Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson.
Learning to communicate with deep multi-agent reinforcement learning. CoRR,
abs/1605.06676, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 2672–
2680. Curran Associates, Inc., 2014.

Alex Graves. Generating sequences with recurrent neural networks. CoRR,
abs/1308.0850, 2013.

Amy Greenwald and Keith Hall. Correlated-Q learning. In In AAAI Spring Sympo-
sium, pages 242–249. AAAI Press, 2003.

Shixiang Gu, Timothy P. Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous
deep q-learning with model-based acceleration. CoRR, abs/1603.00748, 2016.

Xiaoxiao Guo, Satinder Singh, and Richard L Lewis. Reward mapping for transfer
in long-lived agents. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Sys-
tems 26, pages 2130–2138. Curran Associates, Inc., 2013.

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang.
Deep learning for real-time Atari game play using offline Monte-Carlo tree
search planning. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 3338–3346. Curran Associates, Inc., 2014.

Roland Hafner and Martin Riedmiller. Reinforcement learning in feedback control.
Machine Learning, 84(1-2):137–169, 2011.

Matthew Hausknecht and Peter Stone. Learning powerful kicks on the Aibo ERS-7:
The quest for a striker. In Proceedings of the RoboCup International Symposium
2010. Springer Verlag, 2010.

Matthew J. Hausknecht and Peter Stone. Deep recurrent Q-learning for partially
observable mdps. CoRR, abs/1507.06527, 2015.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameter-
ized action space. In Proceedings of the International Conference on Learning
Representations (ICLR), May 2016.

151

Matthew Hausknecht and Peter Stone. On-policy vs. off-policy updates for deep
reinforcement learning. In Deep Reinforcement Learning: Frontiers and Chal-
lenges, IJCAI Workshop, July 2016.

Matthew Hausknecht, Joel Lehman, Risto Miikkulainen, and Peter Stone. A neu-
roevolution approach to general Atari game playing. In IEEE Transactions on
Computational Intelligence and AI in Games, 2013.

Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval
Tassa. Learning continuous control policies by stochastic value gradients. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 28, pages 2944–2952. Curran
Associates, Inc., 2015.

Todd Hester and Peter Stone. Intrinsically motivated model learning for developing
curious robots. Artificial Intelligence, May 2015.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural Comput., 18(7):1527–1554, July 2006.

Geoffrey E. Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N.
Sainath, and Brian Kingsbury. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. IEEE Signal
Process. Mag., 29(6):82–97, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Comput., 9(8):1735–1780, November 1997.

Junling Hu and Michael P. Wellman. Nash Q-learning for general-sum stochastic
games. J. Mach. Learn. Res., 4:1039–1069, December 2003.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

Shivaram Kalyanakrishnan, Yaxin Liu, and Peter Stone. Half field offense in
RoboCup soccer: A multiagent reinforcement learning case study. In Gerhard
Lakemeyer, Elizabeth Sklar, Domenico Sorenti, and Tomoichi Takahashi, edi-
tors, RoboCup-2006: Robot Soccer World Cup X, volume 4434 of Lecture Notes
in Artificial Intelligence, pages 72–85. Springer Verlag, Berlin, 2007.

152

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and understanding
recurrent networks. arXiv preprint, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

Nate Kohl and Peter Stone. Machine learning for fast quadrupedal locomotion. In
The Nineteenth National Conference on Artificial Intelligence, pages 611–616,
July 2004.

Jelle R. Kok and Nikos Vlassis. Mutual modeling of teammate behavior. Technical
Report IAS-UVA-02-04, Informatics Institute, University of Amsterdam, The
Netherlands, August 2002.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification
with deep convolutional neural networks. In Proc. NIPS, pages 1097–1105, Lake
Tahoe, Nevada, USA, 2012.

Sascha Lange, Martin A. Riedmiller, and Arne Voigtländer. Autonomous reinforce-
ment learning on raw visual input data in a real world application. In The 2012 In-
ternational Joint Conference on Neural Networks (IJCNN), Brisbane, Australia,
June 10-15, 2012, pages 1–8, 2012.

Quoc Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg
Corrado, Jeff Dean, and Andrew Ng. Building high-level features using large
scale unsupervised learning. In International Conference in Machine Learning,
2012.

Y. L. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of IEEE, 86(11):2278–2324, November
1998.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-End train-
ing of deep visuomotor policies. CoRR, abs/1504.00702, 2015.

Sergey Levine. Motor Skill Learning with Local Trajectory Methods. PhD thesis,
Stanford University, Stanford, CA, USA, 2014.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. ArXiv e-
prints, September 2015.

153

Long-Ji Lin. Reinforcement Learning for Robots Using Neural Networks. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1992. UMI Order No.
GAX93-22750.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Machine Learning, Proceedings of the Eleventh International Con-
ference, Rutgers University, New Brunswick, NJ, USA, July 10-13, 1994, pages
157–163. Morgan Kaufmann, 1994.

