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Abstract—Wireless LAN administrators often have to deal with the problem of sporadic client congestion in popular locations within

the network. Existing approaches that relieve congestion by balancing the traffic load are encumbered by the modifications that are

required to both access points and clients. We propose Cell Breathing, a well-known concept in cellular telephony, as a load balancing

mechanism to handle client congestion in a wireless LAN. We develop power management algorithms for controlling the coverage of

access points to handle dynamic changes in client workloads. We further incorporate hand-off costs and manufacturer specified power

level constraints into our algorithms. Our approach does not require modification to clients or to the standard. It only changes the

transmission power of beacon packets and does not change the transmission power of data packets to avoid the interactions with auto-

rating. We analyze the worst-case bounds of the algorithms and show that they are either optimal or close to optimal. In addition, we

evaluate our algorithms empirically using synthetic and real wireless LAN traces. Our results show that cell breathing significantly

outperforms the commonly used fixed power scheme and performs at par with sophisticated load balancing schemes that require

changes to both the client and access points.

Index Terms—Wireless LAN, power control, cell breathing, algorithms.
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1 INTRODUCTION

THE proliferation of lightweight hand-held devices with

built in high-speed WiFi network cards and the

significant benefit of anywhere anytime Internet access

has spurred the deployment of wireless “hot-spot” net-

works [2], [3]. It is easy to find wireless local area networks

(WLANs) in classrooms, offices, airports, hotels, and malls.
A key challenge for organizations that deploy WLANs is

capacity management, making the best use of the available

resources to derive the best return on investment while

satisfying client service demands.
Previous studies of public-area wireless networks have

shown that client service demands are highly dynamic in

terms of both time of day and location, and that client load

is often distributed unevenly among wireless access points

(APs) [6], [7], [36], [39]. Clients tend to localize themselves

in particular areas of the network for various reasons, such

as availability of favorable network connectivity, proximity

to power outlets, classrooms, meeting rooms, or geographic

constraints of other services (e.g., airport gate area with

arriving and departing flights). A consequence of such

behavior is sporadic client congestion at popular locations

within the network. At any one time, a large percentage of

mobile clients communicate with a small subset of the APs.

These client concentrations create an unbalanced load in the

network and complicate capacity planning, making it

difficult to accommodate heavy, concentrated load in

different parts of the network without significant, and

costly, overengineering.
The mapping between clients and the APs that service

them is a critical determinant of system performance and

resource usage. An AP can get seriously overloaded even

when several nearby APs are lightly loaded. This is because

a majority of the WiFi cards associate with the APs with the

loudest beacons (i.e., the strength of the received beacon

signal is highest among all neighboring APs). We call this

the basic association scheme.
One way to address this issue is to modify the client

association algorithm to incorporate the APs’ load in

addition to the received signal strength indicator (RSSI) of

the APs’ beacons. A client associates with the AP that is

lightly loaded and whose beacons have the highest RSSI

values. This technique and its different variants have been

proposed by researchers (e.g., [5], [8], [17], [22], [30]) and

adopted by vendors of wireless LAN products [1], [11], [28].

The problem is that this technique requires support from

both APs and clients. APs have to communicate their

current load to the client and the client AP selection

algorithm has to incorporate APs load information. In

practice, clients in public areas are generally heterogeneous,

i.e., they use wireless cards from different vendors or

wireless cards that are running older “legacy” software.

Consequently, such schemes provide limited benefit.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 2, FEBRUARY 2007 1

. P. (Victor) Bahl, K. Jain, and S.V. Mirrokni are with Microsoft Research,
One Microsoft Way, Redmond, WA 98052.
E-mail: {bahl, kamalj}@microsoft.com, mirrokni@theory.csail.mit.edu.

. M.T. Hajiaghayi is with the Computer Science Department, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213.
E-mail: hajiagha@mit.edu.

. L. Qiu is with the Computer Science Department, University of Texas at
Austin, 1 University Station C0500, Austin, TX 78712-0233.
E-mail: lili@cs.utexas.edu.

. A. Saberi is with the Terman Engineering Center, Stanford University,
Room 317, 380 Panama Way, Stanford, CA 94305-4026.
E-mail: saberi@stanford.edu.

Manuscript received 7 Mar. 2006; revised 4 May 2006; accepted 8 May 2006;
published online 14 Dec. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0066-0306.

1536-1233/07/$20.00 � 2007 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS



To achieve efficient resource usage without requiring
changes to client software, we propose the use of a cell
breathing technique. Cell breathing is a well-known concept
in cellular telephony (2G, 3G, CDMA, CDMA200, and
WCDMA systems) [14], [31]. It is defined as the constant
change in the geographical area covered by the cell tower.
The heavily loaded cells shrink their coverage area, whereas
the lightly loaded cells expand their coverage area to attract
clients previously associated with the heavily loaded cells.
As a result, the overall system is load balanced.

In WLANs, cell breathing can be implemented by
controlling the transmission power of an AP’s beacon packets.
Note that we do not change the transmission power of data
packets to avoid degrading clients’ performance. More
specifically, when the SNR of data packets reduces, the AP
may see higher data packet losses or even adapt to a lower
sending rate, both of which degrade the client’s perfor-
mance. In comparison, changing the transmission power of
beacon packets only affects how clients associate with APs
and does not affect the loss rate or sending rate of data
packets, which matches our goal well.

Our proposed power control does not require any
change to client software or to the standard. Clients
continue to associate with an AP with the strongest beacons.
APs manage their load by adjusting the beacon packets’
transmission power. In this way, the AP’s coverage area is
shrunk or expanded transparently, adapting to client
demands and balancing the traffic load across the network.
Because this approach does not require modifications to
clients, its deployment cost and time is small. Moreover, cell
breathing is effective for both legacy clients that employ the
basic association scheme and the new clients that employ
load-aware association scheme. So, in practice, its benefits
can be fully realized immediately.

Finding the appropriate power assignment at APs to
automatically achieve load balancing is a challenging
problem. To our knowledge, the cell breathing algorithms
proposed for cellular networks are based on local heuristics
and do not provide performance guarantees [14], [31].

In this paper, we develop power control algorithms for
the following two cases: 1) APs are able to adjust their
power to any level (continuous-power assignment) and 2) APs
are able to adjust their power to only some discrete power
levels (i.e., discrete-power assignment).

To develop an algorithm for continuous-power assign-
ment, we use a duality-based approach. The duality in
linear and convex programs has proved effective for
algorithm designs [41]. It has been also used in the analysis
and design of congestion control mechanisms in the Internet
[24], [26], [27]. Our duality-based approach uses linear
programming to formulate the problems and uses linear
programming duality and the complementary slackness
conditions to derive algorithms and prove their correctness.

More specifically, in many situations, one can see dual
variables as shadow prices. In our context, the shadow
prices correspond to the AP power. In other words, similar
to a market mechanism in which the price determines the
demand for a commodity, here, we can change the
demands assigned to an AP by adjusting its power. The
challenge is to adjust the powers of all neighboring APs at

the same time in such a way that their loads remain
balanced.

