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Abstract—Routing protocols for large wireless networks must
address the challenges of reliable packet delivery at increasingly
large scales and with highly limited resources. Attempts to
reduce routing state can result in undesirable worst-case routing
performance, as measured by stretch, which is the ratio of the
hop count of the selected path to that of the optimal path.

We present a new routing protocol, Small State and Small
Stretch (S4), which jointly minimizes the state and stretch. S4
uses a combination of beacon distance-vector based global routing
state and scoped distance-vector based local routing state to
achieve a worst-case stretch of 3 usingO(

√

N) routing state
per node in an N-node network. Its average routing stretch
is close to 1. S4 further incorporates local failure recovery to
achieve resilience to dynamic topology changes. We use multiple
simulation environments to assess performance claims at scale,
and use experiments in a 42-node wireless sensor network testbed
to evaluate performance under realistic RF and failure dynamics.
The results show that S4 achieves scalability, efficiency, and
resilience in a wide range of scenarios.

Keywords: Routing, compact routing, scalability, resilience,
simulation, TOSSIM, testbed experiments.

I. I NTRODUCTION

Routing finds paths in a network along which to send data
and is one of the most basic network functions. The effective-
ness of routing protocols directly affects network scalability,
efficiency, and reliability. With continuing growth in the sizes
of wireless network, routing protocols mustsimultaneously
achieve the following design goals:

• Small routing state: Using small amounts of routing state
is essential to achieving network scalability. Many wire-
less devices are resource constrained. For example, mica2
sensor motes have only 4KB RAM. Limiting routing state
is necessary for such devices to form large networks.
Moreover, limiting routing state also helps to reduce
control traffic used in route setup and maintenance, since
the amount of routing state and control traffic is often
correlated.

• Small routing stretch: Routing stretch is defined as the
ratio between the cost of selected route and the cost
of optimal route. Small routing stretch means that the
selected route is efficient compared to the optimal route. It
is a key quantitative measure of routequality, and affects
global resource consumption, delay, and reliability.

An earlier version of this paper appeared in the Proceedingsof the 2007
USENIX Symposium on Networked Systems Design and Implementation
(NSDI). Yun Mao and Feng Wang worked on this project while they were at
the University of Texas at Austin.

• Resilience: Wireless networks often experience frequent
topology changes arising from battery outage, node
failures, and environmental changes. Routing protocols
should find efficient routes even in the presence of such
changes.

Existing routing protocols either achieve small worst-case
routing stretches with large routing state (e.g., shortest path
routing) or achieve small routing state at the cost of large
worst-case routing stretches (e.g., geographic routing and
hierarchical routing). In this paper, we present the designand
implementation of Small State and Small Stretch (S4), a new
addition to the routing protocol design space. S4 achieves
a desirable balance among these characteristics, and is well
suited to the large-scale wireless network setting (e.g., sensor
networks).

We make the following contributions.

1) S4 is the first routing protocol that achieves a worst-
case routing stretch of 3 in large wireless networks. Its
average routing stretch is close to 1.

2) S4’s distance guided local failure recovery scheme sig-
nificantly enhances network resilience, and is portable
to other settings.

3) S4’s scalability, effectiveness of resource use, and re-
silience are validated using multiple simulation environ-
ments and a 42-node sensor network testbed.

The rest of the paper is organized as follows. Section II
discusses prior work. The S4 routing protocol is introducedin
Section III. S4 performance in an ideal wireless environment
(no wireless medium losses or collisions) is studied using
high-level simulation in Section IV. Section V presents further
evaluation results using a packet-level simulator (TOSSIM) to
study S4 performance in more realistic large-scale wireless
networks with a wireless medium and collisions. Section VI
describes a final S4 evaluation performed on an experimental
testbed, and Section VII summarizes and concludes the paper.

II. RELATED WORK

Routing is a well-studied problem, but large-scale wire-
less networks have introduced new challenges. Shortest path
routing protocols (e.g., DSR [11], AODV [23], DSDV [22])
can find good routes, but are limited in scale by both control
traffic and the amount of state required at each node. Conse-
quently, routing in large-scale wireless networks has focused
on minimizing storage and exchange of routing state, and can



be divided into geographic routing and hierarchical routing
approaches.

In geographic routing, each node is assigned a coordinate
reflecting its position in the network. Upon receiving a packet,
a node selects a next hop closer to the destination in the
coordinate space. Some geographic routing protocols use geo-
graphic locations as node coordinates, while others use virtual
coordinates based on network proximity. As connectivity inthe
coordinate spaces is not complete, these schemes must address
getting “stuck” in a local minimum, where no neighbor is
closer to the destination than the current node. Some proposals
such as GFG [2], GPSR [12], GOAFR+ [15], GPVFR [18]
and variants use face traversal schemes that route packets on
a planar graph derived from the original connectivity graph.
Their delivery guarantees [6] depend on the assumption that
the planarization algorithms (e.g. GG [7] and RNG [28]) can
successfully planarizeany network graph. These planarization
algorithms typically assume a unit disk or quasi-unit disk
model. However, these models can be inadequate for real
wireless environments due to obstacles and multi-path fading.
Kim, et. al [14] have shown that model failures in real radio
environments can cause routing pathologies and persistent
routing failures. CLDP [13] addresses the imperfect RF prop-
agation problem using a right-hand probing rule to detect
link-crossings and remove them to re-planarize the graph.
GDSTR [17] provides delivery guarantee without requiring
planarization by avoiding routing across the face of planar
graphs and instead routing packets through a spanning tree.

The geographic coordinate-based routing schemes have at
least three difficulties for wireless networks. First, accurate
geolocation either requires careful static setting or access to
GPS, with consequences for cost and need for line-of-sight
to satellites. Second, geographic distances may lack predictive
value for network performance (e.g., loss rate). This may result
in paths with poor performance. Third, even with GPS and
ideal radios, the best routing stretch for geographic routing is
O(c2) in GOAFR+ [15] and ARF [16], wherec is the length
of the optimal path, and example topologies exist where this
bound is tight [16].

Virtual coordinates reflecting underlying network connectiv-
ity address the first two difficulties, but still face the challenge
of “dead ends”, for which a recovery scheme is required.
In addition, the overhead of computing and storing virtual
coordinates is not negligible. For example, NoGeo [25] uses
O(

√
N) perimeter nodes to flood theN -node network so

that every node can learn its distances to all the perimeter
nodes. Each node determines its virtual coordinate based on
the distances to the perimeter nodes. However, perimeter nodes
need to storeO(N) pair-wise distance amongst them, which
is not scalable in large wireless networks with limited memory
space per node. GEM [21] achieves greater scalability by using
triangulation from a root node and two other reference nodes.
However, the routing stretch is larger than that typical of
geographic routing algorithms, and there is the additionalcost
of recomputing routing labels resulting from network failures.
Fonseca,et al. [5] have proposed Beacon Vector Routing
(BVR), which selects a few beacon nodes and uses flooding to
construct spanning trees from the beacons to all other nodes.

