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Abstract

Efficient integration of a multi-hop wireless network with
the Internet is an important research problem. In a wire-
less neighborhood network, a few Internet Transit Access
Points (ITAPs), serving as gateways to the Internet, are de-
ployed across the neighborhood; houses are equipped with
low-cost antennas, and form a multi-hop wireless network
among themselves to cooperatively route traffic to the In-
ternet through the ITAPs. Furthermore, the placement of
Internet TAPs is a critical determinant of system perfor-
mance and resource usage. In this paper, we explore the
placement problem under three wireless link models. For
each link model, we develop algorithms to make informed
placement decisions based on neighborhood layouts, user
demands, and wireless link characteristics. We also extend
our algorithms to provide fault tolerance and handle signif-
icant workload variation. We evaluate our placement algo-
rithms and show that our algorithms yield close to optimal
solutions over a wide range of scenarios we have consid-
ered.

1. Introduction

In wireless neighborhood networks, a few Internet Tran-
sit Access Points (ITAPs) are placed to relay data from the
wireless multi-hop network to the Internet and vice versa.
One of the key challenges in designing and deploying such
networks is an efficient integration of multi-hop wireless
networks with the Internet.

Wireless neighborhood networks are characterized by
two important design constraints. They should be easy and
cheap to deploy. Moreover, in order to be competitive to
DSL or cable, such networks should provide Quality of Ser-
vice (QoS) to end users. To achieve efficient utilization of
network resources and good user performance, it is imper-
ative to have a strategic placement of ITAPs. A good ITAP
placement algorithm will have to (i) efficiently use wireless
capacity, (ii) take into account the impact of wireless inter-
ference on network throughput, and (iii) be robust in face of

failures and changes in user demands. There has been little
previous work on this subject.

In this paper, we propose a series of ITAP placement al-
gorithms to achieve these goals. Our key contributions are:� We formulate the ITAP placement problem under three

wireless models. For each model, we develop al-
gorithms to efficiently place ITAPs in the network.
Our algorithms aim to minimize the number of re-
quired ITAPs while satisfying users’ bandwidth re-
quirements. We demonstrate the efficiency of the al-
gorithms through analysis and simulation.� To enhance robustness, we present a fault tolerance
version of the placement algorithm that provides band-
width guarantees in the presence of failures.� We extend the algorithms to take into account variable
traffic demands by developing an approximation algo-
rithm to simultaneously optimize ITAP placement for
demands over multiple periods. This algorithm is very
useful in practice since user demands often exhibit pe-
riodic changes (e.g., diurnal patterns).

2. Related Work

There has been a recent surge of interest in building wire-
less neighborhood networks. [1] presents a scheme to build
neighborhood networks using standard 802.11b Wi-Fi tech-
nology [20] by carefully positioning access points in the
community. However, it requires a large number of access
points. Moreover, it requires direct communication between
machines and access points, which is difficult to meet in
real terrains. Nokia’s Rooftop technology, presented in [8],
provides broadband access to households using a multi-hop
approach that overcomes the shortcomings of [1]. The idea
is to use a mesh network model with each house deploying a
radio, as considered in this paper. This radio serves the dual
purpose of connecting to the Internet and routing packets for
neighboring houses [4]. The deployment and management
cost of Internet TAPs in such networks is significant, and so
it is crucial to minimize the required number of ITAPs to



provide QoS and fault tolerance guarantees. However, these
problems are not addressed in [1, 8].

There have been a number of interesting studies on plac-
ing servers at strategic locations for better performance and
efficient resource utilization in the Internet. For example,
the authors in [19, 16, 22] examine placement of Web prox-
ies or server replicas to optimize clients’ performance; and
Jaminet al. [15] examines the placement problem for In-
ternet instrumentation. Facility location problems are also
related to ITAP placement problem, and have been con-
sidered extensively in the fields of operation research (e.g.,
[18, 25]). Approximation algorithms with good worst case
behavior have been proposed for different variants of this
problem. The previous work on server placement or facility
location cannot be applied to our context because they op-
timize locality in absence of link capacity constraints. This
may be fine for the Internet, but is not sufficient for wireless
networks since wireless bandwidth is much more limited.
Moreover, the impact of wireless interference, and consid-
erations of fault tolerance and workload variation make the
ITAP placement problem very different from those studied
earlier.

The work closest to ours is the pioneering work in [3]. It
aims to minimize the number of ITAPs for multi-hop neigh-
borhood networks based on the assumption that ITAPs use a
Time Division Multiple Access (TDMA) scheme to provide
Internet access to users. However, TDMA is difficult to im-
plement in multi-hop networks due to synchronization and
channel constraints [2]. Furthermore, the proposed slotted
approach might not utilize all the available bandwidth due
to unused slots. In comparison, in this paper we look at more
general and efficient MAC schemes, such as IEEE 802.11.
Removing the TDMA MAC assumption yields completely
different designs, and increases applicability of the result-
ing algorithms. As we will show in performance evaluation,
our placement algorithms significantly out-perform the al-
gorithm in [3] under general MAC schemes.

In summary, placing ITAPs under the impacts oflink
capacity constraints, wireless interference, fault tolerance,
and variable traffic demandsis a unique challenge that we
aim to address in this paper.

3. Problem Description and Network Model

The ITAP-placement problem, in its simplest form, is to
place a minimum number of ITAPs that can serve a given
set of nodes on a plane, which we call houses. A househ is
said to be successfully served, if its demand,wh, is satisfied
by the ITAP placement. A househ is served by an ITAPi
through a path betweenh andi. This path is allowed to pass
through other houses, but any two consecutive points on this
path must have wireless connectivity between them. We are
usually interested in the fractional version of this problem.
That is, we consider the flexibility that a house is allowed to

route its traffic over multiple paths to reach an ITAP.
This problem can be modeled using the following graph-

theoretic approach. LetH denote the set of houses,I de-
note the set of possible ITAP positions, andwh denote the
demand from househ. We construct a graphG on the set
of verticesH [ I by connecting two nodes if and only if
there is wireless connectivity between them. The goal is to
open the smallest number of ITAPs (denoted by the setI 0),
such that in the graphG[H [ I 0℄, one can routewh units of
traffic from househ to points inI 0 simultaneously, without
violating capacity constraints on vertices and edges of the
graph.

