Trading Coordination For Randomness

Szymon Chachulski
Mike Jennings, Sachin Katti, and Dina Katabi
Wireless mesh networks have high loss rates

Objective:
High throughput despite lossy links

Roofnet
Avg. 30% loss
Use Opportunistic Routing
Use Opportunistic Routing

- Best single path \rightarrow loss prob. 50%
Use Opportunistic Routing

Opportunistic routing promises large increase in throughput.
But

Overlap in received packets \rightarrow Routers forward duplicates
But

Overlap in received packets \(\rightarrow \) Routers forward duplicates

\[\text{src} \rightarrow \text{R1} \rightarrow \text{R2} \rightarrow \text{dst}\]
But

Overlap in received packets \rightarrow Routers forward duplicates

State-of-the-art opp. routing, **ExOR imposes a global scheduler:**
- Requires full coordination; every node must know who received what
- Only one node transmits at a time, others listen
Global Scheduling?

- Global coordination is too hard
- One transmitter
Global Scheduling?

Can we do opportunistic routing without global scheduling?
Contributions

• Opportunistic routing with no global scheduler and no coordination
• We use random network coding
• Experiments show that randomness outperforms both current routing and ExOR
Go Random

Each router forwards *random combinations* of packets
Go Random

Each router forwards random combinations of packets

Randomness prevents duplicates

No scheduler; No coordination

Simple and exploits spatial reuse
Random Coding Benefits Multicast

Without coding \rightarrow source retransmits all 4 packets
Random Coding Benefits Multicast

Without coding → source retransmits all 4 packets
With random coding → 2 packets are sufficient

Random combinations

Random coding is more efficient than global coordination
MORE

- Source sends packets in batches
- Forwarders keep all heard packets in a buffer
- Nodes transmit linear combinations of buffered packets

\[a \cdot P1 + b \cdot P2 + c \cdot P3 = a, b, c \]

Can compute linear combinations and sustain high throughput!
MORE

- Source sends packets in batches
- Forwarders keep all heard packets in a buffer
- Nodes transmit linear combinations of buffered packets
MORE

- Source sends packets in batches
- Forwarders keep all heard packets in a buffer
- Nodes transmit linear combinations of buffered packets
- Destination decodes once it receives enough combinations
 - Say batch is 3 packets

\[
\begin{align*}
1 \quad P1 + 3 \quad P2 + 2 \quad P3 &= 1,3,2 \\
5 \quad P1 + 4 \quad P2 + 5 \quad P3 &= 5,4,5 \\
4 \quad P1 + 5 \quad P2 + 5 \quad P3 &= 4,5,5
\end{align*}
\]

- Destination acks batch, and source moves to next batch
But How Do We Get the Most Throughput?

- Naïve approach transmits whenever 802.11 allows

If A and B have same information, it is more efficient for B to send it.

Need a method to determine how much each node should send.
Probabilistic Forwarding

Diagram:
- Node A
- Node B
- Node dst
- Connections: A to dst, B to dst
Probabilistic Forwarding

Loss rate 0%
Loss rate 50%
How many packets should I forward?

50% of buffer
Probabilistic Forwarding

Compute forwarding probabilities without coordination using loss rates
Can ExOR Use Probabilistic Forwarding To Remove Coordination?

• Without random coding → need to know the **exact** packets to forward every time

• With random coding → need to know only the **average** amount of overlap

Probability of duplicates is 50%
Adapting to Short-term Dynamics

- Need to balance sent information with received information
- MORE triggers transmission by receptions
- A node has a credit counter
 - Upon reception, increment the counter using forwarding probabilities
 - Upon transmission, decrement the counter
- Source stops → No triggers → Flow is done
Performance
Experimental Setup

• We implemented MORE in Linux
• 20-node testbed
• Compare MORE with:
 □ Current Routing (Single Best Path)
 □ ExOR (State-of-the-art Opportunistic Routing)
• Experiment
 □ Random source-destination pairs
 □ Transmit 5 MB file
Testbed

• 20-node testbed over three floors
Testbed

- 20-node testbed over three floors

Avg. loss 27%
Does MORE Improve Wireless Throughput?

MORE's throughput is

- 2x better than current routing
- 22% better than ExOR

Avg. Throughput over 180 src-dst pairs [pkts/s]
Throughput of All Source-Destination Pairs

CDF of 180 source-destination pairs

Throughput [packets/s]
Zoom in on the worst 10%

MORE addresses dead spots
Sensitivity to Batch Size

ExOR CDF
- Batch = 8 pkts
- Batch = 128 pkts

MORE CDF
- Batch = 8 pkts
- Batch = 128 pkts

MORE works for short flows
What About Multicast?

MORE improves both multicast and unicast throughput.
MORE for Less!

- **Less coordination and less rigidity**
 - No global scheduler

- **More flexibility**
 - Works on top of 802.11 → enjoy spatial reuse
 - One framework for unicast and multicast

- **More throughput**
 - 22% better than ExOR
 - 2x better than current routing
Comments?
Comments

• Cool idea to combine network coding with opportunistic routing

• Works for multiple flows and multicast!
 □ Performance under more flows is not good

• Performance improvement over ExOR is marginal - 25%

• Performance issues?
Comments

• Cool idea to combine network coding with opportunistic routing

• Works for multiple flows and multicast!
 □ Performance under more flows is not good

• Performance improvement over ExOR is marginal - 25%

• Performance issues?
 □ Stop-and-wait
 □ End-to-end recovery
 □ Lack of rate limit
Review

• What is opportunistic routing?
• What are its benefits?
• What is the main challenge?
• How does ExOR address the challenge?
• How does MORE address the challenge?
• Pros & Cons?