A node’s coordinate is a vector of distances from the node
to all beacons, and each node maintains the coordinates of its
neighbors. BVR defines a distance metric over these beacon
vectors, and a node routes packets to the one that minimizes
the distance. When greedy routing stalls, it forwards the packet
towards the beacon closest to the destination. If the beaconstill
fails to make greedy progress, scoped flooding is used. None of
the virtual coordinate-based routing algorithms provide worst-
case routing stretch guarantees.

Hierarchical routing is an alternative approach to achieving
scalability. Example protocols in this category include land-
mark routing [29], LANMAR [8], ZRP [9] and Safari [24].
Hierarchical routing protocols provide no guarantee on the
routing stretch due to boundary effects: two nodes that are
physically close may belong to different clusters or zones,and
hence the route between them has to go through cluster heads,
which can be arbitrarily longer than their shortest path.

Caesar,et al. develop VRR [3], a scheme for layer-3 any-
to-any routing based on distributed hash tables. To route toits
successors on the virtual ring, a node sets up and maintains
forwarding entries to its successors and predecessors along
multi-hop physical paths. As a result, a node has both routing
table entries towards its neighbors in the ring and also entries
for the nodes on the paths in between. VRR greedily forwards
a packet toward the node in the routing table with the closest
ID to the destination ID. The routing state per node is roughly
O(

√
N). Unlike S4, VRR does not provide worst-case routing

stretch guarantee.
Theoretical work [4], [27] on achieving scalable and effi-

cient routing has developedcompact routing algorithms that
provide a worst-case routing stretch of 3 while using at most
O(

√
N log N) state in anN -node network. This worst-case

routing stretch is provably optimal when each node uses less
than linear routing state [4], [27]. While compact routing
seems to be a promising direction for large-scale networks,
it cannot be directly translated into a routing protocol in a
distributed network. In particular, the proposed algorithms do
not specify how each node should build and maintain routing
state for local clusters and for beacon nodes. Moreover, the
algorithm in [27] requires choosing beacon nodes offline,
considers only initial route construction, and cannot cope
with topology changes, which precludes realization in our
network setting. The implications of compact routing for
average routing stretch also remain unclear.

III. S4 ROUTING PROTOCOL

S4 uses the theoretical ideas of the compact routing al-
gorithm [27] as a basis, refined by the addition of new
techniques needed to obtain a practical routing protocol for
large-scale wireless networks. We first describe the basic
routing algorithm and identify challenges for routing protocol
design, and then present the S4 routing protocol. Throughout
this paper, our metric for the cost of a route is the number of
links traversed (i.e., hop count).

A. Basic Routing Algorithm

In S4, a random set of nodes,L, are chosen as beacons.
For a noded, let L(d) denote the beacon closest to noded,



and letδ(s, d) denote the shortest path distance froms to d.
Each nodes constructs the following local cluster, denoted as
Ck(s).

Ck(s) = {c ∈ V |δ(c, s) ≤ k ∗ δ(c, L(c))}, k ≥ 1.

whereV is the set of all nodes in the network. A local cluster
of nodes consists of all nodes whose distances tos are within
k times their distances to their closest beacons. Each nodes
then maintains a routing table for all beacon nodes and nodes
in its own clusterCk(s).

Fig. 1. S4 routing examples. Every node within the circle ofd hasd in its
local cluster. The routes′ → d is the shortest path; the routes → d takes
a shortcut atc before reachingL(d); the routes → d

′ is throughL(d′)
without shortcut.

As shown in Figure 1, when routing from nodes to node
d, if d ∈ Ck(s), we can directly use the shortest path to
route from s to d. Otherwise,s first takes the shortest path
towardsL(d), and then use the shortest path to route towards
d. In the second case, the route does not have to always reach
L(d) before routing tod. Whenever data reaches a nodec
whose cluster containsd, c can directly route tod using the
shortest path fromc to d. According to the triangle inequality,
the “shortcut” strictly improves routing stretch. We give the
following theorem as an extension to the proof in [4], [27], in
which a special casek = 1 is proved.

Theorem 1: Let Ck(s) = {c ∈ V |δ(c, s) < k ∗ δ(c, L(c))},
where k ≥ 1. If each nodes maintains next-hop for the
shortest path to every beacon and every node inCk(s), the
worst-case routing stretch is1 + 2

k
.

Proof: When d ∈ Ck(s), routing stretch is 1, since we
know the shortest path froms to d. When d /∈ Ck(s), let
r(s, d) denote the cost of selected route froms to d.

r(s, d) ≤ δ(s, L(d)) + δ(L(d), d) (1)

≤ δ(s, d) + 2δ(L(d), d) (2)

≤ δ(s, d) +
2

k
δ(s, d) (3)

= (1 +
2

k
)δ(s, d) (4)

The first inequality is due to possible shortcut before reaching
L(d). As shown in Figure 1, the shortcutc → d is less than
c → L(d) → d according to triangle inequality. Hences →
c → d is less thans → L(d) → d. Equality holds when
there is no shortcut. The second inequality is due to triangle
inequality and symmetry: the shortest paths → L(d) should
cost no more thans → d → L(d). Finally the third inequality

is based on the definition of clusterCk(s) and the fact that
d /∈ Ck(s). This completes the proof.

As a special case, whenk = 1, a local cluster of nodes
consists of all nodes whose distances tos are closer than their
distances to their closest beacons. This special case is called
compact routing [4], [27]. It is particularly interesting,since it
has low worst-case storage cost ofO(

√
N log N) and provides

a worst-case routing stretch of 3. In the remaining paper we
considerk = 1, since it gives small routing state.

Practical concerns dictate three changes to the TZ com-
pact routing scheme [27] to achieve S4. First, the boundary
conditions of the cluster definitions are slightly different. In
S4, C(s) = {c ∈ V |δ(c, s) ≤ δ(c, L(c))}, but in the TZ
scheme,C(s) = {c ∈ V |δ(c, s) < δ(c, L(c))}. That is, node
c is in the cluster ofs in S4 but not in the TZ scheme, if
δ(c, s) = δ(c, L(c)). This change does not affect the worst-
case routing stretch, and reduces average-case routing stretch
at the cost of increasing routing state.