The edge capacity,Cape, in the graph denotes the capac-
ity of a wireless link. In addition, each node also has an up-
per bound on how fast traffic can go through it. Therefore,
we also assign each node with a capacity,Caph. UsuallyCaph = Cape, as both represent the capacity of a wireless
link. (Our schemes work even whenCaph 6= Cape, e.g.,
when a node’s processing speed becomes the bottleneck.)
Moreover, each ITAP also has a capacity limit, based on its
connection to the Internet and its processing speed. We call
this capacity, the ITAP capacity,Capi.

In addition, another input to the placement algorithms
is a wireless connectivity graph (among houses). We can
determine whether two houses have wireless connectivity
using real measurements, and give the connectivity graph
to our placement algorithms for deciding ITAP locations.
In our performance evaluation, since we do not have wire-
less connectivity graphs based on real measurements, we
instead derive connectivity graphs based on theprotocol
model[12]. In this model, two nodesi andj can communi-
cate directly with each other if and only if their Euclidean
distance is within a communication radius,CR. Given the
position of all the nodes, we can easily construct a connec-
tivity graph by connecting two nodes with an edge if their
distance is withinCR. However our placement algorithms
can also work with other wireless connectivity models (e.g.,
physical model [12] or based on real measurements).

3.1. Incorporating Wireless Interference

There are several ways to model wireless interference.
One approach is to use a fine-grained interference model
based on the notion of a conflict graph, introduced in [14].
The main challenge of using the fine-grained interference
model is high complexity (sometimes prohibitive) for even
a moderate-sized network.

We use a coarse-grained interference model that esti-
mates a relation between throughput and wireless interfer-
ence. Since there is no single available function that cap-
tures the impact of interference on wireless throughput, we
estimate the wireless throughput using two related func-
tions. In our discussion,Throughputl denotes the amount
of throughput on a link along a path of lengthl, assuming



each wireless link capacity is 1. The other function,g(l),
denotes the amount of link capacity consumed if it is on a
path of lengthl and the end-to-end throughput of the path
is 1. Assuming the end-to-end throughput increases propor-
tionally with the edge capacity, which is true in practice, we
haveg(l) = 1throughputl .

In this paper, we study the following models separately:

1. Ideal link model: If throughputl = 1 for all l, or
equivalently,g(l) = 1, we get the basic version of
the problem. This model is appropriate for the envi-
ronment with very efficient use of spectrum. A num-
ber of technologies, such as directional antennas (e.g.,
[7, 11]), power control, multiple radios, and multiple
channels, all strive to achieve close to this model by
minimizing throughput degradation due to wireless in-
terference.

2. General link model: A more general model is whenthroughputl or g(l) is a linear function ofl. As we
will show in Section 4.2, we can formulate the ITAP
placement problem for the general link model as an
integer linear program, and use a polynomial algo-
rithm to approximate the solution. In addition, we
also develop more efficient heuristics for two forms ofg(l). The first is thebounded hop-count model. Ifthroughputl = 1 for l � k and throughputl = 0
for l > k (or equivalently,g(l) = 1 for l � k andg(l) = 1 for l > k), we get a variant in which flow
cannot be routed through paths of length more thank. This approximates the case where we try to ensure
each flow gets at least a threshold amount of through-
put by avoiding paths that exceeds a hop-count thresh-
old. The second is thesmooth throughput degra-
dation model, which corresponds to the case whenthroughputl = 1l , wherel is the number of hops in the
path. This is equivalent tog(l) = l for all l’s (i.e., the
capacity consumed is equal to the flow times the num-
ber of hops). This represents a conservative estimate
of throughput in a linear-chain network, and therefore
this model is appropriate when tight bandwidth guar-
antees are desired.

Note that the above models capture wireless interference
and contention among nodes whose paths to ITAPs share
common links or nodes. A more accurate model will have
to handle interference among nodes on independent paths
(e.g., using the conflict graph [14]). However, in Section 5,
we use packet-level wireless network simulations to show
that an ITAP placement based on the above models gives
satisfactory performance.

3.2. Generic Approach

In the following sections, we will investigate different
variants of the placement problem. Our generic approach is

as follows. Given a set of potential ITAP locations, which
may include all or a subset of points in the neighborhood,
we first prune the search space by grouping points into
equivalence class, where each equivalence class is repre-
sented by the set of houses that are reachable via a wireless
link. For example, if points A and B have wireless connec-
tivity to the same set of houses, then they are equivalent
as far as ITAP placement is concerned. Therefore we only
need to search through all the equivalence classes, instead
of all points on the plane. (Refer to [21] for details). Then
based on our choice of wireless link model, fault-tolerance
requirements, and variability in user demands, we apply one
of the placement algorithms described in Section 4, Sec-
tion 7.1, and Section 7.2 to determine ITAP locations.

4. Placement Algorithms

In this section, we study how to place ITAPs under the
impacts of link capacity constraints and wireless interfer-
ence.

4.1. Ideal Link Model

First, we consider the placement problem for the ideal
link model. We formulate the problem as a linear program,
and present an approximation algorithm.

4.1.1. Problem Formulation: We formulate the place-
ment problem for the ideal link model as an integer program
shown in Figure 1. For each edgee and househ, we have a
variablexe;h to indicate the amount of flow fromh to ITAPs
that is routed throughe. For each ITAPi we have a variableyi that indicates the number of ITAPs opened at the loca-
tion i (More precisely,yi is the number of ITAPs opened at
locations in the equivalence classi, where the equivalence
class is introduced in Section 3.)Cape, Caph, andCapi
denote the capacity of the edgee, househ, and ITAPi, re-
spectively;wh denotes the traffic demand generated from
househ.