Interestingly, when client demands are homogeneous
(i.e., all clients have the same demand), we can always
compute such a power assignment—we can set the powers
of all APs in such a way that, after all the clients choose
their AP based on RSSI, either all the clients can be served
by the APs or all the APs are fully utilized. For hetero-
geneous demands (i.e., clients can have different demands),
we apply the same approach and prove that it can
completely satisfy at least N �K clients, where N is the
number of clients and K is the number of APs. (Note that K
is often much smaller than N in practical scenarios. So, even
in the worst cases, most clients can be served.)

We further develop a primal-dual combinatorial algo-
rithm based on the matching theory, which is applicable to
a more general setting. In this case, we only assume that the
received power is proportional to the transmission power,
but do not assume any relationship between the received
power and the distance. (In fact, our algorithm does not
even require the knowledge of the distance between APs
and clients.) The algorithm is described in the Appendix. It
is based on the insight that our problem has similarity to the
market equilibrium problem [13], [18], [21]. Based on the
same insight, we can apply the ideas of the auction-based
distributed algorithms for computing market equilibria [18]
and develop a distributed algorithm for our problem.

For discrete-power assignment, we develop a greedy
algorithm. The high level idea of our algorithm is as
follows: We start by setting the powers of all APs to the
highest value and then we choose the best power config-
uration resulting from iteratively decreasing the power of
overloaded APs. This approach is intuitive and easy to
implement. Moreover, it only requires knowledge of the APs’
load, which is easy to obtain. We show that if there exists a
power assignment such that each AP has capacity to
accommodate the demands assigned to it, our algorithm
can find the solution in a polynomial time.

In addition, we consider two extensions to the above
algorithms: 1) dynamic adjustment of the APs’ power in
response to changes in clients’ load while limiting the
number of hand-offs and 2) minimizing the APs’ transmis-
sion power to reduce interference.

To sum up, the key contributions of our research are as
follows:

. We describe four algorithms for continuous-power
assignment. The first three algorithms assume that
APs can estimate the received power at the clients.
Among the three algorithms, we prove that the first
two are optimal (i.e., maximize the total satisfied
client demand) for homogeneous demands and the
third is close to optimal for heterogeneous demands.
Our fourth algorithm, described in the Appendix, is
designed for a more general case, where the only
assumption about received power is that it is
proportional to the transmission power.

. We describe a greedy algorithm for discrete power
assignment and prove its optimality under a certain
condition. The algorithm only requires the APs’ load
as input.
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. We extend the algorithms to handle dynamically
changing client demands while limiting the number
of hand-offs. We also consider minimizing the APs’
power to reduce interference.

. We evaluate the algorithms using both synthetic and
real WLAN traces.

Our results show that the algorithms are effective for
improving throughput. Under high load, the improvement
is up to 50 percent for uniform client distributions, and up
to an order of magnitude for nonuniform distribution of
clients’ locations.

The rest of the paper is organized as follows: In Section 2,
we review related work. We formulate the power control
problem in wireless LANs in Section 3. In Section 4, we
present algorithms for continuous power assignments and
analyze their worst-case bounds for both homogeneous and
heterogeneous client demands. We describe a discrete
power assignment algorithm in Section 5. In Section 6, we
develop a dynamic power control algorithm that adapts to
changes in client demands while limiting the number of
hand-offs. In Section 7, we consider minimizing the APs’
power. We describe our evaluation methodology in Sec-
tion 8 and present performance results in Section 9. Finally,
we conclude in Section 10.

2 RELATED WORK

Several researchers have studied the usage characteristics of
wireless LANs in different environments, including a
university campus [39], [25], a large corporation [44], and
a conference [6]. All these studies report that the client load
is unevenly distributed across AP. The imbalance in client
load distribution results in inefficient resource utilization
and poor performance.

As suggested in several previous works (e.g., [30], [22],
[17], [5], [8]), one approach to addressing the load
imbalance issue is to incorporate the APs’ load into the
association scheme. For example, Papanikos and Logothetis
[30] determine client and AP association based on RSSI and
the number of clients associated with each AP. The authors
in [22], [17] propose that APs maintain a measurement of
their load and broadcast beacons containing this load to
clients in the cell. New clients receive beacons from
multiple APs and use this information to associate with
the least loaded AP [22], [17]. Balachandran et al. suggest
that clients associate with the AP that can accommodate its
minimum bandwidth requirement [5]. When multiple such
APs are available, the AP with highest RSSI is chosen.
Bejerano et al. develop network-wide max-min fair band-
width allocation algorithms [8]. In their scheme, each client
deploys appropriate client software to monitor the wireless
channel quality it experiences from all its nearby APs. The
client then reports the information to a network control
center, which determines client and AP association. Their
algorithms are the first that provide worst-case guarantees
on the quality of the bandwidth allocation.

All the above work assumes that clients deploy the
appropriate module for AP selection. This requirement is
hard to realize in practice since wireless cards at clients are
heterogeneous and may not support such cooperation.

Moreover, the required modules for AP selection may differ
from one network to another network (e.g., some networks
may require clients to report the information to a
centralized server for determining association, while other
networks require clients to make selection by themselves).
The different requirements posed by different wireless
networks make the deployment even harder.

As stated in the previous section, we propose an AP-
centric approach. When an AP becomes heavily loaded, it
shrinks its coverage by reducing the transmission power of
its beacon packets. This forces redirection of some traffic to
a neighboring cell that is lightly loaded, thereby achieving
load balancing. Different from the previous cell-breathing
work in cellular networks, which uses heuristics and does
not give worst-case performance guarantees, we prove that
our power control algorithms are optimal for homogeneous
demands and close to optimal for heterogeneous demands.
In addition, our algorithm can adapt to changing client
demands while limiting the number of clients required to
switch to different APs.

The concept of cell breathing originates from cellular
networks. To our knowledge, the cell breathing algorithms
proposed for cellular networks are based on local heuristics
and do not provide performance guarantees [14], [31]. More
recently, Sang et al. [33] propose a cross-layer framework
that coordinates packet-level scheduling, call-level cell-site
selection and handoff, and system-level load balancing. One
of the components in their framework is cell breathing.
Different from our work, which uses power control at the
physical layer, their cell breathing is performed at the MAC
layer by having a congested cell allocate fewer time slots to
the mobiles at the cell boundary. Such a TDMA-based
scheme is not applicable to IEEE 802.11 DCF (distributed
coordinated function), which is the focus of our work.
Moreover, under their cell breathing scheme, the mobiles
are still required to perform load-aware cell-site selection
and handoff. In comparison, our cell breathing scheme
completely removes the need for client-side modifications
(i.e., clients can simply associate with the access point based
only on signal strength).

There is significant research work on power control for
ad hoc networks (e.g., [32], [23], [42], [37]). Ad hoc networks
are significantly different from infrastructure wireless
networks, and these schemes do not apply to our scenarios.

There is a close relationship between our power assign-
ment problems and the market equilibria [13], [21], [18]. We
use the insight to develop some of the algorithms.

3 PROBLEM FORMULATION

We propose an AP-centric approach to transparently
balance load across different APs. The main challenge in
this approach is to find appropriate transmission power for
each AP such that the total client demand that APs can
serve is maximized when clients use the basic association
scheme (i.e., associate with the AP with highest RSSI). In
order to formally specify the power control problem, we
first introduce the following notations:

. K: The number of APs.

. N : The number of clients.
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. Ci: The capacity of AP i.

. dði; jÞ: The distance between AP i and client j.