Second, to route towards noded, only L(d) should be
carried in the packet header as the location information in
S4. In comparison, the TZ scheme requires alabel(d) =
(L(d), port(L(d), d)) for each packet, whereport(L(d), d) is
the next hop atL(d) towardsd. Only with the label carried
in the packet header, a beacon node can forward a packet
towardsd using next hopport(L(d), d). It is necessary in the
TZ scheme because the beacon nodes do not store routing
state. However, in S4, as a result of the boundary condition
change, each beacon nodeL stores routing state to all the
nodes that haveL as its closest beacon node. Given that the
total storage cost of the additional fieldport(L(d), d) in the
labels is the same as the total number of routing entries at
beacon nodes in S4 (i.e., both are N), we favor storing routing
state at beacon nodes since it reduces packet header length
and the frequency of updating labels. The frequency of label
updates is reduced because labels are updated only whenL(d)
changes but not whenport(L(d), d) changes.

Finally, the TZ scheme proposes a centralized beacon node
selection algorithm to meet expected worst case storage bound
O(

√
NlogN) in anN -node network. Since practicality is our

main design goal, in S4 we randomly select beacon nodes in a
distributed fashion. It is proved that whenO(

√
N) nodes are

randomly selected as beacon nodes, the average storage cost
on each node is stillO(

√
N) [26]. As our evaluation results

show, the storage cost is still low even for the worst cases.
Note that the worst-case routing stretch of 3 still holds under
random beacon node selection.

B. Design Challenges

Designing a routing protocol to realize the algorithm pro-
posed in Section III-A poses the following challenges:

First, how to construct and maintain routing state for a local
cluster? Frequent topology changes in wireless networks make
it necessary to support incremental routing updates. Unlike
traditional hierarchical routing, each node has its own cluster
in compact routing. Therefore naive routing maintenance could
incur significant overhead.

Second, how to construct and maintain routing state for
beacon nodes? Knowledge of next-hops and shortest path



distances to beacon nodes is important to the performance of
S4. When beacon packets are lost, the routing state could be
inaccurate, which could substantially degrade the performance.

Third, how to provide resilience against node/link failures
and environmental changes? Maintaining up-to-date routing
state could be expensive especially in a large network. More-
over routing changes take time to propagate. During the
transient period (e.g., the period from the time when failure
occurs to the time when the routing tables at all nodes are
updated to account for the failure), many packets could be
lost without a failure recovery scheme.

To address the above challenges, S4 consists of the fol-
lowing three major components: (i) scoped distance vector
for building and maintaining routing state to nodes within a
cluster, (ii) resilient beacon distance vector for efficient routing
towards beacon nodes and facilitating inter-cluster routing, and
(iii) distance guided local failure recovery for providinghigh
quality routes even under dynamic topology changes. Below
we will describe these three components in turn.

C. Intra-Cluster Routing: Scoped Distance Vector (SDV)

In S4, nodes uses the shortest paths to route towards nodes
in the cluster ofs. Unlike the traditional hierarchical routing,
in S4 each nodes has its own cluster, which consists of nodes
close to nodes. This clustering is essential for providing a
routing stretch guarantee, since it avoids boundary effects. In
comparison, hierarchical routing cannot provide routing stretch
guarantee due to boundary effects, where two nearby nodes
belong to different clusters and the hierarchical route between
them could be much longer than their direct shortest path.

A natural approach to building a local routing table is to use
scoped flooding. That is, each noded floods the network up to
δ(d, L(d)) hops away fromd, whereδ(d, L(d)) is the distance
betweend and its closest beaconL(d). Scoped flooding works
fine when the network is initialized, or when there are new
nodes joining the network. But it is costly to send frequent
scoped flooding to reflect constant topology changes, which
often arises in wireless networks due to battery outage, node
failures, and environmental changes.

Scoped distance vector:To provide cheap incremental routing
updates, we propose using scoped distance vector (SDV) for
constructing routing tables for local clusters. SDV is attractive
because it is fully distributed, asynchronous, and supports
incremental routing updates. SDV is more efficient than scoped
flooding especially under small changes in a network topology,
because a node in SDV propagates routing update only when
its distance vector changes while in scoped flooding a node
propagates a flooded packet regardless of whether its distance
and next hop to a destination have changed.

In S4, each nodes stores a distance vector for each
destinationd in its cluster as the following tuple:

< d, nexthop(s, d), δ(s, d), seqno(d), scope(d), updated >

whered and nexthop(s, d) are both node IDs,seqno is the
latest sequence number for destinationd, andscope(d) is the
distance betweend and d’s closest beacon, andupdated is

whether the distance vector has been updated since the last
routing update.

A nodes exchanges its distance vectors with its neighbors
either synchronously or asynchronously. Nodes initializes
δ(s, c) = 1 for only c ∈ neighbor(s), and∞ otherwise. Upon
receiving a distance vector, a nodec uses the newly received
distance vectors to update its routing state. Nodec further
propagates the update fors only when its current distance
from s is below scope(s) and its distance vector tos has
changed.

Benefits of SDV:SDV supports incremental routing updates.
This allows a wireless network to dynamically adapt to routing
changes. Moreover, unlike traditional distance vector proto-
cols, SDV does not suffer from the count-to-infinity problem,1

because the scope is typically small (e.g., We evaluate a 1000-
node network with 32 beacons, and its average scope is 3.35
and maximum scope is 13. This implies routing loops can be
detected within 13 hops).

D. Inter-Cluster Routing: Resilient Beacon Distance Vector
(RBDV)

To support routing across clusters, each node is required to
know its distances to all beacons. This can be achieved by
constructing a spanning tree rooted from each beacon nodes
to every other node in the network. Flooding beacon packets
reliably is important to the routing performance, because loss
of beacon packets may introduce errors in estimating the
closest beacon and its distance, and degrade the performance
of S4. We develop a simple approach to enhance resilience of
beacon packets.

Routing state construction and maintenance:To construct
routing state for beacon nodes, every beacon periodically
broadcasts beacon packets, which are flooded throughout the
network. Every node then keeps track of the shortest hop count
and next-hop towards each beacon.

Since beacon packets are broadcast and typical MAC pro-
tocols (e.g., CC1000 used in sensor motes) do not provide
reliability for broadcast packets, it is essential to enhance the
resilience of beacon packets at the network layer. Our idea is
to have a sender retransmit the broadcast packetP until T
fraction of neighbors have forwardedP or until the maximum
retry countRetrymax is reached.T and Retrymax provide
a tradeoff between overhead and reliability. In our evaluation,
we useRetrymax = 3, T = 100% for beacon nodes, and
T = 1/3 for non-beacon nodes, which corresponds to the
following condition in our implementation (to avoid floating
point calculation):3∗# neighbors forwarded P≥ # neighbors.
T = 100% for a beacon node is used because all neighbors
of the beacon nodes should forward the beacon packet. In
comparison, for a non-beacon nodec, only a subset ofc’s
neighbors are farther away from the beacon thanc and need
to forward the beacon packet received fromc. Therefore we
use a smallerT for non-beacon nodes.