Now we present a brief explanation of the above in-
teger program. The first constraint,

Pe=(v;h0) xe;h =Pe=(h0;v) xe;h, formulates the flow conservation con-
straint, i.e., for every house except the house originating
the flow, the total amount of flow entering the house is
equal to the total amount of flow exiting it. The inequal-
ity
Pe=(h;v) xe;h � wh formulates the constraint that each

house haswh amount of flow to send, and the third con-
straint indicates that a house does not receive flow sent by
itself. The next three inequalities of the above integer pro-
gram capture the capacity constraints on the edges, houses,
and ITAPs. The inequality

Pe=(v;i) xe;h � whyi says that
no house is allowed to send any traffic to an ITAP unless
the ITAP is open. Notice that this inequality is redundant
and follows from the ITAP capacity constraint and the as-
sumption thatyi is an integer. However, if we want to relax



minimize
Xi2I yi

subject to
Xe=(v;h0) xe;h = Xe=(h0;v) xe;h 8h;h0 2 H; h0 6= hXe=(h;v) xe;h � wh 8h 2 HXe=(v;h) xe;h = 0 8h 2 HXh xe;h � Cape 8e 2 E(G)Xh0;e=(v;h) xe;h0 � Caph 8h 2 HXh0;e=(v;i) xe;h0 � Capiyi 8i 2 IXe=(v;i) xe;h � whyi 8i 2 I; h 2 Hxe;h � 0 8e 2 E(G); h 2 Hyi 2 f0; 1; 2; :::g 8i 2 I

Figure 1: Integer program formulation for the ideal link
model

the integrality assumption onyi’s in order to derive a lower
bound using an LP solver (see Section 4.3.4 for example),
then it is important to include this inequality in the linear
program to get a tighter lower bound.

The following theorem shows that it is computationally
hard to optimally solve the ITAP placement problem for the
ideal link model. Refer to [21] for the proof.

Theorem 1 It is NP-hard to find a minimum number of
ITAPs required to cover a neighborhood in an ideal link
model. Moreover, the problem has no polynomial approxi-
mation algorithm with an approximation ratio better thanlnn unlessP = NP .

4.1.2. Our Approach – Greedy PlacementWe design
the following greedy placement. We iteratively pick an
ITAP that maximizes the total demands satisfied when
opened in conjunction with the ITAPs chosen in the pre-
vious iterations. The major challenge is to determine how
to make a greedy move in each iteration. This involves effi-
ciently computing the total user demands that can be served
by a given set of ITAPs. We make an important observation:
computing the total satisfied demands can be formulated as
finding a maximum flow problem. This is easy to see since
our formulation for the ideal link model shown in Figure
1 satisfies the three properties, namely, capacity constraint,
skew symmetry, and flow conservation. This suggests that
we can apply the network flow algorithms [9] to efficiently
determine the satisfied demands. A few transformations are
required to make the network flow algorithm applicable.
Figure 2 shows a skeleton of the algorithm, which finds a
multisetS of ITAPs to open, where a multiset is the same
as a set, except that it allows duplicate elements. Allowing
duplicate elements inS indicates that we can open multiple

Input: Set of housesH, set of ITAPsI, graphG on the setH [ I with
capacities on its edges and vertices.

Output: A multisetS of ITAPs to be opened.

beginS := ;; Flow := 0;

while Flow is less than the total demanddomax := 0;

for eachj 2 I do� LetG0 be the subgraph ofG induced onH [ S [ fjg, with
the same capacities asG. (If there are duplicates inS [ fjg,
we create one point for each duplicated element.)� For each house, transform its vertex capacity constraint toan
edge capacity constraint by replacing the househ with two
nodes,inh andouth ; and connectinh to outh using a di-
rected edge with capacityaph; all incoming edges toward the
house go toinh and all out-going edges fromh come fromouth .� Add two verticess andt to G0 , edges of capacitywh from s
to eachh 2 H, and edges of capacityapi from eachi 2S [ fjg to t.� Find the maximum flow froms to t in G0; Let f be the value
of this flow.� if f > max, thenmax := f ; bestITAP := j;

endfor;S := S [ fbestITAPg; Flow := max;

endwhile;

end.

Figure 2: Greedy placement algorithm in the ideal link
model

ITAPs in the locations that belong to the same equivalence
class (i.e., reachable from the same set of houses), which is
certainly feasible.

The following theorem shows a worst-case bound on the
performance of the above algorithm. An empirical perfor-
mance analysis of this algorithm is presented in Section 6.1.

Theorem 2 Consider the ITAP placement problem in the
ideal link model with integral demands and integral house
and link capacities, and letD denote the total demand of the
houses. The approximation factor of the greedy algorithm
for this problem is at mostln(D). In other words, if the
optimal solution for the ITAP placement problem opensK
ITAPs, the greedy algorithm opens at mostK ln(D) ITAPs.

We will need the following lemma to prove the above theo-
rem. This lemma is non-trivial and uses the Ford-Fulkerson
maximum flow-minimum cut theorem [9] in the proof.

Lemma 3 Assume a multisetS of ITAPs are opened. Con-
sider an optimal way of routing the maximum total demands
from houses to the ITAPs inS, and letfi denote the amount
of traffic routed to ITAPi in this solution, wherei 2 S.
Assume that at a later time, a multisetS [ T of ITAPs are
opened. Then, there is an optimal way of routing the maxi-
mum total demands from houses to these ITAPs in whichfi
units of traffic is routed to ITAPi for everyi 2 S.



Refer to [21] for the proofs of the above theorem and
lemma. Based on Theorem 2, we have the following corol-
lary.

Corollary 4 LetN be the number of houses. The approx-
imation factor of the greedy algorithm in the ideal link
model isln(N) when the capacities of edges and vertices
are integer-valued and every house has either zero or one
unit of demand.

