Energy of Wireless Devices
The Showstopper: Energy

- Need long lifetime with battery operation
 - No infrastructure, high deployment & replenishment costs
- Continual improvement in functionality, size, weight, and power
 - 1.6x/year in DSP power
 - sensing and RF components based on MEMs
- But
 - energy to wirelessly transport bits is ~constant
 - Shannon, Maxwell
 - fundamental limit on ADC speed*resolution/power
 - no Moore’s law for battery technology
 - ~ 5%/year

The Future

Single-chip Wireless Sensor Node
Approaches to reduce energy consumption

• OS turns off parts of the computer when are not in use (mostly IO devices such as display)
• Application program uses less energy, possibly degrading quality of the user experience
• Which hardware/software component takes most energy?
Hardware Issues

• Battery
 – Handheld devices: disposable batteries,
 – Laptops: rechargeable batteries

• Multiple power states for CPU, memory and I/O devices
 – Sleeping
 – Hibernating
 – Off

• Transition between power states:
 – Idle for a certain period of time, transition into lower power state
 – Activated when it is accessed
OS Issues

• Keep track of the states of different devices
• Which device to transition into low-power state?
• Window's ACPI - Advanced Configuration and Power Interface
• OS sends commands asking the device driver to report on device's states (power information)
 – if it shuts down a device and that device is needed again quickly, then there is overhead delay to restart the device;
 – if the device is long on, and it is not needed, then energy is wasted.
Display Energy Management

• The biggest energy consumption
• Reason
 – Require backlit to get a bright sharp image
• What solutions would reduce display energy?
 – shut down the display if there is no activity for some number of minutes.
 – divide the screen into zones and turn on only zones where the active window resides (work by Flinn and Satyanarayanan)
 – Change color mapping scheme
Hard Disk

• Disk takes substantial energy
 – spinning at high speed, even if there are no accesses.
• What would be the solution to decrease energy?
 – spin the disk down after a certain idle time of activities.
 – When it is needed, it is spun up again
 – Disk cache in RAM can save energy
 • If a needed block is in the cache, the idle disk does not have to be restarted
 – Another possibility is to keep application programs informed when disk is down.
Memory

- Two options to save energy with memory:
 - cache is flushed and then switched off (hibernation)
 - write content of memory to disk and switch off the memory
- When memory is shut off
 - CPU has to shut off or has to execute out of ROM;
 - If CPU is off and interrupt wakes it up, it has to read from ROM to load the memory.
- What are the tradeoff?
 - Switching off memory has high overhead
 - but it might be worth while if the idle times are long.
- Multiple power-mode
 - Active
 - Nap
 - Standby
 - Power-down
Wireless Communications is a Major Energy Hog

- Energy/bit \div Energy/op large even for short ranges!

Mote-class Node

<table>
<thead>
<tr>
<th></th>
<th>Transmit</th>
<th>Processor</th>
<th>Receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit</td>
<td>720 nJ/bit</td>
<td>4 nJ/op</td>
<td>110 nJ/bit</td>
</tr>
<tr>
<td>Receive</td>
<td>6600 nJ/bit</td>
<td>1.6 nJ/op</td>
<td>3300 nJ/bit</td>
</tr>
</tbody>
</table>

- Transmit: 6600 nJ/bit, Receive: 3300 nJ/bit
- Processor: 1.6 nJ/op, ~6000 ops/bit
- Processor: 4 nJ/op, ~200 ops/bit

WINS-class Node

<table>
<thead>
<tr>
<th></th>
<th>Transmit</th>
<th>Processor</th>
<th>Receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit</td>
<td>720 nJ/bit</td>
<td>4 nJ/op</td>
<td>110 nJ/bit</td>
</tr>
<tr>
<td>Receive</td>
<td>6600 nJ/bit</td>
<td>1.6 nJ/op</td>
<td>3300 nJ/bit</td>
</tr>
</tbody>
</table>

- Transmit: 6600 nJ/bit, Receive: 3300 nJ/bit
- Processor: 1.6 nJ/op, ~6000 ops/bit
- Processor: 4 nJ/op, ~200 ops/bit