1The count-to-infinity problem is that when a link fails, it may take a longtime (on
the order of network diameter) before the protocol detects the failure. During the interim
routing loops may exist.



E. Distance Guided Local Failure Recovery (DLF)

Wireless networks are subject to temporary or permanent
node/link failures due to obstruction, signal fading, energy
depletion, or physical damage [5], [1], [20]. To provide high
routing success rate and low routing stretch even in the
presence of such failures, we develop a simple and effective
local failure recovery based on distance vectors.

Overview: To achieve high resilience, S4 provides failure
recovery at the network layer in additional to MAC-layer
retransmission. Specifically, a nodes retransmits a packet at
the network layer when it does not receive an ACK even
with MAC-layer retransmission. WhenR retransmissions at
the network layer fail,s broadcasts afailure recovery request,
which contains (i) the next hops used, (ii) whether destination
d is included ins’s local cluster, and (iii) the distance tod if
s’s cluster includesd, or the distance tod’s beacon otherwise.
Upon hearing the failure requests,s’s neighbors attempt to
recover the packet locally. Our goal is to select the neighbor
that is the closest to the destination ass’s new next-hop;
meanwhile the selection process should be cheap and easily
distributed.

S4 uses distance guided local failure recovery to prioritize
neighbors’ responses based on their scoped distance vectors.
Each node uses its priority to determine the time it needs to
wait before sendingfailure recovery response. We further ex-
ploit broadcast nature of wireless medium to avoid implosion
of recovery responses. Note that if no response is received,s
can retransmit the failure recovery request up to a threshold.
Our evaluation uses a threshold of 0 (i.e., s does not retransmit)
and we already see significant performance improvement. With
more retries, the improvement would be even higher.

Distance guided local failure recovery: Our goal is to
prioritize neighbors based on their distances to the destination
so that the nodes closest to the destination can take over the
forwarding. The problem is non-trivial, because the distance to
the destination is not always available. When the destination
is outside the local cluster, a neighbor only knows the distance
to the destination’s closest beacon, but not the distance from
that beacon to the destination.

To address the issues, each node computes its priority using
the algorithm in Figure 2. It involves two main scenarios. In
the first scenario,s’s local cluster contains the destinationd.
This information is available ins’s failure recovery request.
Thens’s neighbor is assigned one of the four priorities using
the following rules. The neighbors that haved in their clusters
are assigned the top 3 priorities, since they can directly route
towards destination using the shortest path. In this case, each
neighbor knows its distance to the destination, and assigns
itself a priority based on the difference betweenδ(self, d)
and δ(s, d). Neighbors whose local clusters do not contain
the destination are assigned the fourth priority, which is the
lowest.

In the second case, whens’s cluster does not contain the
destinationd, only the neighbors that haved in their clusters
are assigned the highest priority, since they can directly route
towards the destination. The other nodes are assigned priorities
by comparing their distances to the beacon withδ(s, L(d)).

A senders selects the neighbor from which it receives
the response first as the new next-hop. By assigning each
neighbor i with a timer priority(i) × m + rand , a higher
priority node sends the response earlier and is thus favored
as the new next-hop node. To avoid collisions, we add a
small random timerrand to the priority-based timer so that
different nodes are likely to respond at different times even
when assigned the same priority. To avoid response implosion,
upon hearing a failure response tos from someone else, the
current node cancels its own pending recovery response if any.
Our evaluation usesm = 50ms, and rand ranges from 0 to
49ms.

// Priorities from highest to lowest: 1, 2, 3, 4
if(d ∈ C(s))

if(d ∈ C(self)) // d is in s’s andself ’s clusters
priority = δ(self, d) − δ(s, d) + 2;

else // d is only ins’s cluster
priority = 4;

end
else if(d ∈ C(self)) // d is only in self ’s cluster

priority = 1;
else //self is outsides’s andd’s clusters

priority = δ(self, L(d)) − δ(s, L(d)) + 3;
end

Fig. 2. Computing priority using scoped distance vectors andbeacon distance
vectors

Node failures vs. link failures: The above scheme works well
for link failures. When a node fails, all the links to and from
the failed nodes are down. Therefore we need to avoid using
nodes that use the failed nodes as next hop. This can be done
by letting the sender specify the failed node. Only the nodes
that use different next hop from the failed node will attempt
to recover. To identify a failed node, every node periodically
broadcasts a hello message once every 30 seconds and a node
considers its neighbor as failed if it does not receive any hello
messages from that neighbor for the last 5 hello intervals.

F. Other Design Issues

Location directory: So far we assume that the source knows
which beacon node is closest to the destination. In practice,
such information may not be directly available. In such sit-
uation, the source can apply the location directory scheme
described in BVR [5] to lookup such information. More
specifically, beacon nodes are responsible for storing the
mapping between non-beacon nodes and their closest beacons.
The closest beacon information for nodei is stored atH(i),
whereH is a consistent hash function that mapsnodeid to
beaconid. The source contacts the beacon node whose ID is
H(dest) to obtain the closest beacon todest. The storage cost
of location directory is much smaller in S4 than that in BVR
(as shown in Section IV), because the source in S4 only needs
to know the closest beacon to its destination while the source
in BVR needs to know the distance between its destination
and all beacon nodes. Moreover, in S4 when destinationd is
in s’s cluster, no location lookup is required sinces knows the
shortest path tod, whereas BVR as well as other geographic
routing schemes always require location lookup on a new
destination. Such property is especially beneficial when traffic
exhibits locality (i.e., nodes close to each other are more likely
to communicate).



Beacon maintenance:When a beacon fails, S4 applies dis-
tance guided local failure recovery to temporarily route around
the failure. If the failure persists, we can apply the beacon
maintenance protocol proposed in [5] to select a new beacon.
Beacon maintenance is not the focus of this paper. Instead, we
focus on the routing performance during the transient period
after failures occur.

Link quality: Link quality significantly affects routing perfor-
mance. We define link quality as the delivery rate of packet
on the link in a given direction. In S4, each node continuously
monitors its links to/from its neighbors. We adopt a passive
link estimator layer developed in [30], [5] for estimating link
quality. When a node receives a beacon packet or SDV update,
it first checks ifboth the forward and reverse link qualities of
the sender are above a threshold (30% is used in our current
implementation). Only those updates from a sender with good
link quality in both directions will be accepted.