. �: signal attenuation factor.

. Pi: AP i’s power.

. Di: client i’s demand.

. Prði; jÞ: received power from AP i at client j.

. Li: The total load served at AP i.

Based on the notations listed above, we now formulate
the power control problem as follows: Given K, N , Ci, Di,
and dði; jÞ, our goal is to find the transmission power for
each AP i, denoted as Pi, to maximize system throughput
(i.e., maximizing

P
i Li) given that client j is assigned to AP

i when Prði; jÞ > Prði0; jÞ for all i0 2 f1; 2; . . . ; Kg and Li ¼
minðCi;

P
DjÞ for all clients j that are mapped to AP i. The

last equation reflects the fact that the maximum client
demand the AP i can service, Li, is bounded by its capacity
and the total client demands that are assigned to it. Note
that when there are multiple APs with similar RSSI, the
client is randomly assigned to one of them.

4 MAXIMIZING THROUGHPUT FOR CONTINUOUS

POWER

In this section, we present power control algorithms for the
cases when APs can adjust their power to any value (i.e.,
continuous power). The algorithms in this section require
APs to estimate the received power at different clients. In
the Appendix, we extend the algorithm to a more general
case that does not require knowledge of the distance
between APs and clients. It only assumes the received
power at any location is proportional to the transmission
power, which holds in general even under obstruction.
Moreover, the discrete-power assignment algorithm pre-
sented in Section 5 requires even less information—only the
APs’ load information is needed.

We estimate the received power at the clients as follows:
The received power, Prði; jÞ, is a function of transmission
power, P ðiÞ, and the distance between the client and AP,
dði; jÞ. The function depends on the wireless propagation
model in use. We use the following function:

Prði; jÞ ¼ a � Pi=dði; jÞ�; ð1Þ

where a is a constant. It is easy to see that this power
function can incorporate both free-space and two-ray
ground reflection models.

In addition, we can also incorporate other wireless
propagation models as follows: When the wireless propa-
gation does not follow (1) (e.g., under obstruction), we can
approximate the actual wireless propagation by introducing
virtual distance, where the virtual distance follows (1).
More specifically, APs collect the measurement of transmis-
sion power and received power, and then approximate the
actual wireless propagation by finding d0ði; jÞ (virtual
distance), �0 (virtual attenuation factor), and a0 that fit the
model Prði; jÞ ¼ a0 � Pi=d0ði; jÞ�

0
, where Prði; jÞ and Pi are

from the measurement. Then, we apply our power assign-
ment to the virtual distances and virtual attenuation factor.
Conceptually, this is similar to Internet distance embedding
(e.g., GNP [29]), which embeds a complicated Internet space
onto a simple geometric space. In our case, we embed a

complicated space, which describes actual wireless propa-

gation, onto a simpler space that follows (1).

4.1 Maximizing Throughput for Homogeneous
Demands

First, we design power control algorithms for homogeneous

client demands. Without loss of generality, we consider that

each client has one unit of demand. (Since client demands

are homogeneous, we can always scale client demands and

AP capacity to make the client demand to be one unit.) We

first find a mapping of clients to APs such that either all

clients’ demands are satisfied or the total capacity of all APs

are exhausted. It is easy to see that such a mapping

maximizes our objective—the total satisfied demand, since

the total satisfied demand cannot exceed the total client

demand or APs’ capacity. Then, we prove that there exists a

set of powers that enforces this assignment when each client

selects its AP based on RSSI. Next, we derive two

algorithms to find the set of powers that enforces this

assignment. The first algorithm is based on solving a linear

program. The second algorithm is combinatorial and has a

better running time.

4.1.1 Finding the Mapping

We develop a polynomial-time algorithm to find a

mapping of clients to APs such that either clients’ demands

are satisfied or the total capacity of all APs is exhausted.

We call this mapping a perfect assignment. We prove that

there exists a set of powers for APs that enforces this

assignment under homogeneous client demands. Our proof

uses linear programming duality and complementary

slackness conditions.
The algorithm to find the assignment is as follows:

FindAssignment Algorithm

1) Given an instance of the power control problem as

specified in Section 3, we can construct the following
weighted bipartite graph GðA;C;EÞ, where A is the set

of APs and C is the set of clients. There is an edge

between each AP i and each client j. The weight of the

edge from AP i to client j is equal to wij ¼ � lnðdði; jÞÞ.
2) Find the minimum weight bipartite matching in G,

where the capacity of every client is 1 and the capacity of

an AP i is Ci. In other words, among all the maximal

assignments of clients to access points in which a client
can be assigned to at most one AP and an AP i can be

matched to at most Ci clients, find the matching with the

minimum weight that covers either all the clients or all

the APs.

Note that the minimum weighted perfect matching

problem (even in general graphs) can be solved in

polynomial time [15], [16]. For bipartite graphs, simple

primal-dual algorithms are known for this problem (see,

e.g., [43]). In addition, the integrality gap of the natural

linear programming formulation is one, which means that

we can find the optimal solution by solving a linear

program (see, e.g., [35]). Below, we prove that there exists

a set of powers that enforce the assignment obtained by the

above algorithm.
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Theorem 1. There exists a set of powers that enforces the
assignment obtained by the FindAssignment algorithm.

Proof. First assume that the perfect matching covers all
clients. We will consider the other case where the
perfect matching covers all APs later. We can formalize
the minimum weighted perfect matching problem as
follows:

minimize
X

i2C;j2A
wijxij ð2Þ

subject to 8i 2 C
X

j2A
xij ¼ 1

8j 2 A
X

i2C
xij � Cj

8i 2 C; j 2 A xij � 0:

In the above linear program, xij ¼ 1 indicates that

client i is assigned to AP j in the matching. The first

constraint indicates that each client is assigned to at most
one AP. The second constraint shows that AP j is

assigned to at most Cj clients. Our objective is to

minimize the weight of the resulting matching.

Since there exists an assignment that covers all clients,

this linear program has a feasible solution. As mentioned

before, it is known that, in bipartite graphs, the

integrality gap of the above Linear Program is one.

Thus, there is an optimum solution with 0-1 variables.
The dual of the above linear program is as follows:

maximize
X

i2C
�i þ

X

j2A
Cj�j ð3Þ

subject to 8i 2 C; j 2 A �i þ �j � wij
8j 2 A �j � 0:

Let ðx�ijji 2 A; j 2 CÞ denote the optimal solution to

the primal program and ð��i ; ��j ji 2 A; j 2 CÞ denote the

optimal solution to the dual program. We claim that,

by setting logðPjÞ ¼ �j, the resulting assignment of

clients to APs corresponds to the assignment of x�ijs. In

other words, by setting Pj ¼ e�j , client i will be
assigned to AP j, for which

Pj
dij

�
is maximized, and

this assignment is consistent to the mapping as

specified by x�ij.

To prove the above claim, we first make an observation

that, by setting logðPjÞ ¼ �j, client i will be assigned to

AP j for which
Pj
d�ij

is maximized. This is equivalent to that

client i is assigned to the AP j for which ln
Pj
d�ij
¼ �j � wij is

maximized (or, equivalently, wij � �j is minimized).