Energy breakdown for acoustic

Encode | **Decode** | **Transmit** | **Receive**

Energy breakdown for image

Encode | **Decode** | **Transmit** | **Receive**
Radio Power Consumption

Tx: Sender

Incoming information

Rx: Receiver

Outgoing information

$E_{\text{elec}}^{\text{Tx}}$
Transmit electronics

E_{RF}
Power amplifier

$E_{\text{elec}}^{\text{Rx}}$
Receive electronics

nJ/bit

E_{RF} $E_{\text{elec}}^{\text{Tx}}$ $E_{\text{elec}}^{\text{Rx}}$

~ 1 km (GSM)

~ 50 m (WLAN)

~ 10 m (Mote)

E_{RF} $E_{\text{elec}}^{\text{Tx}}$ $E_{\text{elec}}^{\text{Rx}}$
Domination of Electronics at Short Range

Sender Side Power Consumption

<table>
<thead>
<tr>
<th>Radio</th>
<th>α</th>
<th>Maximum βd^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 KHz OOK</td>
<td>14 μJ</td>
<td>3.1 μJ</td>
</tr>
<tr>
<td>(RFM TR1000 @ 916 MHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115.2 KHz ASK</td>
<td>372 nJ</td>
<td>65 nJ</td>
</tr>
<tr>
<td>(RFM TR1000 @ 916 MHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Mbps Custom</td>
<td>570 nJ</td>
<td>740 nJ</td>
</tr>
<tr>
<td>(MIT μAMPS-1 @ 2.4 GHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Mbps 802.11b</td>
<td>236 nJ</td>
<td>91 nJ</td>
</tr>
<tr>
<td>(Cisco Aironet 350 @ 2.4 GHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54 Mbps 802.11a</td>
<td>14.8 nJ</td>
<td>11 nJ</td>
</tr>
<tr>
<td>(Atheros, ISSCC2002)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$E_{\text{bit}} = \alpha + \beta d^n$

Sender Side Power Consumption

Re: Min et. al., Mobicom 2002 (Poster)
Radio Electronics Trends

Radiated power
63 mW (18 dBm)

Intersil PRISM II
(Nokia C021 wireless LAN)

Power amplifier
600 mW
(~11% efficiency)

Analog electronics
240 mW

Digital electronics
170 mW

Trends:
- Move functionality from the analog to the digital electronics
- Digital electronics benefit most from technology improvements
- Analog is bottleneck
- Digital complexity still increasing (robustness)
What can be done?

- Reduce energy/bit
- Increase energy availability
1. Radio Energy Management

Parameter of interest:
- energy consumption per bit

\[E_{bit} = \frac{P}{T_{bit}} \]

- Modulation scaling: fewer bits per symbol
- Code scaling: more heavily coded
MAC: Scaling for Energy

- Radios with scalable modulation and coding
- MAC protocol that decides
 - Which node transmits
 - What packet
 - At what time
 - On what channel
 - With what RF power
 - **What modulation and coding setting**

Example: radio with Dynamic Modulation Scaling & scaling-aware scheduler
Shutdown

- Radio modes: active, idle, shutdown, transient

- Transient period
 - Active/idle to sleep is short and can be ignored
 - Sleep to active/idle period, T_{ON}, is not
 - PLL in the frequency synthesizer takes time to settle
 - $P_{tr} = 2*P_{syn}$
 - T_{ON} is $O(10)$-$O(100)$ uS
 - mixer & power amp startup can be ignored

- Problem: T_{ON} is significant fraction of packet duration
 - Packet sizes small in sensor nets (reporting events)

- Leads to high energy per bit!