IV. SIMULATION

In this section, we evaluate the efficiency and scalability
of S4 by simulation. We compare S4 with BVR [5], because
BVR is one of the latest scalable routing protocols and also
among the few that have been implemented in real sensor
networks. We use BVR with scoped flooding since it provides
delivery guarantee and offers a fair baseline comparison. We
use three evaluation methodologies: (i) MATLAB simulation
based on the unit disk graph radio model (presented in this
section), (ii) TOSSIM simulation, a packet-level simulator
with more detailed wireless model (presented in Section V),
and (iii) testbed evaluation (presented in Section VI). Our
MATLAB simulation results can be directly compared with
many previous work on geographic routing, in which the unit
disk model is used. TOSSIM simulations allow us to study the
performance in more realistic large-scale wireless networks.
Having both levels of simulations also reveals how underlying
wireless models may affect the routing performance. For
BVR, we validate our MATLAB implementation of BVR by
comparing with the original BVR simulation code, and we
directly use the original BVR implementation in TinyOS for
TOSSIM evaluation.

A. Simulation Methodology

To study the protocols in an ideal wireless environment,N
nodes are randomly placed in a square rectangular region of
size A2 in the simulator. The packet delivery rates among
nodes are derived from the unit disk graph model. That
is, each node has a fixed communication rangeR. A node
can communicate with all the nodes insideR, but cannot
communicate with any node outsideR. It is also assumed
that there is no packet loss, collision, or network congestion.
In the following description, we letN denote the number
of nodes,K denote the number of beacon nodes,R denote
communication range, andA2 denote the size of the area.

We use the following performance metrics to quantify the
efficiency and robustness of S4:

• Routing stretch: the ratio of the route length using the
selected routing protocol to that using the optimal shortest
path routing protocol.

• Transmission stretch: the ratio of the total number of
packets transmitted using the selected routing protocol to
that using the optimal shortest path routing protocol. It
may differ from routing stretch, because a single hop may
sometimes require multiple transmissions (e.g., scoped
flooding).

• Routing state: the amount of state required to maintain
at each node.

• Control traffic: the amount of traffic transmitted for
setting up the routing state and location directory.

Unless specified otherwise, our default simulation scenario
uses a 3200-node network with nodes uniformly distributed in
an area of25× 25 square units. The communication rangeR
is 1 unit. On average each node has 15.4 immediate neighbors.
Beacon nodes are randomly selected. In BVR, all or a subset of
beacon nodes serve asrouting beacons; a node’s coordinate is
defined as its distances to the routing beacons. The number
of routing beaconsKR is fixed to 10 for all simulations,
because it is reported to offer a good balance between routing
performance and overhead [5]. For each configuration, we
conduct 10 random runs and report the aggregate statistics.

B. Simulation Results
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Fig. 3. S4 has routing and transmission stretches close to 1, which is
consistently smaller than those of BVR algorithms across all numbers of
beacons.

1) Varying the number of beacons (K):: Routing and
transmission stretches:First we compare the routing and
transmission stretches of S4 and two variants of BVR by
varying the number of beaconsK. BVR 1-hop refers to the
default BVR algorithm. BVR 2-hop is an on-demand 2-hop
neighbor acquisition. In this approach, when a node cannot
use greedy forwarding to make progress, it fetches its 1-hop
neighbors’ neighbors to its routing table. BVR 2-hop reduces
the routing failure rate of BVR 1-hop at the cost of higher
routing state and control traffic.

Figure 3(a) compares the routing stretches under S4, BVR
1-hop, and BVR 2-hop. The stretches are computed based
on 32,000 routes between randomly selected pairs of nodes.
We observe that S4 has the lowest average routing stretch.
A closer examination of the simulation results shows that the
worst stretches in S4 are bounded by 3. This is consistent
with the worst-case guarantee provided by S4. In comparison,
the average routing stretches in BVR 1-hop and 2-hop are
substantially higher especially for smallK. Moreover their
worst-case routing stretches are even higher (e.g., the worst



routing stretch of BVR 1-hop in the simulation is 6 for
K = 56, and much larger for smallerK).

Figure 3(b) compares transmission stretch among the three
routing protocols. The average transmission stretches of S4 are
consistently below 1.1 under all values ofK. However, both
BVR 1-hop and BVR 2-hop have much higher stretches when
K is small. To achieve comparable transmission stretches to
S4 (though still higher), the least numbers of beacons required
is 56 for BVR 1-hop and 30 for BVR 2-hop. Such high
transmission stretch in BVR is due to its scoped flooding,
which is necessary for its guaranteed delivery.
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Fig. 4. Routing state comparison, where the errorbars show the WhenK =√

N , the routing state in S4 is half of routing state in BVR.

Routing state:Figure 4 compares routing state per node under
the three routing protocols. The routing state in S4 include
route entries for beacon nodes and for nodes within local
clusters, whereas the routing state in BVR are determined by
the number of neighbors and the length of their beacon vectors
K. 2 We make the following observations. First, in BVR the
average routing table size proportionally increases with the
number of beacons, while the number of entries remains close
to the number of neighbors. In comparison, the routing statein
S4 first decreases and then slightly increases with the number
of beacon nodes. The routing state in S4 reaches minimum for
K ≈

√
N since it gives a good balance between global routing

state (for beacon nodes) and local routing state (for nodes in
the clusters). These trends also hold for maximum routing state
in BVR and S4. Second, recall that to achieve a relatively
small transmission stretch, 56 beacon nodes are required in
BVR. In this case, the average and maximum routing state
in BVR is twice or more than those of S4. Third, BVR 2-
hop has significantly higher upper bound of routing state than
BVR 1-hop due to the requirement of holding 2-hop neighbor
information.