Then, we show that this assignment is consistent to the

assignment specified by x�ij. From the dual program, it is

clear that �i ¼ minj2Aðwij � �jÞ. From complementary

slackness conditions, xij > 0 if and only if �i þ �j ¼ wij.
Thus, after this power assignment, client i is assigned

to AP j if and only if xij > 0. Therefore, the power

assignment realizes the minimum weighted matching

assignment.

Next, we consider the other case, where there exists an
assignment that fills all APs’ capacity but does not satisfy
all clients’ demands. We can use the following linear
program to specify the minimum weighted perfect
matching problem:

minimize
X

i2C;j2A
wijxij ð4Þ

subject to 8i 2 C
X

j2A
xij � 1

8j 2 A
X

i2C
xij ¼ Cj

8i 2 C; j 2 A xij � 0:

The rest of the proof is similar to the first case. We can
write the dual of the above linear program and find the
optimal set of powers to fill the capacity of all APs. Again
using complementary slackness conditions, we can
prove that this power assignment realizes the minimum
weighted matching assignment. tu

4.1.2 Finding the Power Assignment

The previous section described how to assign clients to APs

to achieve maximum throughput. Below, we develop two

power assignment algorithms that enforce the client-to-AP

assignment derived above.
An Algorithm Based on the Linear Programming. Below is

the algorithm to compute power assignment for APs using

a linear program. The proof of its correctness is essentially

in the proof of Theorem 1.

FindPowers1 Algorithm

1) Solve the following linear program (Linear Program 3):

maximize
P
i2C

�i þ
P
j2A

Cj�j ð5Þ

subject to 8i 2 C; j 2 A �i þ �j � wij
8j 2 A �j � 0:

2) Let ðf��i ji 2 Cg; f��j jj 2 AgÞ be the optimal solution to

the above linear program.
3) Set Pj ¼ e�

�
j for all APs j.

4) Scale all powers by the same factor such that Pj �Mj,

where Mj is the minimum power at which AP j can

reach all the clients that it has to serve.

A Combinatorial Algorithm. Next, we design a combina-

torial algorithm to find the power assignment that enforces

the client-to-AP assignment derived in Section 4.1.1. As-

sume that we are given the client to AP assignment xijs for

i 2 C; j 2 A of clients to APs. Let Pj denote the set of powers

AP j use to realize the given assignment. If xij ¼ 1,
Pj
d�ij
� Pk

d�
ik

for any AP k. By setting ��k ¼ � lnðPkÞ and wik ¼ �� lnðdikÞ,
we know that xij ¼ 1 if and only if ���j þ wij � ���k þ wik
for all clients i and APs j and k. For an AP j 2 A, let fj be

the farthest client in C that is connected to j (xfjj ¼ 1). Let

Mj be the minimum transmission power at which an AP j

can reach client fj and let mj ¼ � lnðMjÞ. The power of AP j
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should be no less than Mj, i.e., ��j � mj. Thus, a set of

powers results in the desirable assignment if and only if it

satisfies the following inequalities:

8i 2 C; j 2 A : xij ¼ 1; 8k 2 A � ��j þ ��k � �wij þ wik
8j 2 A ��j � mj:

We note that the above set of inequalities corresponds to
a polytope on which we can optimize any linear function as
a linear program. For example, if we want to find a set of
powers such that the sum of the logarithm of power is
minimized, we can solve the following linear program:

maximize
X

j2A �
�
j

subject to

8i 2 C; j 2 A : xij ¼ 1; 8k 2 A ��j � ��k � wij � wik
8j 2 A ��j � mj:

ð6Þ

The above linear program can be solved combinatorially
using the shortest path algorithm. This is more efficient
than solving a linear program. For example, Dijkstra’s
algorithm can find the shortest paths in OðjV j2Þ, where jV j
is the number of vertices in the graph. We convert this
problem into finding the shortest paths as follows: We
construct a directed graph DðA [ frg; EÞ, where A is the set
of APs, r is an extra root vertex, and E is the set of edges
between them. The length of edges in graph D are as
follows: There is an edge from each vertex j 2 A to r with
length ljr ¼ mj. If client i 2 C is assigned to AP j 2 A, we
put an edge from j 2 A to k in graph D of length
ljk ¼ mini2C:xij¼1ðwij � wikÞ. Let pj be the shortest path from
vertex j to r in graph D. In fact, the inequalities in the
program are the triangle inequalities for the shortest path to
the root r. Thus, it is not hard to see that pjs satisfy all
inequalities of Linear Program 6.

Hence, we have the following combinatorial algorithm:

FindPowers2 Algorithm

1) Given an instance of the power control problem as
specified in Section 3, we can construct the following

weighted bipartite graph GðA;C;EÞ, where A is the set

of APs, C is the set of clients, and E is the set of edges

between them. There is an edge between each AP i and

each client j. The weight of the edge from AP i to client j

is equal to wij ¼ � lnðdði; jÞÞ.
2) Find the minimum weight bipartite matching in G,

where the capacity of every client is 1 and the capacity of
an AP i is Ci. In other words, among all the maximal

assignments of clients to access points in which a client

can be assigned to at most one AP and an AP i can be

matched to at most Ci clients, find the one with

minimum total weight.

3) Construct a directed graph DðA [ frg; EÞ. For two APs j

and k, set ljk ¼ mini2C:x�ij¼1ðwij � wikÞ. For an edge jr

from AP j to r, set ljr ¼ mj.
4) Set pj as the shortest path from AP j to r in graph D.

5) Set the power of AP j, Pj ¼ e�pj .
The Algorithm FindPowers2 outputs a set of powers

that enforces the most efficient assignment. The proof of

correctness of this algorithm is from Theorem 1 and the fact
that the shortest paths to vertex r in graph D is a feasible
solution to Linear Program 6. We will give a formal proof of
this fact in the proof of Theorem 7 in Section 3.

The main advantage of Algorithm FindPowers2 over
Algorithm FindPowers1 is that this algorithm is combina-
torial and has a better running time. Moreover, as we will
show in Section 7, Algorithm FindPowers2 can also be
applied to optimize the sum of the logarithms of powers of
APs while maximizing throughput.

4.1.3 Multiple Preferred APs

In the previous sections, we proved that when each client
selects the AP with the maximum RSSI, the set of powers
from Algorithms FindPowers1 and FindPowers2 max-
imizes throughput. However, for a given set of powers, it
is possible for a client to have multiple APs with similar
RSSI. We call all these APs as this client’s preferred APs. In
such a case, a client will randomly choose among these
preferred APs and the performance may degrade since the
client may choose an AP other than the one in the
assignment derived above. To handle this case, we use
Algorithm FindPowers2 to enforce stronger inequalities,
i.e., instead of the inequality ��j � ��k � wij � wik, we can put
the inequality ��j � ��k � wij � wik � �, where � > 0 is a
given threshold (� represents the smallest signal strength
difference a client can sense). The advantage of these
stronger inequalities is that it ensures that each client has a
unique preferred AP, and the performance degradation
caused by random tie breaking is avoided. We note that this
change to the linear program may make it infeasible due to
stronger inequalities. But this is a useful heuristic, which we
will use in our evaluation to find a set of powers that yield a
unique assignment. When the stronger inequalities cannot
be satisfied, we then use the random tie breaking for
assigning a client that has multiple preferred APs.