Michael L. Littman. Friend-or-Foe Q-learning in General-Sum Games. In Proceed-
ings of the Eighteenth International Conference on Machine Learning, ICML
’01, pages 322–328, San Francisco, CA, USA, 2001. Morgan Kaufmann Pub-
lishers Inc.

Bingyao Liu, Satinder P. Singh, Richard L. Lewis, and Shiyin Qin. Optimal rewards
in multiagent teams. In ICDL-EPIROB, pages 1–8. IEEE, 2012.

Bingyao Liu, S. Singh, R.L. Lewis, and Shiyin Qin. Optimal rewards for coopera-
tive agents. Autonomous Mental Development, IEEE Transactions on, 6(4):286–
297, December 2014.

Patrick MacAlpine, Mike Depinet, and Peter Stone. UT Austin Villa 2014:
RoboCup 3D simulation league champion via overlapping layered learning.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI), January 2015.

Patrick MacAlpine, Mike Depinet, and Peter Stone. UT Austin Villa 2014:
RoboCup 3D simulation league champion via overlapping layered learning.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI), volume 4, pages 2842–48, January 2015.

Warwick Masson and George Konidaris. Reinforcement learning with parameter-
ized actions. CoRR, abs/1509.01644, 2015.

Francisco S. Melo and M. Isabel Ribeiro. Q-Learning with Linear Function Ap-
proximation, pages 308–322. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007.

Francisco S. Melo, Sean P. Meyn, and M. Isabel Ribeiro. An analysis of reinforce-
ment learning with function approximation. In Proceedings of the 25th Interna-
tional Conference on Machine Learning, ICML ’08, pages 664–671, New York,
NY, USA, 2008. ACM.

154

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages 3111–
3119. Curran Associates, Inc., 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-
ness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529–533, February 2015.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim-
othy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. CoRR, abs/1602.01783,
2016.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding
for text-based games using deep reinforcement learning. CoRR, abs/1506.08941,
2015.

Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. Source task
creation for curriculum learning. In Proceedings of the 15th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2016), May
2016.

Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In In Proceedings
of the Sixteenth International Conference on Machine Learning, pages 278–287.
Morgan Kaufmann, 1999.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder P. Singh.
Action-conditional video prediction using deep networks in atari games. CoRR,
abs/1507.08750, 2015.

Junhyuk Oh, Valliappa Chockalingam, Satinder P. Singh, and Honglak Lee. Control
of memory, active perception, and action in Minecraft. CoRR, abs/1605.09128,
2016.

Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems, 11(3):387–434, 2005.

155

Emilio Parisotto, Lei Jimmy Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep
multitask and transfer reinforcement learning. CoRR, abs/1511.06342, 2015.

Martin A. Riedmiller and Thomas Gabel. On experiences in a complex and com-
petitive gaming domain: Reinforcement learning meets robocup. In CIG, pages
17–23. IEEE, 2007.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Çaglar Gülçehre, Guillaume
Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray
Kavukcuoglu, and Raia Hadsell. Policy distillation. CoRR, abs/1511.06295,
2015.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progres-
sive neural networks. CoRR, abs/1606.04671, 2016.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay. CoRR, abs/1511.05952, 2015.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. Trust region policy optimization. CoRR, abs/1502.05477, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage es-
timation. CoRR, abs/1506.02438, 2015.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 529:484–503, 2016.

S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg. Intrinsically motivated reinforce-
ment learning: An evolutionary perspective. IEEE Trans. on Auton. Ment. Dev.,
2(2):70–82, June 2010.

156

Jonathan Sorg, Richard L Lewis, and Satinder P. Singh. Reward design via online
gradient ascent. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, editors, Advances in Neural Information Processing Systems 23,
pages 2190–2198. Curran Associates, Inc., 2010.

Bradly C. Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in re-
inforcement learning with deep predictive models. CoRR, abs/1507.00814, 2015.

Kenneth O. Stanley and Risto Miikkulainen. Efficient reinforcement learning
through evolving neural network topologies. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2002), page 9, San Francisco,
2002. Morgan Kaufmann.

Peter Stone and Manuela Veloso. Layered learning. In Ramon López de Mántaras
and Enric Plaza, editors, Machine Learning: ECML 2000 (Proceedings of the
Eleventh European Conference on Machine Learning), pages 369–381. Springer
Verlag, Barcelona,Catalonia,Spain, May/June 2000.

Peter Stone, Patrick Riley, and Manuela Veloso. Defining and using ideal teammate
and opponent models. In iaai2000, pages 1040–1045, 2000.

Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. Ad hoc au-
tonomous agent teams: Collaboration without pre-coordination. In Proceedings
of the Twenty-Fourth Conference on Artificial Intelligence, July 2010.

Ashley Stroupe, Martin C. Martin, and Tucker Balch. Distributed sensor fusion
for object position estimation by multi-robot systems. In IEEE International
Conference on Robotics and Automation, May, 2001. IEEE, May 2001.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. CoRR, abs/1409.3215, 2014.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. CoRR, abs/1409.4842, 2014.

Milind Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Re-
search, 7:83–124, 1997.