Control traffic: Figure 5 shows initial control traffic for
setting up routing state. The bandwidth overhead of BVR 1-
hop increases linearly with the number of beacons, because
the main overhead is the beacon flooding messages. In BVR
2-hop, other than beacon flooding, the control traffic also
includes the overhead of fetching 2-hop neighbor coordinates
for the required nodes. We can see the overhead of on-
demand 2-hop neighbor acquisition is significant, which is a
big disadvantage of BVR 2-hop even though its routing stretch
is lower than BVR 1-hop. In S4, control traffic includes beacon
flooding and SDV. AsK increases, the size of the local cluster

2The size of a routing table entry in S4 is 5-byte long in our implementation. The
routing state of BVR is estimated based on the relevant data structures found inthe BVR
implementation code.
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Fig. 5. Initial control traffic to set up routing state: the errorbars show
minimum, mean, and maximum traffic across all nodes. The control traffic of
S4 decreases gracefully as the number of beacons increases. WhenK =

√
N ,

the overhead of S4 is 65% higher than that of BVR 1-hop, but muchless than
BVR 2-hop.

of each node decreases, so the number of scoped DV packets
is reduced. WhenK = 56, the overhead of S4 is 65% higher
than that of BVR 1-hop. However since SDV can be updated
incrementally after the initial setup, its amortized overhead
over the long run is reduced. In terms of the number of packets,
S4 is less than twice of the BVR 1-hop whenK ≥

√
N . Note

that the number of packets in S4 can be reduced by grouping
SDV packets. On the other hand, BVR demands large packet
size when the number of beacons is large, and large packets
could be forced to split in order to achieve high delivery rates
under unreliable links.
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Fig. 6. Control traffic overhead of updating routing state due to topology
changes

To evaluate the overhead of incremental SDV in S4, we
randomly select non-beacon nodes to fail between two con-
secutive routing updates to create topology changes. Thereare
two ways of updating the routing state after the initial round:
either incrementally update based on the current routing state
(incremental DV), or builds new routing tables starting from
scratch (regular DV). As shown in Figure 6, when the number
of node failures is small (e.g., within 5%), incremental routing
updates incur lower overhead. Since the typical number of
node failures between consecutive routing updates is likely to
be low, incremental routing updates are useful in real networks.
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Fig. 7. Control traffic overhead comparison
The control traffic to set up the routing table is not the only



overhead. The source should be able to lookup the location
information of the destination. Therefore, each node should
store its location to a directory during the setup phase. We
study such directory setup overhead by using the location
directory scheme described in III-F: each nodev periodically
publishes its location to a beacon nodebv by using a consistent
hashing mechanism.bv then sends a confirmation back tov if
the publishing is successful. We simulate the initial directory
setup overhead, in which every node publishes its location to
the distributed directory. The results are shown in Figure 7
(a), and they include traffic to and from beacon nodes for
publishing the locations. S4 has the following three advantages
over the BVR. First, the size of location information in S4
is significantly smaller than that of BVR, because in BVR a
node’s coordinate is proportional to the number of beacons,
while in S4 a node’s coordinate is its closest beacon ID.
Second, the transmission stretch of BVR is higher than that of
S4. Therefore, it incurs more traffic in routing a confirmation
packet from the beacon node back to the node publishing
its location. Third, it is more likely that a node changes its
coordinates in BVR than it changes its closest beacon in
S4. Therefore, S4 incurs a lower overhead in setting up and
maintaining the location directory.

Figure 7(b) shows the overall traffic overhead incurred in
setting up both routing state and directory. We observe that
compared with both variants of BVR, S4 has smaller overall
control traffic, including traffic in setting up both route and
location directory.

Per data packet header overhead:Aside from the control
traffic, routing protocols also have overhead in the data packet
headers. The overhead of S4 includes the closest beacon ID to
the destination and its distance. For BVR, the overhead mainly
depends on the number of routing beaconsKR. The packet
header of BVR includes aKR-long destination coordinate,
which has at least⌈log2

(

K
KR

)

⌉ bits indicating whichKR nodes
are chosen out of the totalK beacons as the routing beacons
for the destination. For example, a rough estimation suggests
that withK = 56 andKR = 10, BVR requires 15-byte packet
headers, which is significant compared to the default packet
payload size of 29 bytes in mica2 motes, while S4 only takes
3 bytes in the packet header.
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Fig. 8. Transmission stretch comparison between S4 and BVR in the presence
of obstacles.

2) Under obstacles:: We now study the performance of
S4 and BVR in the presence of obstacles using the same
methodology as in [5]. The obstacles are modeled as horizontal
or vertical walls, which completely block wireless signals.
(They do not reflect wireless signals.) We vary the number
and length of those randomly placed obstacles. We find that

the median transmission stretches of S4 and BVR are 1.00 and
1.04, respectively. They are both insensitive to the obstacles.
However, as shown in Figure 8, the 95th percentile of the
transmission stretches of S4 and BVR are quite different: S4
has a constant 95th percentile stretch around 1.2 regardless
the existence of obstacles, while the transmission stretchof
BVR increases with the number of the obstacles and the length
of the obstacles. For example, when there are 75 obstacles
with length 2.5 times of the transmission range, 12.9% of the
links are blocked by them. As a result, the 95th percentile
transmission stretch of BVR increases up to 7.9 due to the
irregular topology, while the stretch of S4 stays around 1.2.
This is because S4’s worst-case routing stretch guarantee is
independent of network topologies.

3) Summary: Our evaluation shows that S4 provides a
worst-case routing stretch of 3 and an average routing stretch
around 1.1 - 1.2 in all evaluation scenarios. WhenK =

√
N

(a favorable operating point for both S4 and BVR), S4
has significantly smaller routing state than BVR. While the
initial route setup traffic in S4 is higher than that of BVR,
due to its compact location representation, its total control
traffic including location setup is still comparable to thatof
BVR. Furthermore S4 can efficiently adapt to small topology
changes using incremental routing update. Finally, BVR 1-
hop is more scalable than BVR 2-hop due to its lower control
traffic and routing state. So in the following evaluation, we
only consider BVR 1-hop as a baseline comparison.

V. TOSSIM EVALUATION

We have implemented a prototype of S4 in nesC language
for TinyOS [10]. The implementation can be directly used both
in TOSSIM simulator [19] and on real sensor motes. In this
section, we evaluate the performance of S4 using extensive
TOSSIM packet-level simulations. By taking into account of
actual packet transmissions, collisions, and losses, TOSSIM
simulation results are more realistic.

Our evaluation considers a wide range of scenarios by
varying the number of beacon nodes, network sizes, network
densities, link loss rates, and traffic demands. More specif-
ically, we consider two types of network densities: a high
density with an average node degree of 16.6 and a low density
with an average node degree of 7.6. We use both lossless links
and lossy links that are generated byLossyBuilder in TOSSIM.
Note that even when links are lossless, packets are still subject
to collision losses. In addition, we examine two types of traffic:
a single flow and 5 concurrent flows. The request rate is one
flow per second for single-flow traffic, and 5 flows per second
for 5-flow traffic. The simulation lasts for 1000 seconds. So the
total number of routing requests is 1000 for single-flow traffic,
and 5000 for 5-flow traffic. We compare S4 with BVR, whose
implementation is available from the public CVS repository
of TinyOS.

