Overview

• Most wireless routing protocols abstract wireless links as unreliable wireline links

• Are wireless links the same as wireline links except that they are less reliable?
Overview (Cont.)

• Difference between wireless and wireline links
 - Higher loss rate
 - Broadcast medium
 - Wireless interference
 - Highly dynamic and unpredictable
Traditional Routing

• Committed to a specific route before forwarding

• Problems: don’t fully exploit path diversity
 - Unpredictable wireless medium
 - Intermittent connectivity
 - High mobility
 - Routing attacks
Motivating Scenario I

- Assume independent loss
- Tradition routing has to follow one pre-committed route
Motivating Scenario II

- Assumes loss rate increases gradually with distance
- Tradition routing has to make comprise between progress and loss rate
Opportunistic Routing (ExOR)

- Don’t commit to a route before data forwarding
- Exploit wireless broadcast
- The source broadcasts the packet and then chooses a receiver to forward only after learning the set of nodes which actually received the packet.
- Goal: Among the nodes who receive the packet, the node closest to the destination should forward.
Main Challenge

• How to select the node that is closest to the destination that received the packet to forward it with low overhead?
Issues to Address

• What do we want?
• How often should ExOR run?
• Who should participate in the forwarding?
• When should each participant forward?
• What should each participant forward?
Issues to Address

• What we want: an effective protocol with low overhead

• How often should ExOR run?
 - Per packet is expensive
 - Use batches
Issues to Address

• What we want: an effective protocol with low overhead
• How often should ExOR run?
 - Per packet is expensive
 - Use batches
• Who should participate forwarding?
 - Too many participants cause large overhead
Who should participate?

• A background process collects ETX information via periodic link-state flooding.

• The source chooses the participants (forwarder list) using ETX-like metric.
 - Only consider forward delivery rate
 • Why?
 - The source runs a simulation and selects only the nodes which transmit at least 10% of the total transmission in a batch.
Issues to Address

• What we want: an effective protocol with low overhead
• How often should ExOR run?
 - Per packet is expensive
 - Use batches
• Who should participate the forwarding?
 - Too many participants cause large overhead
• When should each participant forward?
 - Avoid simultaneous transmissions
When should each participant forward?

- Forwarders are prioritized by ETX-like metric to the destination
- The highest priority forwarder transmits when the batch ends
- The remaining forwarders transmit in prioritized order
- Question: How does each forwarder know it is its turn to transmit?
 - Assume other higher priority nodes send for five packet durations if not hearing anything from them
Issues to Address

• What we want: an effective protocol with low overhead
• How often should ExOR run?
 - Per packet is expensive
 - Use batches
• Who should participate the forwarding?
 - Too many participants cause large overhead
• When should each participant forward?
 - Avoid simultaneous transmissions
• What should each participant forward?
 - Avoid duplicate transmissions
What should each participant forward?

- Packets it receives yet not received by higher priority forwarders
- Question: How does a node know the set of packets received by higher priority nodes?
 - Using batch map
Batch map

• Batch map indicates, for each packet in a batch, the highest-priority node known to have received a copy of that packet.
Completion

• A nodes stops sending the remaining packets in the batch if its batch map indicates over 90% of this batch has been received by higher priority nodes.

• The remaining packets transferred with traditional routing.
Example

Forwarder list: N24(dst), N20, N18, N11, N8, N17, N13, N5(src)
ExOR with TCP

- ExOR creates lots of packet reordering
- ExOR increase end-to-end delay
- Solution: Split web proxy
Evaluation - Network Description

- Performed on Roofnet, an outdoor roof-top 802.11 networks
- 38 nodes distributed over six square kilometers
- 65 Node pairs
- 1.0MByte file transfer
- 1 Mbit/s 802.11 bit rate
- 1 KByte packets
Evaluation - Throughput

Median throughputs: 2X overall improvement
Evaluation - 25 Highest Throughput Pairs

 através dos pares com maior taxa de transferência.
Evaluation - 25 Lowest Throughput Pairs
Evaluation – Distance per Transmission
Evaluation – Batch Size
Comments?
Comments

• Pros
 - Takes advantage of the probabilistic reception to increase the throughput
 - Does not require changes in the MAC layer
 - Can cope well with unreliable wireless medium
Comments

• **Pros**
 - Takes advantage of the probabilistic reception to increase the throughput
 - Does not require changes in the MAC layer
 - Can cope well with unreliable wireless medium

• **Cons**
 - Complicated: many corner cases to handle
 - Cannot take advantage of multiple data rates
 - Forwarders take turns to transmit and do not leverage spectral reuse
 - Does not explicitly support multiple flows or TCP traffic
 - Batches increase delay
 - Hard to scale to a large network
 - Trade-off between spatial reuse and opportunistic gain
 - ETX based forwarder selection does not yield least cost path
Follow up work

- SOAR
- SourceSync
- Routing metric under opportunistic routing
- Network coding