Remark 1. Corollary 4 in combination with Theorem 1,
shows that this algorithm achieves the best possible (worst-
case) approximation ratio for the graph theoretic model
when every house has either zero or one unit of demand.
Furthermore, even though in our model we allow fractional
routing of the flow, our greedy algorithm always finds an in-
teger solution in this case, i.e., the demand from each house
will be served through one path to an open ITAP. This is a
consequence of the integrality theorem [9].
Remark 2.Note thatln(D) is theworst-casebound for het-
erogeneous demands. To make the worst-case bound tighter,
we can normalize house demands, edge capacities, and node
capacities before we apply the greedy placement algorithm.
This yields a lower approximation factor, sinceD is re-
duced after normalization. Moreover, as we will show in
Section 6.1, in practice the greedy algorithm performs quite
close to the optimal, and much better than the worst-case
bounds,ln(D) or ln(N).
4.2. General Link Model

The problem of efficient ITAP placement is more chal-
lenging when the throughput along a path varies with the
path length. This corresponds to the general link model in-
troduced in Section 3.1.

4.2.1. Problem Formulation: We formulate the place-
ment problem for the general link model as an integer pro-
gram shown in Figure 3. Herexe;h;l;j denotes the total
amount of flow routed from househ to the ITAPs using a
path of lengthl when edgee is thej’th edge along the path.
Variableyi is an indicator of the number of ITAPs opened
in the equivalence classi, and each househ haswh units
of traffic to send. The throughput degradation function for a
path of lengthl is denoted byg(l). L is an upper bound on
the number of hops on a communication path, and if there is
no such upper bound, we setL = jHj. The other variables
in Figure 3 are similar to the ones used in Figure 1.

The following theorem is an immediate consequence of
Theorem 1, as the ideal link model is a special case of the
general link model, wheng(l) = 1.

Theorem 5 It is NP-hard to find a minimum number of
ITAPs to cover a neighborhood for a general link model.

minimize
Xi2I yi

subject to
Xe=(v;h0) xe;h;l;j = Xe=(h0;v) xe;h;l;j+1 8h; h0 2 H; h0 6= h;l; j 2 f1; : : : ; Lg; j < lXe=(h;v);l xe;h;l;1 � wh 8h 2 HXh;l;j�l g(l) xe;h;l;j � Cape 8e 2 E(G)Xh0;e=(v;h);l;j�l g(l) xe;h0;l;j � Caph 8h 2 HXh0;e=(v;i);l;j�l g(l) xe;h0;l;j � Capiyi 8i 2 IXe=(u;i);l;j�l xe;h;l;j � whyi 8i 2 I; h 2 Hxe;h;l;j � 0 8e 2 E(G); h 2 H;l; j 2 f1; : : : ; Lg; j � lyi 2 f0; 1; 2; :::g 8i 2 I

Figure 3: Integer program formulation for the general link
model, whereg(l) models throughput degradation with in-
creasing hop-count.

4.2.2. Our Approach of Greedy Placement:The high-
level idea of the greedy algorithm is similar to the one pre-
sented for the ideal link model. We iteratively select ITAPs
to maximize the total user demands satisfied. The new chal-
lenge is to determine a greedy move in this model. Unlike
in the ideal link model, we cannot compute the total sat-
isfied demands by modeling it as a network flow problem
since the amount of flow now depends on the path length.
As we will describe below, this computation can be done by
solving a linear program, or by using a heuristic.

Expensive algorithm for the general link model:
Without making assumptions aboutg(l), we can compute
the total satisfied user demands, for a given setI 0 of ITAPs,
by solving a slightly modified LP problem than the one in
Figure 3. In this linear program, we replace the variableyi
by the number of occurrences ofi in I 0 (This amounts to
removing all the variables corresponding to edges ending
in ITAP positions outsideI 0 and removing inequalities con-
taining these variables). The objective will be to maximizePhPe=(h;v);l xe;h;l;1, which corresponds to maximizing
the satisfied demands. We also modify the second constraint
to be

Pe=(h;v);l xe;h;l;1 � wh in order to limit the maxi-
mum flow from each househ.

In theory, solving a linear program takes polynomial
time. However, in practice an LP solver, such as cplex [10],
can only handle small-sized networks under this model due
to the fast increase in the number of variables and con-
straints with the network size.

Below we develop more efficient algorithms for two spe-
cial forms ofg(l): (i) bounded hop-count:g(l) = 1 for alll � k, andg(l) =1 for l > k, and (ii) smooth degradation:



gl = l for all l.
Efficient algorithm for the bounded hop-count

model: We can use the following greedy algorithm to find
the total demands satisfied by a given set of ITAPs. The hop-
count constraint suggests we should favor short paths in the
graph. Therefore, in each iteration, the algorithm finds the
shortest path from demand points to opened ITAPs in the
residual graph, routes one unit of flow along this path, and
decreases the capacities of the edges on the path by one in
the residual graph. This is continued until the shortest path
found has length more than the hop-count bound. This al-
gorithm is similar to the algorithm proposed in [13]. While
this heuristic does not guarantee computing the maximum
flow (so each greedy step is not local optimal), it works very
well in practice as shown in Section 6.2.1.

Efficient algorithm for the smooth throughput degra-
dation model: Wheng(l) = l or throughputl = 1l , the
total demands satisfied by a set of ITAPs are given by the ex-
pression:maximizePpi2P 1jpij whereP is a collection of
edge-disjoint paths in the graph, andjpij denotes the length
of the pathpi. Therefore to maximize this objective func-
tion, our heuristic should prefer imbalance in path lengths,
and this motivates the following algorithm.

As the heuristic for the bounded hop-count model, in the
smooth throughput degradation model we compute the to-
tal satisfied demands by the selected ITAPs through itera-
tively removing shortest paths in the residual graph. How-
ever, we make the following modifications. First, since we
no longer have bounds on hop-count, we continue picking
paths until there is no path between any demand point and
any open ITAP. Second, to ensure the throughput followsthroughput(l) = 1=l, after we obtain all the paths, we re-
adjust the demand satisfied along each pathp, denoted asSDp, according to the throughput function. The total satis-
fied demands are the sum ofSDp over all pathsp. Although
this algorithm does not always find the maximum flow (so
each greedy step is not local optimal), it yields very good
performance as shown in Section 6.2.2.