A. Routing Performance

First we compare S4 with BVR under stable network
conditions. To reach stable network conditions, we let each
node periodically broadcast RBDV and SDV packets every



10 seconds. Data traffic is injected into the network only
after route setup is finished. BVR uses scoped flooding after
a packet falls back to the beacon closest to the destination
and greedy forwarding still fails, whereas S4 uses the dis-
tance guided failure recovery scheme to recover failures. To
make a fair comparison, in both BVR and S4 beacon nodes
periodically broadcast and build spanning trees, and RBDV is
turned off in S4.

1) Varying the number of beacons: We vary the number of
beacon nodes from 16 to 40 while fixing the total number of
nodes to 1000.

Routing success rate:We study 4 configurations: a single flow
with lossless links, a single flow with lossy links, 5 flows with
lossless links, and 5 flows with lossy links. In the interest of
space, Figure 9 only shows the results of the first and last
configurations. “HD” and “LD” curves represent results under
high and low network densities, respectively.
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Fig. 9. Compare routing success under different numbers of beacons, network
densities and traffic patterns.

We make the following observations. First, under lossless
links with 1 flow, S4 always achieves 100% success rate. In
comparison, BVR achieves close to 100% success only in
high-density networks, but its success rate reduces to 93%
under low network density with 16 beacons. Why does BVR
not provide delivery guarantee even under perfect channel
condition? The reason is that, scoped flooding is invoked after
a packet is stuck at the fallback beacon, and scoped flooding
could cause packet collisions and reduce packet delivery rate.

Second, under lossy links with 5 flows, packet losses are
common, and the performance of both S4 and BVR degrades.
Nevertheless, S4 still achieves around 95% routing successrate
in high-density networks, while success rate of BVR drops
dramatically. The large drop in BVR is because its scoped
flooding uses broadcast packets, which have no reliability
support from MAC layer; in comparison, data packets are
transmitted in unicast under S4, and benefit from link layer
retransmissions. Third, the success rate is lowest under low-
density networks, with lossy links and 5 flows. Even in this
case S4 achieves 70% - 80% success rate, while the success
rate of BVR is reduced to below 50%.

Routing stretch: Figure 10 compares the average routing
stretch of S4 and BVR. The average routing stretch is com-
puted only for the packets that have been successfully deliv-
ered. Although the worst stretch of S4 is 3, its average stretch
is only around 1.1 - 1.2 in all cases. In comparison, BVR has
significantly larger routing stretch: its average routing stretch
is 1.2 - 1.4 for 1 flow, and 1.4 - 1.7 for 5 flows. Moreover its
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Fig. 10. Compare routing stretch under different numbers of beacons,
network densities, and traffic patterns.

worst routing stretch (not shown) is 8.

Transmission Stretch: As shown in Figure 11(a), the trans-
mission stretch of S4 is close to its routing stretch, while the
transmission stretch of BVR is much larger than its routing
stretch due to its scoped flooding, which lets all nodes within
the flooding scope perform transmission and significantly
increases transmission stretch. Figure 11(b) shows CDF of
transmission stretches under 32 beacon nodes. We observe that
the worst-case transmission stretch in S4 is 3, and most of the
packets have transmission stretch very close to 1.
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Fig. 11. Transmission stretch comparison

Control traffic overhead: Compared with BVR, S4 intro-
duces extra control traffic of SDV to construct routing tables
for local clusters. To evaluate this overhead, we count the
average control traffic (in bytes and number of packets) that
each node generates under lossless links and a single flow.
We separate the global beacon traffic and local SDV traffic.
The results are shown in Figure 12. Note that beacon traffic
overhead is the same for both S4 and BVR.
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Fig. 12. Control traffic overhead under different numbers of beacons and
network densities

We can see that when the number of beacons is small, the
SDV traffic dominates, since the cluster sizes are relatively
large in such case. As the number of beacons increases, the
amount of SDV traffic decreases significantly. In particular,



when there are 32 beacons (≈
√

1000), the amount of SDV
traffic is comparable to the amount of global beacon traffic.
Moreover, if we include control traffic for setting up location
directory, the total control traffic in S4 would be comparable
to that of BVR, as shown in Figure 7.

Routing state: We compare routing state of S4 and BVR as
follows. For S4, the routing state consists of a beacon routing
table and a local cluster table. For BVR, the routing state
consists of a beacon routing table and a neighbor coordinate
table. We first compare the total amount of routing state in
bytes between S4 and BVR.
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Fig. 13. Routing state comparison under different numbers of beacons and
network densities with lossy links (single flow)

Figure 13(a) shows the average routing state over all nodes.
We make the following observations. First, network density
has little impact on the routing state of S4, but has large
impact on BVR. This is because in S4 the local cluster sizes
are not sensitive to network density (when density increases,
the scope tends to decrease), while in BVR each node stores
the coordinates of its neighbors and its routing state increases
with density. Second, the amount of routing state in BVR
increases with the number of beacons. In comparison, S4’s
routing state does not necessarily increase with the number
of beacons, since increasing the number of beacons reduces
the local cluster size. Third, when the number of beacons is
32 (≈

√
1000) or above, the routing state in S4 is less than

BVR. Similar results have been observed in other TOSSIM
configurations as well as MATLAB simulation results in
Section IV.

Figure 13(b) further shows the number of entries in beacon
routing table, local cluster table and neighbor coordinatetable.
The beacon table curves of S4 and BVR overlap, since it is
common for both. Note that although the coordinate tables in
BVR have fewer entries than the cluster tables in S4, the total
size of the coordinate tables are generally larger since thesize
of each coordinate table entry is proportional to the number
of beacons.

Table I shows maximum routing state of S4 and BVR under
high density and low density. The maximum number of routing
entries is around 4.5 times of

√
1000 (the expected average

cluster size), but still an order of magnitude smaller than
1000 (the flat routing table size) in shortest path routing. This
suggests that random beacon selection does a reasonably good
job in limiting worst-case storage cost.

Node load: Figure 14 shows the average number of packets
that each node transmits, under lossless links and 5-flow traffic.
Figure 14(a) shows the beacon node load, and Figure 14(b)

max S4 state (B) max BVR state (B) max S4 routing entries
HD 680 960 136
LD 715 920 143

TABLE I
MAXIMUM ROUTING STATE OF S4 AND BVR

shows non-beacon node load. We observe that in S4 both
beacon nodes and non-beacon nodes experience lower load
than those nodes in BVR. This is due to lower routing stretch
and transmission stretch in S4. In addition, we observe thatin
S4, the beacon load is within a factor of 1.5-2 of non-beacon
load, which means the load is reasonably balanced among
beacon and non-beacon nodes. Similar results are observed
under single flow traffic.
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Fig. 14. Node load of data traffic under different numbers of beacons and
network densities with lossless Links (5 flows)

2) Varying network size: We also evaluate the performance
and scalability of S4 when the network size changes from 100
to 4000. In both S4 and BVR, for a network ofN nodes, we
selectK ≈

√
N nodes as beacon nodes for fair comparison.