4.2 Maximizing Throughput for Heterogeneous
Demands

In this section, we develop a power control algorithm for
heterogeneous client demands. We consider two cases:
splittable and unsplittable demands. Under unsplittable
demands, we gain the benefit of satisfying a demand only if
we satisfy this demand completely. This setting is moti-
vated by real-time services, e.g., video streaming. In these
services, if the demand cannot be completely satisfied, it is
better not to service the demand because the video requires
certain bandwidth to achieve an acceptable performance. In
the case of splittable demands, the throughput from a
demand is proportional to the fraction of the demand that is
provided by APs. The main application of this setting is in
the best-effort services such as Web browsing. In these
settings, we can derive a benefit even if we cannot transfer
files at a desirable data rate.

4.2.1 Unsplittable Heterogeneous Demands

It is not hard to see that, under unsplittable demands, the
problem of maximizing throughput is NP-complete, since
the assignment problem is a multiple knapsack problem
[10]. In fact, a polynomial time 1þ �-approximation (PTAS)
is known for the multiple knapsack problem [10]. We
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observe that the power assignment problem to maximize

throughput for the unsplittable heterogeneous demands is

APX-hard. The proof of this fact is via a reduction from the

generalized assignment problem (GAP) [10], where each

item can be assigned to a subset of bins (and not to all of

them). We can reduce an instance of GAP to the power

assignment problem by putting very large distances

between the items and bins that cannot hold these items.

The details of this reduction are omitted in the interest of

brevity.
Here, we present an algorithm based on linear program-

ming. This algorithm solves the problem approximately

when the number of clients is much larger than the number

of APs. Let Di denote the demand from client i. The linear

program formulation in Section 4.1 changes to

minimize
X

i2C;j2A
wijxij ð7Þ

subject to 8i 2 C
X

j2A
xij ¼ 1

8j 2 A
X

i2C
Dixij � Cj

8i 2 C; j 2 A xij � 0:

The dual program becomes:

maximize
X

i2C
�i þ

X

j2A
Cj�

�
j ð8Þ

subject to 8i 2 C; j 2 A Di�i þ ��j � wij
8i 2 C �i � 0:

We can show that when the number of clients is much

more than the number of APs, Linear Program 7 has

solutions in which most of the xij’s are either 0 or 1. These

solutions are simply the corner points of the polyhedra. We

call them extreme point solutions. They are also called basic

feasible solutions. We use the following algorithm to find

power assignment:

FindPowers3 Algorithm for heterogeneous demands

1) Find the optimum extreme point solution x�ij to the

Linear Program (7) and its corresponding dual optimum

��i and ��j to the dual Linear Program (8).

2) Set Pj :¼ e�j .
3) Connect every client i to the AP j for which x�ij ¼ 1 if

such j exists. Otherwise, do not serve i.

4) Scale all powers by the same factor such that Pj �Mj,
where Mj is the minimum power by which AP j can

reach all the clients that it has to serve.

As we noted before, unlike the Linear Program 2, the

primal Linear Program (7) does not always have an integral

(0 or 1) solution. In other words, it might be the case that for

some i and j, 0 < x�ij < 1. We will say that client j is

assigned integrally if x�ij ¼ 1 for some i. Otherwise, we will

say that it is fractionally set.
The following facts are implied by the theory of linear

programming. The proof can be found in [34].

Lemma 1. The extreme point optimum solution to the primal
program x� assigns at least N �K clients to APs integrally,
where N is the number of clients and K is the number of APs.

Proof. Let r denote the number of variables in the primal
Linear Program 7. An extreme point solution is defined
by the constraints in the linear program, where the
inequality constraints are changed to equality con-
straints. Among these r independent variables, at least
r�K �N should be of type xij � 0. Their corresponding
variables will be zero due to the last constraint in Linear
Program 7. Therefore, the number of nonzero x�ijs are at
most N þK. Let � and � denote the number of clients
that are assigned integrally and fractionally, respectively.
We have �þ � ¼ N and �þ 2� � N þK (since, for each
client assigned fractionally, there are at least two nonzero
x�ijs). Therefore, � � N �K. tu

In most cases, the number of clients is much larger than
the number of APs. In that case, even by dropping the
clients that are assigned fractionally by the above program,
the total satisfied demand is still close to the optimal.

The proof of the next lemma is similar to that of
Theorem 1 and follows from the complementary slackness
conditions.

Lemma 2. The assignment of clients to the APs defined by the
optimum primal solution x� can be achieved by setting the
power of APs according to Pj ¼ e�

�
j . In other words, the

optimal primal solution assigns the clients i only to the AP j
for which the ratio

Pj
d�ij

is maximized.

Proof. From the dual program, it is clear that Di�
�
i ¼

minj2Aðwij � ��j Þ: From complementary slackness condi-

tions, x�ij > 0 if and only if Di�
�
i þ ��j ¼ wij. This means

that x�ij > 0 if and only if wij � ��j is minimized (or,

equivalently, ��j � wij is maximized). Since ��j ¼ lnPj and

wij ¼ � ln dij, x
�
ij > 0 if and only if

Pj
d�ij

is maximized. tu

4.2.2 Splittable Heterogeneous Demands

The algorithms for splittable heterogeneous demands are
similar to that of the homogeneous demands.

Here, we give two ways to solve this problem. The first
algorithm is to split the demands into small uniform
demands and use Algorithm FindPowers2. The second
algorithm is based on solving the Linear Programs 7 and 8.
As we noted in the previous section, the primal Linear
Program 7 does not always have an integral (0 or 1)
solution. However, as we allow splitting the demands, the
fractional solution to Linear Program 7 is a valid solution.
Therefore, we can use the optimal solution to the dual
Linear Program 8 to enforce the most efficient assignment of
clients to APs. The proof of correctness of this algorithm
follows from the proof of Theorem 1.

5 MAXIMIZING THROUGHPUT FOR A DISCRETE SET

OF POWERS

In this section, we consider a variation of the problem in
which the powers of APs can only take certain discrete
values. This problem is motivated by the fact that APs from
many vendors have only a handful of power levels (e.g.,
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Cisco Aironet [11]). In this case, the solution of our linear
programming is not directly applicable because the power
values computed by the linear program could be arbitrary
fractional numbers. One approach to remedy this issue is to
round the solution of our linear program to the closest
discrete values that APs can take. However, rounding may
introduce significant performance degradation. In this
section, we present an algorithm that finds the power
assignments in a more direct way.

Assume that the power of an AP a 2 A can be set to
one of the values from the set fPa

1 ; P
a
2 ; . . . ; Pa

hg, where
Pa

1 � Pa
2 � . . . � Pa

h ¼ 0. Our algorithm starts by setting
the power of all APs to the maximum power level, Pa

1 ;
then, it tries to improve the solution in every step as
follows:

FindPowers4 Algorithm for discrete powers

1) Assign the maximum power Pa
1 to each AP a.

2) While there exists an AP a of power Pa
ia

, 1 � ia � h, such

that the AP cannot accommodate all the demands

assigned to it, we change the power of AP a to Pa
iaþ1.

3) Among all power configurations generated in the above

step, choose the one that yields the highest throughput.

It is easy to see that the above algorithm is very efficient:
The number of iterations in the while loop is at most hK.
Therefore, the algorithm has a polynomial running time.
Next, we prove the optimality of the algorithm under a
certain condition, which is formally specified in Theorem 2.