4.3. Alternative Algorithms

We compare our greedy placement algorithm to four al-
ternative approaches.

4.3.1. Augmenting Placement:The idea of the augment-
ing placement algorithm is similar to the greedy algorithm.
The main difference is that in the augmenting algorithm we
do not make a greedy move; instead we are satisfied with
any ITAP that increases the total amount of demand sat-
isfied. More specifically, we search over the set of possible
ITAP locations, and open the first ITAP we see that results in
an increase in the amount of satisfied demand when opened
together with the already opened ITAPs.

The augmenting placement algorithm can be applied to
all three wireless link models with the following difference.

In the ideal link model, we compute the total amount of
demand satisfied under a given set of ITAPs by finding the
maximum flow in the graph; in the general link models, we
use the heuristics described in Section 4.2.2 to derive the
total amount of demand satisfied.

4.3.2. Clustering-based Placement:We compare our
placement algorithms to the clustering-based scheme, pro-
posed in [3]. The basic idea of the algorithm is to partition
the network nodes into a minimum number of disjoint clus-
ters, and place an ITAP in each cluster. We use the Greedy
Dominating Independent Set (DIS) [3] heuristic to deter-
mine a set of clusterheads, which are used as possible ITAP
locations. The nodes are then clustered to ensure that each
node is associated with the closest clusterhead, and a short-
est path tree rooted at the clusterhead is used for sending
packets from and delivering packets to the cluster. The clus-
ter is further divided into sub-clusters if either the weight
or relay-load constraints are violated. The weight constraint
specifies that an ITAP can serve nodes as long as the sum
of their demands does not exceed the capacity of the ITAP,
and the relay-load constraint specifies an upper bound on
the maximum flow that can go through a node in the neigh-
borhood cluster. We refer the reader to [3] for more details
of this algorithm.

To apply the clustering-based algorithm for the ideal link
model, in our simulations we use the ITAP capacity instead
of wireless capacity when checking the weight constraint of
placing an ITAP at a particular house; this is necessary since
the ITAP capacity can be greater than the wireless capacity
in our simulations. This ensures a fair comparison of the
clustering algorithm with our placement schemes.

To apply the algorithm to the bounded-hop count model,
we make the following modification. We divide a cluster
into sub-clusters not only when the weight or relay-load
constraints are violated, but also when the distance between
any node and its clusterhead exceeds the hop-count thresh-
old. The algorithm, however, doesnot apply to the smooth
throughput degradation model.

4.3.3. Random Placement:This algorithm randomly
places an ITAP at a house iteratively until all the user de-
mands are satisfied. To avoid wasting resource, it ensures
that each house has at most one ITAP. This approximates
un-coordinated deployment of ITAPs in a neighborhood,
and gives a baseline to evaluate the benefits of the more
sophisticated algorithms presented above.

As the greedy and augmenting algorithms, there are three
variants of random placement algorithms for different wire-
less link models. They differ in how we compute the total
demand satisfied under a given set of ITAPs. We run the
maximum flow algorithm to compute the satisfied demand
under the ideal link model, and apply the heuristics in Sec-
tion 4.2.2 to compute the satisfied demand under the general
link models.



4.3.4. Lower Bound: It is useful to compare our algo-
rithms with the optimal solution. However, our problem is
NP-hard, and it is too expensive to derive an optimal solu-
tion. Therefore we compare our algorithms with the lower
bounds. We derive the lower bound by relaxing the integer
constraints onyi in the formulation in Figure 1 and solving
the relaxed LP problem using cplex [10]. The lower bound
is a useful data point to compare with, as it gives an upper
bound on the difference between a practical algorithm and
the optimal.

We use the same scheme to derive lower bounds for all
three link models. For the general link models, the derived
lower bounds are loose since the throughput degradation
with hop count is ignored. Relaxing the integrality con-
straint in Figure 3, and solving the relaxed linear program
could give tighter bounds, but it is computationally very ex-
pensive. As we will show in Section 6.2.1 and Section 6.2.2,
the results from our greedy and augmenting algorithms are
still close to these loose lower bounds.

5. Validation

To validate the wireless link models used in this pa-
per, we run simulations in Qualnet [23], a commercial net-
work simulator as follows. Given a neighborhood layout,
the placement algorithms determine the ITAP locations and
the set of paths each house uses to reach the ITAPs. We
use the same neighborhood layout and ITAP locations in
the simulations. Every node in the simulation uses an omni-
directional antenna and 802.11b MAC, with the communi-
cation range and interference range being 195 meters and
376 meters, respectively. Every house sends CBR traffic
to the ITAPs at the rate specified by the placement al-
gorithms’ output. To support multi-path routing, we im-
plement a probabilistic source-routing scheme in Qualnet,
where the paths used in source routing and the probability
that each path is chosen are based on the placement algo-
rithms’ output.

As shown in Figure 4, the ITAPs, determined using
the smooth degradation model, satisfy the user demands
to a great extent: around 80% houses have their demands
completely satisfied when houses are randomly placed in
1000*1000m2, and all houses receive their demands when
houses are randomly placed in 1500 * 1500m2. The bet-
ter performance in the latter scenario comes from the fact
that the larger separation among houses lowers interfer-
ence among cross traffic. Note that even for the former
case, we can further improve the clients’ throughput by
over-provisioning. As shown in the same figure, with over-
provisioning (assuming that each user’s demand is 500
Kbps when the actual demand is 208 Kbps), most of the
clients’ demands are satisfied.

Since ideal link and bounded hop-count models are more
optimistic about the impact of interference, they are more
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Figure 4: Validation of general link models: CDF of clients’
throughput, whereN = 50, WC = 5Mbps, andwh =208Kbps 8h 2 H .

suitable for the environments with efficient spectral use
(e.g., when directional antennas are used). As part of our
future work, we plan to evaluate how well these two mod-
els capture the impact of wireless interference under such
environments.