157

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.
In Michael N. Huhns and Munindar P. Singh, editors, Readings in Agents, pages
487–494. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural Networks for Ma-
chine Learning, 2012.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42(5):674–
690, 1997.

Laurens van der Maaten and Geoffrey E. Hinton. Visualizing high-dimensional data
using t-sne. Journal of Machine Learning Research, 9:2579–2605, 2008.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with Double Q-learning. CoRR, abs/1509.06461, 2015.

Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures
for deep reinforcement learning. CoRR, abs/1511.06581, 2015.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3-4):279–292, 1992.

P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University, 1974.

Shimon Whiteson and Peter Stone. Concurrent layered learning. In Jeffrey S.
Rosenschein, Tuomas Sandholm, Michael Wooldridge, and Makoto Yokoo, edi-
tors, Second International Joint Conference on Autonomous Agents and Multia-
gent Systems, pages 193–200, New York, NY, July 2003. ACM Press.

Shimon Whiteson. Adaptive Representations for Reinforcement Learning. PhD
thesis, Department of Computer Science, University of Texas at Austin, May
2007.

Daan Wierstra, Alex Foerster, Jan Peters, and Juergen Schmidthuber. Solving deep
memory POMDPs with recurrent policy gradients, 2007.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Deep inverse reinforce-
ment learning. CoRR, abs/1507.04888, 2015.

158

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In Proc. ECCV, pages 818–833, Zurich, Switzerland, 2014.

Matthew D. Zeiler. ADADELTA: An adaptive learning rate method. CoRR,
abs/1212.5701, 2012.

Chongjie Zhang and Victor Lesser. Coordinating multi-agent reinforcement learn-
ing with limited communication. In Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’13,
pages 1101–1108, Richland, SC, 2013. International Foundation for Autonomous
Agents and Multiagent Systems.

Pucheng Zhou and Huiyan Shen. Multi-agent cooperation by reinforcement learn-
ing with teammate modeling and reward allotment, 2011.

159

	Chapter Introduction
	Research Question
	Contributions
	Dissertation Overview

	Chapter Background
	Markov Decision Processes
	Reinforcement Learning
	Deep Neural Networks
	Convolutional Neural Networks

	Arcade Learning Environment
	ALE: State Space
	ALE: Action Space
	ALE: Rewards

	Half Field Offense Domain
	State Space
	Action Space
	Teammates
	Evaluation Metrics
	Learning Paradigms
	Related Work: RoboCup Soccer

	Deep Q-Network (DQN)
	Continuous Action Space: DDPG
	Stable Updates

	Chapter Summary

	Chapter Deep RL for Partially Observed MDPs
	Partial Observability
	DRQN Architecture
	Stable Recurrent Updates
	Atari Games: MDP or POMDP?
	Flickering Pong POMDP
	Experimental Details
	Generalization Performance
	Evaluation on Standard Atari Games
	MDP to POMDP Generalization
	Alternative Architectures
	Computational Efficiency
	Related Work
	Chapter Summary

	Chapter Deep RL in Parameterized Action Space
	Reward Signal
	Network Architecture
	Parameterized Action Space Architecture
	Action Selection and Exploration
	Bounded Parameter Space Learning
	Gradient Bounding Results
	Single Agent Learning
	Mixing On-Policy and Off-Policy Updates
	Motivation for On-Policy Updates
	Computing On-Policy MC Targets
	Mixing Update Targets
	Scoring on a Goalie

	Chapter Summary

	Chapter Multiagent Deep Reinforcement Learning
	Multiagent Empty Goal Task
	Cooperative vs. Non-Cooperative Tasks
	Independent Learning Baseline
	Centralized Control
	Parameter Sharing
	Memory Sharing
	Results: Multiagent Empty Goal Task
	Results: Multiagent Soccer vs. Keeper
	Analysis: Parameter Sharing
	Chapter Summary

	Chapter Communication
	Baseline: Independent Communication
	Teammate Communication Gradients
	Grounded Semantic Network (GSN)
	Stability
	Limitations

	Results: Say My TID Task
	Blind Move to Ball Task
	Results: Blind Move to Ball
	Analysis
	Related Work
	Chapter Summary

	Chapter Curriculum Learning
	On the Design of Reward Functions
	Limitations of Potential-Based Shaping Rewards
	Related Work
	Approach
	Move To Ball Task
	Kick to Goal Task
	Soccer Task
	Task Embedding
	State Embedding Architecture
	Weight Embedding Architecture
	Curriculum Ordering
	Random Curriculum
	Sequential Curriculum

	Task Embedding Sanity Check
	Results: Soccer Curriculum
	Ablation Experiment
	Analysis of Sequential Curriculum
	Chapter Summary

	Chapter Related Work
	Chapter Future Work, Discussion, and Conclusion
	Thesis Summary
	Contributions
	Short Term Future Work
	Alternative DRQN Architectures
	Better Task Performance
	Combining GSN and Curriculum Learning

	Long Term Future Work
	Teammate Modeling
	Adversarial Multiagent Settings
	Quantitative Analysis of Reward Functions

	Conclusion

	Appendix Abbreviations
	Appendix Online Materials
	References