Theorem 2. If there exists a power assignment such that each
AP a has the capacity to accommodate all the demands
assigned to it, Algorithm FindPowers4 finds such an
assignment in polynomial time.

Proof. Let F be the feasible (optimal) power assignment.
Suppose for 1 � ia � h, the power of AP a in F is Pa

ia
and

the Algorithm FindPowers4 assigns AP awith power Pa
i0a

.
It is easy to see that, if i0a � ia, we find a power assignment
in which all clients’ demands are served without over-
loading APs (since the algorithm terminates at nonzero
power only when it finds a solution in which all client
demands are satisfied). Next, we prove that i0a � ia holds.
Suppose that, by contradiction, during the while loop,
there is an AP a to which for the first time we assign a
power Pa

i0a
for i0a ¼ ia þ 1. Since the powers of all other

APs are at least the power in the optimal power
assignment, the total demands of clients that prefer
AP a can be at most the total demands assigned to a in F .
This cannot be more than its capacity according to the
definition of F . Therefore, it is a contradiction. tu

Note that the above theorem holds even in the case
where the demands are heterogeneous and unsplittable.

We are assuming that, for any power assignment to APs,
every client has a unique preferred AP. When a client has
multiple preferred APs (i.e., RSSI from multiple APs are
equal or similar to each other), the client has a well-defined
deterministic rule for breaking the tie. This tie-breaking rule
could be different for different clients. This is a necessary
condition because sometimes it is impossible to set the
powers of APs so that every client observes different signal
strengths from different APs. Even if such a power

assignment exists, it is NP-hard to find it. The proof of this

fact is in our technical report [4].

6 DYNAMIC POWER ASSIGNMENT

So far, we examine how to control power to optimize

throughput based on given client demands. When clients’

demands are continuously changing, it is often desirable to

find an assignment without requiring many clients to

handoff to different APs, since the overhead of handoff is

nonnegligible. In this section, we develop a dynamic

algorithm for this purpose.
We assume that a client will not switch to a different AP

unless its RSSI from a new AP is improved by a threshold.

We define a client i to be happy if it is connected to an AP j,

and the RSSI from j is at least 1=� �maxðRSSIaÞ for all

a 2 A, where maxðRSSIaÞ denotes the maximum RSSI

received from all APs, and � is larger than 1.
Our algorithm starts with the existing assignment of

clients to APs and finds a number of changes to the existing

assignment so that all the clients are happy after the

changes. We use the auction algorithms introduced in [9] to

achieve this.

1. Start with the current power assignment and current
mapping of clients to APs.

2. Repeat the following procedure until either all the
clients are happy or all the APs are completely
utilized:

a) If a client i is not happy, it tries to find an AP j
for which �j � wij is maximized. It sends an
association request to AP j.

b) If an AP j receives an association request from a
client i, it accepts the request when it has
capacity. Otherwise, it sorts the clients that are
connected or requested to connect in the
decreasing order of their �i � wij. Let k be the
highest index such that clients 1; 2; � � � ; k can be
served by AP j. j accepts these clients and sets
its power to �k � wkj � �.

At the end of the algorithm, it might be the case that the

powers of all APs are decreased several times. We can re-

normalize by multiplying all the power values by a

constant �. Clearly, this will not affect the assignment of

clients to APs.
The main advantage of the above algorithm is that it tries

to only make local adjustments to the existing connections.

Moreover, since the changes in the powers are powers of �,

the algorithm converges to the right solution very quickly.

Refer to [9] for a detailed analysis of auction algorithms.

7 POWER OPTIMIZATION

In the previous section, we developed power control

algorithms that maximize system throughput. In this

section, we study how to simultaneously maximize system

throughput and minimize APs’ power. Power minimization

is helpful to reduce interference among different APs. For

ease of explanation, we consider homogeneous client
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demands. The same approach can be applied to splittable

heterogeneous client demands.
First, we consider the problem of optimizing the power

for a given mapping of clients to APs. In this case, we can

write Linear Program 6 and optimize the power given the

assignment of APs to clients. In the following theorem, we

prove that the shortest paths to vertex r in graph D of

Algorithm FindPowers2 are in fact the optimal solution to

Linear Program 6. This in turn gives a combinatorial

algorithm to optimize the sum of logarithms of powers

for a given assignment.

Theorem 3. Let ðpjjj 2 AÞ be the length of the shortest path from

vertex j to vertex r in graph D of Algorithm FindPowers2.

Then, pjs are the optimal solution to the Linear Program 6.

Proof. Since pk is the shortest path from k to r, pk � pj þ lkj
for any j 2 A. So, pj � pk � wij � wik and the vector

ðpjjj 2 AÞ is a feasible solution for the Linear Program 6.

In order to show that this vector is the optimal solution to

the Linear Program 6, we prove that, for any feasible

solution ðp0jjj 2 AÞ, p0j � pj for any j 2 A. We prove this

by induction on the number of edges on the shortest path

from j to r. If the number of edges on the shortest path to

r is equal to 1, then p0j � mj ¼ pj. Assume that pj � p0j for

all node js with the shortest path of size at most t edges

between j and r. We prove that, for a node k with the

shortest path of kþ 1 edges from j to r, since pk is the

shortest path, there exists a vertex k0 for which

pk ¼ pk0 þ lkk0 . The size of the path from k0 to r is at most

t, thus, p0k0 � pk0 . As ðp0jjj 2 AÞ is a feasible solution, we

know that p0k � p0k0 � wik � wik0 for any i 2 C for which

xik0 ¼ 1. Thus, p0k � p0k0 � lkk0 . Using these inequalities, we

get p0k � p0k0 þ lkk0 � pk þ lkk0 ¼ pk. This proves the induc-

tion step. tu

A few comments follow. First, our power minimization is

conditioned on maximizing throughput. This is achieved by

ensuring that the client-to-AP assignment is the same as

that derived from Section 4.1 or Section 4.2.
Second, we can use a similar approach to minimize the

sum of APs’ powers (while maximizing system through-

put). This is done by minimizing the convex functionP
j2A Pj ¼

P
j2A e

���j instead of minimizing
P

j2A���j in

Linear Program 6 using interior point methods (see, e.g., [19]).
Finally, we note that minimizing the power while

maximizing the system throughput is sometimes hard. We

prove this by showing that finding an assignment of all

clients to APs with minimum total power and maximum

throughput is APX-hard. Refer to our technical report [4]

for the proof.

8 EVALUATION METHODOLOGIES

We evaluate the combinations of three AP power control
schemes with two client association schemes.

. Basic power control: All APs are assigned the same
fixed power.

. Continuous power control: The APs’ power is
determined by our power control algorithm, de-
scribed in Section 4.2 for continuous power assign-
ment.

. Discrete power control: The APs’ power is deter-
mined by our power control algorithm, described in
Section 5, for discrete power assignment. The
discrete power levels are based on Cisco Aironet
350 series [11]. It has the following six power levels:
20 dBm, 17 dBm, 15 dBm, 13 dBm, 7 dBm, and
0 dBm.

. Basic client association: A client associates with the
AP that has the highest RSSI.

. Smart client association: A client associates with the
AP with the maximum available capacity among all
the APs whose RSSI exceeds its received sensitivity
threshold.