6. Performance Evaluation

In this section, we evaluate the performance of differ-
ent placement algorithms using various network topologies,
house demands, and link models.

6.1. Performance Under the Ideal Link Model

First, we look at the performance under the ideal link
model under various scenarios. We use the following nota-
tions in our discussion.� N : the number of houses� WC: a wireless link’s capacity� IC: an ITAP’s capacity� CR: communication radius� HR: average inter-house distance� wh: househ’s demand

We compare the performance of different algorithms
by varying each of the above parameters. In our evalua-
tion, we use both random topologies and a real neighbor-
hood topology. The random topologies are generated by
randomly placing houses in a region of sizeN � N , and
varying the communication radius. The real neighborhood
topology contains 105 houses, spanning over a region of
1106m*1130m. (We cannot reveal the source of the data
for confidentiality.) The average inter-house distance in the
real topology is 74 meters. Unless otherwise specified, for
the same parameter setting, we run simulations three times,
and report the average number of ITAPs required for each
placement algorithm.

Effects of the communication radius:We start by ex-
amining the effect of communication radius (CR) on the
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Figure 5: Ideal link model: varying communication radius,
whereN = 100, WC = 6, IC = 100, andwh = 1 8h 2H .

placement algorithms. It is easy to see from the problem
formulation that only the ratio,CRHR , is important. Therefore
in our evaluation, we vary the communication radius from
1 to 50, while fixing the inter-house distance by randomly
placing 100 houses in an area of 100*100, which yields an
average inter-house distance of 4.5 - 6.

Figure 5 illustrates the number of ITAPs required with
varyingCR. We make the following observations. First, we
see that an increase inCR results in a greater overlap of
wireless coverage of the houses, and therefore fewer ITAPs
are sufficient to satisfy the house demands. Second, com-
paring the performance across different algorithms, we ob-
serve that the greedy algorithm performs very close to the
lower bound over all cases. Interestingly, the augmenting al-
gorithm performs quite well, too. The good performance of
the augmenting algorithm comes from the requirement that
new ITAPs should lead to throughput improvement, which
avoids wasting resource on the already covered region. This
is especially useful after several ITAPs have been placed,
since at this point only a few locations remain that can fur-
ther increase the satisfied demands.

In contrast, the clustering and random-house placement
schemes perform much worse. Compared with the greedy
strategy, both schemes often require 2 to 10 times as many
ITAPs. Note that when the communication radius is very
large, the clustering algorithm yields worse performance
than the random-house placement. This is because in the
clustering algorithm data dissemination follows a shortest
path tree, instead of maximizing the total amount of flow
that can be pushed to the ITAPs. In comparison, the other
algorithms, including the random-house placement, run the
maximum flow algorithm to maximize the total satisfied de-
mands.

Effects of network size:Next we study the impact of
network size on the placement algorithms. We randomly
placeN houses in anN �N area while fixing the communi-
cation radius to 10. Figure 6 shows the number of required
ITAPs using the different placement algorithms for various
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Figure 6: Ideal link model: varying the number of nodes,
whereCR= 10,WC = 6, IC = 100, andwh = 1 8h 2 H .

network sizes. As we would expect, an increase in the num-
ber of houses leads to a larger number of ITAPs required
to cover the neighborhood. Moreover, the greedy algorithm
continues to perform very well, with its curve mostly over-
lapping with the lower bound. The augmenting algorithm
performs slightly worse, whereas the clustering and random
algorithms perform much worse – requiring up to 5 and 8
times as many ITAPs, respectively. In addition, the benefit
of greedy algorithm increases as the network gets larger.

Effects of wireless link capacity:We also study the ef-
fects of wireless bandwidth on the placement algorithms.
We observe that the relative ranking of the algorithms stays
the same. The effect of bandwidth is only pronounced when
it is very limited. For example, when the wireless bandwidth
is equal to a single house’s demand, the number of ITAPs
required is considerably large. As the bandwidth increases
and the wireless link is no longer the bottleneck, the number
of required ITAPs remains the same with a further increase
in the wireless link capacity.

Effects of the ITAP capacity: We compare the place-
ment algorithms by varying the ITAP capacity. When ITAP
capacity is small and hence is a bottleneck, the number of
required ITAPs decreases proportionally with an increase in
ITAP capacity. As the ITAP capacity is large enough and no
longer the bottleneck, the number of required ITAPs is un-
affected by a further increase in ITAP capacity. Moreover,
the relative performance of different placement algorithms
is consistent with the previous scenarios.

Effects of heterogeneous house demands:So far we
have considered homogeneous house demands (i.e., each
house generates one unit demand). A number of studies
show that realistic user demands are very heterogeneous,
and often exhibit Zipf-like distributions [5, 6]. Motivated
by these findings, below we evaluate the placement algo-
rithms when house demands follow a Zipf distribution. The
results are qualitatively the same as those of using the ho-
mogeneous house demands. The greedy algorithm contin-
ues to out-perform the others significantly and yield nearly
optimal solutions.
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Figure 7: Ideal link model: real neighborhood topology with
various communication radii;N = 105, WC = 6, IC =100; the house demands follow a Zipf distribution.

Real neighborhood topology:Finally we evaluate the
placement algorithms using a real neighborhood topology
of 105 houses. We again use Zipf-distributed house de-
mands. As shown in Figure 7, initially when the commu-
nication range is too small, most houses are unreachable
from other houses, and therefore all the algorithms require
close to 105 ITAPs. As the communication range increases,
fewer ITAPs are needed to cover the neighborhood. At the
extreme, when the communication range reaches 250 me-
ters, the neighborhood forms a single connected compo-
nent, and therefore most algorithms require only one ITAP.
(When bandwidth is more limited or the impact of wire-
less interference is larger as shown in the next section, we
may need multiple ITAPs even for a single connected com-
ponent.) Moreover, the greedy algorithm performs close to
optimal over all communication radii considered.