- Radios with fast start-up and acquisition
On-demand Data-driven Wakeup

- Sensor-triggered node wakeup

Path nodes need to be woken up

- How to wakeup?
- Duty cycle the radio
 - trade-off between energy and latency
- Wake-up circuit & protocols exploiting them
 - instantly wake up remote receiver radio when needed
 - minimize spurious wake ups & interference, and their impact
 - match destination address in addition to preamble
 - cheap directional antennas

<table>
<thead>
<tr>
<th>Radio mode</th>
<th>Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit</td>
<td>14.88</td>
</tr>
<tr>
<td>Receive</td>
<td>12.50</td>
</tr>
<tr>
<td>Idle</td>
<td>12.36</td>
</tr>
<tr>
<td>Sleep</td>
<td>0.016</td>
</tr>
</tbody>
</table>
2. Reduced Path Loss via Directional Antenna

- **Smart antenna**
 - Signal processing (beamforming)
 - Low transient cost, high quiescent cost
- **Reconfigurable antennas**
 - Mechanical articulation, electrical reconfiguration
 - High transient cost, low quiescent cost

![Graph showing SNR vs angle offset](image_url)

The graph shows the relationship between SNR (in dB) and angle (in degrees). The equation for the curve is:

\[y = 0.0017x^2 - 0.3827x + 28.444 \]

20 dB

Microceptor QD2402
[Pon & Wu, UCLA, 2003]
Energy: Communication vs. Articulation

- 51 degrees/second latency
- Breakeven point: # of bits vs. gain in SNR
- Spend upfront energy and save on subsequent per-packet energy

Articulated Microreceptor QD2402
[Pon & Wu, UCLA, 2003]
3. Exploiting Articulation & Mobility for Energy

- Rich source of system lifetime improvement
 - Nodes with articulated appendages
 - Nodes that move
 - Controlled, predictable, unpredictable
 - Restricted, unrestricted

- Opportunities
 - Better communication & sensing channel
 - Diversity gain due mobility
 - Mechanical transport of bits & energy
 - Better energy harvesting

- Challenges
 - Platforms with articulation & mobility
 - Protocols and collaboration algorithms to exploit mobility
 - Understanding the fundamental impact of mobility on lifetime
4. Beyond Reduction: Energy Harvesting

- Sensor nodes that extract energy from the environment and store in a capacitor or battery
 - Wind
 - Solar
 - Vibration/Motion
 - Chemical

- Challenge: how to manage energy harvesting?
 - Variation in harvesting opportunities
 - E.g. light level is a function of node location
 - How to extract maximum performance?

Prototypes from IASL, UWE, Bristol.
Harvesting-aware Network-level Tasking

- Tasking aware of battery status & harvesting opportunities
 - Richer nodes take more load
 - Looking at the battery status is not enough
- Learn the energy environment
Example: Solar Harvesting Aware Routing

Simulation using light traces from James Reserve

HelioMote Platform
Summary

• Energy-efficient radios
 – Efficient shutdown and wake-up for short range
 – Energy-performance scalability for long range

• Directional antennas
 – Electrical or mechanical reconfiguration of directional elements

• Platforms and algorithms to exploit mobility and articulation
 – Better communication & sensing channel
 – Diversity gain due mobility
 – Mechanical transport of bits and energy
 – Better energy harvesting

• Energy harvesting
 – Network operation that is aware of spatio-temporal characteristics of environmental energy availability
Challenges

• Technologies
 – Energy-efficient and energy-scalable components
 • Radios, reconfigurable antenna, sensor processing (image, biochem)
 – Energy harvesting
 • Wind, solar, motion, vibration, chemical
 – Ad hoc infrastructure elements / hierarchy
 • Energy & data mule, Mobile Microservers
 • EM and wired energy delivery

• Techniques
 – Energy-latency-accuracy-coverage trade-offs
 – Algorithms: energy-efficient, battery-aware, harvesting-aware
 – Distributed in-network processing

• Metrics, Benchmarks, Tools, and Testbeds
 – Energy-metrics for sensing, signal processing, event detection, and communication protocols
 – Benchmark suite of representative functions
 – Simulators with models of energy producers and consumers
 – Instrumented testbeds
Beyond Saving Energy

• Ambient Backscatter
 – http://abc.cs.washington.edu/

• Wireless charging