Table 1 summarizes the five approaches that we compare
and their notations.

We use the total throughput as the performance metric. It
represents the total amount of client demand that can be
serviced. A higher throughput indicates a more efficient
resource utilization and, hence, is preferred.

We use both synthetic traces and real traces for our
evaluation. Evaluation using synthetic traces gives us
intuition about how the performance benefit varies with
different parameters. We examine the impact of the
following parameters:

. Total offered load: The ratio between the total client
demand and the sum of all APs’ capacity.

. The number of APs.

. The distribution of client locations.

We use two types of distributions to generate client
locations: uniform distribution and normal distribution.
When a normal distribution is used, we generate clients’ x
and y coordinates such that they each follow a normal
distribution with the mean at the center of the area. Normal
distribution reflects the case where clients are more
concentrated in a certain area. We vary the standard
deviation in the normal distribution to generate different
degrees of spatial locality.

In addition, we also use real traces to estimate the
performance benefit of our power control schemes in a
realistic environment. Table 2 shows the traces that we use
in our evaluation. These traces cover a diverse set of
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environments: university campus, conference, and a large
corporate. (Dartmouth traces span many campus buildings
and we use the traces from three buildings labeled as
AcadBldg10, SocBldg4, and LibBldg2 in their traces. We
report the performance results for LibBldg2, and the results
for the other two buildings are similar.)

We use the traces in the following way: All the traces
record the amount of traffic generated from each client. For
every 5 minute time interval, we compute the average data
rate for each client and use it as the client demand. In order
to examine the impact of different load conditions, we also
scale the traffic so that the total offered load varies from
25 percent to 100 percent. During the scaling, we try to
maintain the relative data rate from different clients; for
cases when a client’s demand after scaling exceeds an AP’s
capacity, we split the demand into multiple clients, each
assigned with at most 2 Mbps. Dartmouth and UCSD traces
both record the APs’ locations, so we use them for placing
the APs. For the other two traces, we randomly place the
APs in a 500m*500m area. Since none of the traces record
the clients’ location, we have to synthetically generate the
clients’ location. As before, we use both uniform and
normal distribution for placing the clients. Therefore, the
use of real traces mainly allows us to explore how realistic
traffic distributions among different clients affects the
performance of cell breathing.

Unless otherwise specified, we use the signal attenuation
factor � ¼ 4 and AP’s capacity is 5 Mbps, which approx-
imates the data rate in 802.11b after taking into account the
MAC overhead.

9 EVALUATION RESULTS

In this section, we present our evaluation results using both
synthetic and real traffic traces.

9.1 Homogeneous Client Demand

First, we evaluate the different schemes using homoge-
neous client demand. In our evaluation, we randomly place
clients and APs in a 500m*500m area, and all clients
generate 1 Mbps traffic.

Fig. 1 shows the total throughput as we vary the offered
load. We make the following observations: First, our power
control schemes (both discrete and continuous assignments)
outperform the common practice (basic/basic), which uses

a fixed power and lets the clients select APs based on RSSI.
The performance of our approaches is close to that of using
the smart AP selection (basic/smart and cont./smart),
which serve as the upper bound. Second, the continuous
assignment yields better performance than the discrete
assignment, since the latter has more limited power choices.
(Note that it is not guaranteed that there exists a discrete
power assignment that results in maximum throughput.)
Third, the cont./smart overlaps with basic/smart, which
suggests that the AP power control scheme does not
interfere with the smart AP selection implemented at the
clients. Finally, we observe that the performance benefit of
the smart AP selection and our power control schemes
tends to increase with the offered load. This is consistent
with our expectation since load balancing is more useful for
high load situations.

Fig. 2 shows the total throughput as we vary the number

of APs deployed in the area. The benefit of load balancing

achieved using either power control or the smart AP

selection increases with the number of APs. This is because,

when the number of APs increases, it is more likely to have

a lightly loaded AP nearby to absorb some load from

overloaded APs. In addition, the curves of continuous and

discrete assignments overlap, both of which are close to the

performance of the smart AP selection.
Next, we examine the impact of the distribution of client

locations. Fig. 3 shows the performance as we vary the

standard deviation (in a normal distribution), which is used

to generate client locations. Note that a smaller standard
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Fig. 1. Performance comparison under varying offered load, where

10 APs are deployed and each client generates 1 Mbps demand.

Fig. 2. Performance comparison for a varying number of APs, where the

offered load is 1 and each client generates 1 Mbps demand.

Fig. 3. Varying sigma (10 APs, offered load ¼ 1, demand per client ¼ 1).



deviation indicates a stronger spatial locality in the client

load. As we can see, for small deviations (i.e., most of the

clients are concentrated in a certain area), the throughput

under the basic scheme is much lower than the sum of APs’

capacity. This indicates inefficient resource utilization. In

comparison, the load balancing via continuous power

assignment improves throughput by up to a factor of 9.

The performance benefit of discrete power control is lower,

but still significant: It often doubles the throughput in such

cases. When the clients are more evenly distributed, the

performance benefit of load balance reduces, since in such

cases, the APs’ load is already evenly distributed even

under the basic scheme. Finally, as before, the smart AP

selection works equally well with and without the power

control at the APs. Therefore, in the remaining evaluation,

when clients apply the smart AP selection, we only consider
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APs using a fixed power (since the performance of APs
using power control is similar).

9.2 Real WLAN Traces

In this section, we present the performance results based on
real WLAN traces.

Fig. 4 shows time series plots of the performance results
for the four WLAN traces. In all cases, our continuous power
control algorithm achieves similar throughput as the smart
AP selection scheme and significantly outperforms the basic
scheme. The discrete power assignment performs slightly
worse than the continuous power assignment due to limited
flexibility in power selection. However, its throughput is
still considerably better than that of the basic scheme.

To examine the impact of different offered load, we scale
all clients’ traffic by a factor. As shown in Fig. 5, when the
network is lightly loaded, all the schemes yield comparable
performance; when the network is heavily loaded, the
three load balancing schemes achieve significantly higher
throughput than the basic scheme by up to 50 percent. In
addition, the performance difference between the contin-
uous and discrete power assignments increases as the load
increases. This is because, during a high load, the number
of good power assignments is fewer, which makes it harder
for the discrete assignment to find them due to limited
power choices.

We further study how the distribution of client locations
affects the performance. Fig. 6 summarizes the results. The
performance benefit of power control scheme is significant,
by up to an order of magnitude of throughput improve-
ment. The improvement is larger when clients are unevenly
distributed (i.e., small standard deviation). This is for the
same reason as described in Section 9.1.

9.3 Summary

To summarize, in this section, we evaluate our power
control algorithms using both synthetic and real WLAN
traces. Our results show that our power control can
significantly outperform the popular fixed power schemes
and perform comparably to the smart AP selection that
requires cooperation between clients and APs. Moreover,
the performance benefit is highest for an uneven spatial
distribution of client load. Such scenarios are quite common
in practice because clients tend to localize themselves in
particular areas (e.g., classrooms, meeting rooms, and

airport gate areas with departing flights). These results
demonstrate the effectiveness of the cell breathing approach
for handling sporadic congestion and improving resource
utilization.