6.2. Performance Under the General Link Models

In this section, we evaluate the performance of place-
ment algorithms under two general link models, namely
bounded hop-count and smooth throughput degradation
models.

6.2.1. Bounded Hop-count Model:We compare the
placement algorithms for bounded-hop count model by
varying the hop-count threshold, communication radius,
and neighborhood topology.

Effects of hop-count threshold:First we compare the
placement algorithms by varying the hop-count threshold.
As shown in Figure 8, when the hop-count threshold in-
creases, the effect of hop-count reduces, since all or most
paths are within hop-count limit. Comparing the differ-
ent placement algorithms, we see that the greedy place-
ment performs very close to the lower bound, especially
for large hop-count thresholds. When the hop-count thresh-
old is small, the gap between the lower bound and greedy
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Figure 8: Bounded hop-count model: varying the hop-count
threshold, whereN = 100, CR = 10, WC = 6, IC =100, andwh = 1 8h 2 H .
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Figure 9: Bounded hop-count model: a real neighborhood
topology for various communication radii, whereN = 105,WC = 6, IC = 100, hop-count threshold = 3, and the
house demands follow a Zipf distribution.

algorithm is slightly larger, since the lower bound ignores
throughput degradation with the hop-count, and is not as
tight. Compared with the greedy algorithm, the augmenting
algorithm requires 50% more ITAPs; the clustering algo-
rithm in [3], requires 2 - 3 times as many ITAPs; and the
random algorithm requires 4 to 8 times as many ITAPs.

Effects of communication radius:Next we fix the hop-
count threshold to 3, and vary the communication radius.
As expected, an increase in communication radius reduces
the number of ITAPs required to cover the neighborhood.
Moreover the greedy continues to perform significantly bet-
ter than the alternatives. We observe similar results for other
hop-count thresholds.

Real neighborhood topology: We also evaluate the
placement algorithms using the real neighborhood topology.
As shown in Figure 9, the results are qualitatively the same
as the random topologies. The greedy algorithm performs
very close to the lower bound for all the communication
radii considered.

6.2.2. Smooth Throughput Degradation Model:Next
we empirically study the placement algorithms for the
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Figure 10: Smooth throughput degradation model: varying
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Figure 11: Smooth throughput degradation model: a real
neighborhood topology for various communication radii,
whereN = 105, WC = 6, IC = 100, and the house
demands follow a Zipf distribution.

smooth throughput degradation model.

Effects of communication radius:Figure 10 shows that
the number of required ITAPs decreases with increasing
communication radius. The gap between the performance
of different algorithms is the largest when the communica-
tion radius is between 5 and 20 (The average inter-house is
around 5.). This can be explained as follows. When the ra-
dius is very small, most houses are disconnected from one
another. So the number of ITAPs required is nearly the num-
ber of houses. When the radius is very large, most houses
are reachable from one another within one or few hops, and
the number of ITAPs required is close to 1. However, for the
practical scenario with medium communication radius, the
gap between different algorithms is most significant. Note
that the lower bound, which is derived by ignoring the im-
pact of hop-count on throughput, is more loose for this sce-
nario. Even then the greedy is still competitive when com-
pared with these loose lower bounds.

Real neighborhood topology:Figure 11 shows the re-
sults from the real neighborhood topology. As we can see,
the greedy placement continues to perform much better than
the alternatives.

7. Practical Considerations

We now present algorithms for handling two practical
requirements: providing fault tolerance and handling work-
load variation.

7.1. Providing Fault Tolerance

A practical solution to the ITAP placement problem
should ensure Internet connectivity to all the houses in the
neighborhood,even in the presence of a few ITAP and house
failures. Here we present an enhancement to our algorithm
by incorporating this fault tolerance constraint. Fault toler-
ance is achieved by providing multiple node disjoint paths
from a house to ITAPs, and over-provisioning the delivery
paths. Over-provisioning is a scheme that allocates more
flow to a house than its demand, and therefore helps to pro-
vide QoS guarantees even when there are a few failures.
Note that we consider node disjoint paths instead of edge
disjoint paths to avoid correlated link failures caused by a
problematic node. Also since the ultimate goal is to provide
Internet connectivity irrespective of which ITAP is used, we
allow a user’s demand to route to different ITAPs.

7.1.1. Problem Formulation: Let each house have one
unit of demand, andd independent paths to reach the ITAPs;
the average failure probability of a path bep; and the over-
provisioning factor bef (i.e., each independent path allo-
catesfd capacity to a house, and the total capacity allocated
to a house byd independent paths isf ).

Since for every house, there ared independent paths
from this house to ITAPs and the probability of failure of
each path isp, the probability that exactlyi of these paths
fail is

�di�pi(1� p)d�i, assuming independent path failures.
In this case, the amount of traffic that can be delivered ismin( (d�i)fd ; 1). Therefore, the expected fraction of the traf-
fic from a house that can reach an ITAP,S(f; p; d), is given
by the following formula.S(f; p; d) = dXi=0 �di�pi(1� p)d�imin((d� i)fd ; 1)
Given the expected guarantee desired by the home users,S(f; p; d), we can use the above expression to derive the
overprovision factor,f , based on path failure probability
and the number of independent paths. We now provide fault
tolerant LP formulations for the ideal and general link mod-
els.

Ideal Link Model with the Fault Tolerance Con-
straint : Figure 12 provides an LP formulation of the fault
tolerant problem for the ideal case, i.e. when throughput is
independent of the path length. For each edgee and each
househ, the variablexe;h indicates the amount of flow fromh to ITAPs that is routed throughe. Also, for each ITAP
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Figure 12: LP formulation for the ideal link model with fault
tolerance constraints, whered is the number of independent
paths, andf is the over-provision factor.i, the variableyi denotes the number of ITAPs opened in
equivalence classi. The above integer LP is similar to the
one in Section 4.1.1. The differences are as follows: (i) the
constraint� wh added to the first inequality, (ii) a change in
the second constraint fromwh towhd in the amount of flow
originating from each house, and (iii) a multiplicative factor
of fd on the left-hand side of the capacity constraints (since
the amount of capacity each path allocates to each house isfd ). The first modification ensures that the flow from each
house is served by independent paths; (ii) and (iii) are for
the over-provisioning purpose.