10 CONCLUSION

We have developed a set of load balancing algorithms for
handling sporadic client congestion in a wireless LAN. Our
algorithms provide capacity where it is needed and when it
is needed. Consequently, more clients are satisfied and the
overall utilization of the network is improved.

Existing solutions for handling congestion fall short since
they either result in the inefficient utilization of resources
and poor performance or require changes to the client
software, which is hard to realize in practice. Our proposal,
cell breathing, achieves load balancing by dynamically
reconfiguring cell boundaries. It does not require changes to
the client software or the standard, thereby making it
rapidly deployable. Cell breathing is implemented by
adjusting the power at each AP in the network. We show
that our power control algorithms work for both homo-
geneous and heterogeneous client demands. In addition,
the dynamic version of the algorithm can adapt to changes
in client demands by maximizing the total satisfied demand
while limiting the number of clients that switch APs.

We demonstrate the effectiveness of cell breathing and
show that it significantly outperforms the popular fixed
power schemes and performs comparably to the sophisti-
cated load balancing techniques where the client and the
APs are required to cooperate with one another. Under high
load, we show that, with cell breathing, the throughput
improves by up to 50 percent for uniform distributions of
client locations and by up to an order of magnitude for
nonuniform client distributions.

APPENDIX

A GENERAL ALGORITHM FOR CONTINUOUS-POWER

ASSIGNMENT BASED ON PRIMAL-DUAL

Now, we describe a continuous power assignment algo-
rithm for a more general received power function. Our only
assumption is that the received power is proportional to the
transmission power, which holds in general even under
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Fig. 6. Performance results using different WLAN traces for nonuniform client locations. We vary the standard deviation in a normal distribution used

to generate the client locations. (a) UCSD traces. (b) Stanford traces. (c) IBM traces.



obstruction. We do not assume any relationship between
the received power and the distance.

We observe that there is a similarity between our
problem and the market equilibrium problem [13], [21],
[18]. Market equilibrium has two popular settings. The one
relevant to our problem is called the Fisher setting. In the
Fisher setting, there are two kinds of entities: sellers and
buyers. Sellers want to sell a set of goods they have. Buyers
want to buy a set of goods that they can afford and that will
provide the maximum happiness, called utility in econom-
ics. Buyers naturally put a demand on goods from the
various sellers depending upon the prices of the goods of
each seller set. The classical market equilibrium theorem
says that, under certain mild conditions, sellers can set the
prices so that the demand of their products is exactly equal
to the supplies they have.

Our situation is quite analogous. Instead of buyers, we
have clients; instead of sellers, we have APs; instead of a
supply of goods, we have a capacity on each AP; instead of
prices, we have power levels at each AP. Since we have a
simple setting, each client connects to the AP that gives the
best reception, we discuss the simplest setting of market
equilibrium, the Fisher setting with linear utilities (i.e., each
buyer’s utility for a set of goods is a linear function).

There have been numerous works on the market
equilibrium problem with linear utilities. There are three
kinds of algorithms currently known: 1) convex program-
ming-based [21], 2) primal-dual-based [13], and 3) auction-
based [18]. The first kind of algorithm has theoretically
provided the fastest known running time and has mathe-
matically been able to provide various properties of the
market equilibrium. The drawback is that these algorithms
need the input up front. Auction-based algorithms, on the
other hand, are truly distributed. In between are the primal
dual algorithms: They are not distributed, but still do not
require the input up front.

Here, we describe a primal-dual type algorithm. The idea
is inspired by Devanur et al. [13], but note that there are
specific difference between [13] and this. One major
difference is the loop invariant. Devanur et al. [13] make
sure that all the demands subsume the supplies. From that
point onward, the algorithm keeps trying to increase the
prices and reduce the demands so that the demands still
subsume the supplies, but not strictly; in other words, total
demand is equal to the total supplies.

Clearly, if we have more capacity on the APs, demand
cannot subsume the supply. If we have lower capacity on
the APs, the equilibrium does not even exist. If we have the
total capacity equal to the total number of clients, we get the
solution when we get the loop invariant for the first time.
That is, if demand can subsume supply, then the only way
in this case is that the demand is equal to the supply. So, we
cannot follow the loop invariant technique of [13].

Instead, we start with an arbitrary assignment of positive
powers to each AP. Suppose P is the power assignment
vector. We define the equality graph as follows: One side of
the equality graph includes all the clients, and the other side
includes all the APs. Suppose we have n clients and the
total capacity on the APs is at least n. Let j denote the client
index, and i denote the AP index. We put an equality edge
between i and j when i provides the best reception to j.

Note that there can be more than one AP that provides the
best reception to a client, but there is always at least one AP
that provides the best reception to a client.

Theorem 4. If P is the equilibrium power, the equality graph has

a complete matching for the clients, i.e., the size of the

maximum matching is n. This means that the total throughput

is maximized.

Next, we prove the above theorem. Define the deficiency
of a power assignment as the minimum number of clients
remain unserved. In other words, the deficiency is n minus
the size of the maximum matching in the equality subgraph.
Suppose S is a set of clients. Define the neighborhood
capacity of S as the total capacity of all those APs that have
at least one edge from S. Suppose that the neighborhood
capacity of some set S is jSj � k. The deficiency of the power
assignment is at least k. In fact, in every matching, at least
k clients from S itself remain unmatched. A well-known
fundamental theorem in the graph theory says that the
converse is also true.

The following lemma can be proved in more than one
way and is a well-known fundamental theorem in the graph
theory. A special case of this theorem, where k ¼ 0, is called

Hall’s theorem.

Lemma 3. If the deficiency is k, there exist a set S of the clients

such that the neighborhood capacity of S is jSj � k.

This lemma clearly implies that in fact k unmatched
clients belong to S. We take the smallest such S. By using
the submodularity of the deficiency function or the super-
modularity of the neighborhood capacity function, one can
prove that there exists a unique such S. The intuition
behind taking the smallest S is that we want to corner the
unmatched k clients as much as possible so that we can do
something for them.

Since S has k unmatched clients and the neighborhood
capacity of S is exactly k less than the clients in S, all the
neighbor capacity will be assigned to S, and S still needs

some more neighborhood capacity. In this case, we take all
the APs not in the neighborhood of S and start raising
power on them. We do not raise powers arbitrarily. Instead,
we do it in a systematic fashion. We multiply the power of
every AP not in the neighborhood of S by a variable x. We
initialize x ¼ 1. We start increasing the value of x gradually.
The following facts can be easily proved by our power
model of received powers:

. All the edges from the complement of S to the
neighborhood of S do not remain equality edges, so
we remove them. Note that these edges are not
needed in the first place.

. All other equality edges remain equality edges.

. Eventually, some edge from S to the complement of
the neighborhood set of S will be eventually added
into the set of equality edges. At this point, we stop
increasing x. We call it a phase.

The following lemma is self-evident:

Lemma 4. After a phase, exactly one of the following two events

will happen:
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. The size of the smallest set with deficiency k has
increased. In fact, the new smallest set with deficiency
k contains S.

. The deficiency of the new power assignment has
decreased. We call it an iteration.

The algorithm terminates when there is no deficient set.
Clearly, the number of iterations in this algorithm is at
most the number of clients and, in each iteration, the
number of phases is at most the number of clients. Hence,
the algorithm terminates in time Oðn2Þ number of matching
computations.
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