Similarly we can formulate integer LP for general link
models with the fault tolerance constraint. Refer to [21] for
details. For all link models, we have Theorem 6.

Theorem 6 It is NP-hard to find a minimum number of
ITAPs required to cover a neighborhood while providing
fault tolerance.

7.1.2. Placement Algorithms:The greedy, augmenting
and random placement algorithms are based on the same
idea described in the previous sections of this paper. How-
ever, they differ in the way they compute the total demands
supported by a given set of ITAPs. For the ideal case, we
compute the satisfied demands by slightly modifying the
LP in Figure 12, and solving the resulting LP. The objective
function is changed to be maximizing

Ph(Pe=(h;v) xe;h�Pe=(v;h) xe;h), which corresponds to maximizing the sup-
ported demands. The variablesyi are replaced by the num-
ber of occurrences ofi in I 0. Furthermore, the second con-
straint is changed to

Pe=(h;v) xe;h�Pe=(v;h) xe;h � whd
in order to limit the maximum flow from a node. For the
general link model, we compute the satisfied demands by
applying similar modifications to the corresponding integer
linear program.

We compare the above algorithms to the lower bound,
derived by relaxing the integrality constraint and solvingthe
relaxed linear program. Our evaluation [21] shows that for
all algorithms the number of ITAPs required increases lin-
early with the number of independent paths. Moreover, the
results of the greedy algorithm are very close to the lower
bound, and significantly better than the other two.

7.2. Handle Workload Variation

In practice, user demands change over time, and often
exhibit diurnal patterns [6, 17, 24]. Since it is not easy to
change ITAP locations once they are deployed, a good ITAP
placement should handle demands over all periods. In this
section, we describe and evaluate two approaches to han-
dle variable workloads. While our discussion focuses on the
non fault-tolerant version of the placement problems, the
ideas carry over easily to the fault-tolerant version as well.

One approach to take into account workload change is
to provision ITAPs based on the peak workload. That is, ifw[h℄[t℄ denotes the demand of househ at time t, we usemaxt w[h℄[t℄ as the demand for househ, and feed this as an
input to the placement algorithms described in the previous
sections. We call this approachpeak load based placement.
This algorithm is simple, but sometimes inefficient, e.g.,
when different houses’ demands peak at different times.

To improve efficiency without sacrificing user perfor-
mance, we now explore how to optimize ITAP locations for
demands over multiple time intervals. More formally, the
problem can be stated as follows. Each househ has demandw[h℄[t℄ at timet. Our goal is to place a set of ITAPs such
that at any timet, they can serve all the demands generated
at t, i.e.,w[h℄[t℄ for all h’s.

Here we describe a greedy heuristic with a logarithmic
worst-case bound for the ideal link model. The same idea
applies to other link models. The high-level idea is to it-
eratively place the ITAP such that together with the al-
ready opened ITAPs it maximizes the total demands served.
Unlike in the previous section, here the total demands in-
clude demands over multiple time intervals. More specifi-
cally, we place an ITAP such that it maximizes

Pt2T SDt,
whereSDt is the total satisfied demands at timet. This can
be computed by changing the greedy algorithm of Section
4.1.2 as follows. In every iteration, for everyj 2 I andt 2 T , we construct the graphG0 as in the algorithm of Sec-
tion 4.1.2 based on the demands at time periodt. Then we
compute the maximum flowfj;t in this graph. After these
computations, we pick the ITAPj that maximizes

Pt fj;t,
and open it. We call this algorithmmultiple-demand-based
greedy placement(M-greedy, for short). In the following
theorem, we show a worst-case bound on the M-greedy’s
performance in the ideal link model.

Theorem 7 Consider the ITAP placement problem in the
ideal link model with integral demands and capacities, and



let Dt be the total demand in periodt. The approxima-
tion factor of the M-greedy algorithm for this problem is
at mostln(PtDt). In other words, if the optimal algorithm
requiresK ITAPs to serve demands overL time periods,
then the M-greedy requires at mostK ln(PtDt) ITAPs.

Refer to [21] for the proof. Based on the above theorem,
we have the following corollary.

Corollary 8 LetL denote the total number of periods, andN denote the number of houses. The approximation factor
of the M-greedy in the ideal link model isln(LN), when
the capacities of edges and vertices are integer-valued and
every house has either zero or one unit of demand at any
timet.

This is easy to see because
PtDt � LN .

The approximation factor of the greedy placement using
the peak load is at most a factor of

Pt(lnDt) (refer to [21]
for details). WhenDt = Dm for all t’s, its cost is at mostL ln(Dm). This is roughlyL times the approximation factor
of the M-greedy algorithm.

In addition to the worst-case analysis, we evaluate the
effectiveness of the algorithms empirically, and observe that
the number of ITAPs required to serve demands exhibiting
diurnal patterns using M-greedy is only slightly higher than
the maximum number of ITAPs required to serve either of
the two periods. In the interest of space, we refer readers to
[21] for details.

8. Conclusions

In this paper we look at the problem of efficient ITAP
placement to provide Internet connectivity in multi-hop
wireless networks. We make three major contributions in
this paper. First, we formulate the ITAP placement prob-
lem under various wireless models, and design algorithms
for each model. Second, we address several practical is-
sues when using these algorithms. In particular, we extend
the placement algorithms to provide fault tolerance and to
handle variable user demands. These two enhancements im-
prove robustness of our placement schemes in face of fail-
ures and demand changes. Third, we demonstrate the effi-
ciency of our placement algorithms using analysis and sim-
ulations, and show that the greedy algorithms give close to
optimal solutions over a variety of scenarios we have con-
sidered. To our knowledge this is the first paper that looks
at the ITAP placement problem for general MAC schemes.
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