In the interest of space, we only present results under lossless
links and a single flow.
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Fig. 15. Comparison under different network sizes

Figure 15(a) shows the average transmission stretch of S4
and BVR under different network sizes. The error bars repre-
sent 5- and 95- percentiles. S4 achieves smaller transmission
stretches and smaller variations in the stretches. In BVR,
packets experience higher medium stretch and higher stretch
variation due to greedy forwarding and scoped flooding.

Figure 15(b) shows the average routing state. For both S4
and BVR, the routing state tends to increase withO(

√
N).

This suggests both S4 and BVR are scalable with network
sizes. In particular, even when the network size is 4000,
majority of nodes can store the routing state in a small
portion of a 4KB RAM (the RAM size on Mica2 motes we
experimented with). Moreover, S4 uses less routing state than
BVR when the number of beacon nodes is

√
N , because the



coordinate table size in BVR is linear to the number of beacon
nodes.

success
rate

routing
stretch

transmission
stretch

control
traffic (B)

routing
state (B)

S4 1 1.07 1.08 96 158
BVR 0.994 1.20 1.31 46 232

TABLE II
PERFORMANCE COMPARISON IN100-NODE NETWORKS.

To further study the performance of S4 in smaller networks,
we compare S4 and BVR in networks of 100 nodes. Due to
space limitation, we only include the results for the case of
single flow traffic with lossless links. Table II shows that in
100-node networks S4 outperforms BVR in terms of routing
success rate, routing stretch, transmission stretch, and routing
state. S4 incurs more control overhead than BVR due to
the extra SDV traffic, though its overall control traffic (after
including location directory setup traffic) is still comparable
to that of BVR.

B. Impact of RBDV

Next we evaluate resilient beacon distance vector (RBDV).
Again we use 1000-node networks. We turn off periodic
transmissions of beacon and SDV messages so that the failed
transmissions of these messages have to be recovered using
RBDV but not using periodic beacon transmissions. This is an
interesting scenario to consider because we want to minimize
the frequency of periodic broadcasts while still achievinghigh
delivery rate. Each beacon broadcasts once. Other nodes who
receive a beacon packet further broadcast it. Similarly, a non-
beacon node broadcasts its own scoped distance vector once.
A node further broadcasts a SDV only if it is inside the scope.
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Fig. 16. Impact of RBDV on success rate (1000 nodes, low density)

We simulate for single-flow data traffic with lossless links,
and compare the routing success rate between the case with
and without RBDV. In both cases, DLF is enabled. Packet
collisions are common when nodes broadcast beacon packets
or scoped distance vectors. As shown in Figure 16, without
RBDV, the success rate is around 90%. With RBDV, the
success rate is improved to close to 100% because RBDV
helps to improve accuracy of the routing tables.

C. Impact of Node Failures

We now evaluate the performance of S4 under node failures.
In our evaluation, we first establish routes using SDV and
RBDV as usual. Then we randomly kill a certain number
of nodes after route initialization is completed and evaluate

the success rate of routing data traffic. Since BVR does not
incrementally update routing state between rounds, to make
fair comparison, we disable incremental routing update in
S4 and completely rely on DLF to recover failures. The
performance of S4 would be even better if we incrementally
update routing states upon failures. We distinguish between
beacon and non-beacon failures, and show the results under
lossless links and single flow traffic in comparison with BVR.
By default, scoped flooding is enabled in BVR.
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Fig. 17. Impact of DLF on success rate (1000 nodes, 32 beacons,low
density)

Figure 17 shows that failure recovery can significantly
increase the success rate under both non-beacon and beacon
failures. DLF in S4 is more effective than the scoped flooding
in BVR for the following reasons. First, scoped flooding
results in packet collisions. Second, S4 uses unicast for data
transmissions and benefits from link layer retransmissions.
Third, if some node between the beacon and destination fails,
DLF can recover such failures, while scoped flooding cannot.
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Fig. 18. Impact of DLF on routing stretch (1000 nodes, 32 beacons, low
density)

Next we compute the average routing stretch over all
successfully delivered packets. As we expect, packets going
through failure recovery take longer than normal paths. Inter-
estingly, as shown in Figure 18, the average routing stretchis
only slightly higher than the case of no failure recovery, which
indicates the robustness of S4.

D. Summary

Our TOSSIM evaluation further confirms that S4 is scal-
able to large networks: the average routing state scales with
O(

√
N) in an N -node network. The average routing and

transmission stretches in S4 are around 1.1-1.2. This is true
not only in lossless networks under single flow traffic, but also
under lossy wireless medium, packet collisions arising from
multiple flows, and significant failures. This demonstratesthat
S4 is efficient and resilient. In comparison, the performance



of BVR is sensitive to wireless channel condition. Even
under loss-free networks, it may not provide 100% delivery
guarantee due to possible packet collisions incurred in scoped
flooding. Its routing and transmission stretches also increase
with wireless losses and failures.

VI. T ESTBEDEVALUATION

To demonstrate the feasibility of S4 in real wireless net-
works, we deploy the S4 prototype on a testbed of 42mica2
motes with 915MHz radios on the fifth floor of ACES building
at UT Austin. While the testbed is only moderate size and
cannot stress test the scalability of S4, it does allow us to
evaluate S4 under realistic radio characteristics and failures.
We adjust the transmission power to -17dBm for all control
and data traffic to obtain an interesting multi-hop topology.
With such a power level, the testbed has a network diameter
of around 4 to 6 hops, depending on the wireless link quality.
11 motes are connected to the MIB600 Ethernet boards that
we use for logging information. They also serve as gateway
nodes to forward commands and responses for the remaining
31 battery-powered motes.3
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Fig. 19. Testbed measurement

Figure 19(a) shows a snapshot of the network topology. We
measure packet delivery rates by sending broadcast packets
on each mote one by one. Two motes have a link if the
delivery rates on both directions are above 30%. Because
no two nodes will broadcast packets at the same time, the
measurement result is optimistic in the sense that channel
contention and network congestion is not considered. The
average node degree is8.7. We observe that a short geographic
distance between two motes does not necessarily lead to
good link quality. Some of the links are very asymmetric
and their qualities vary dramatically over time. As shown in
Figure 19(b), some of the links are highly asymmetric and
their qualities vary dramatically over time. For example, the
link qualities between motes 4 and 31 fluctuate as time goes by
and are quite asymmetric, while link qualities between motes
1 and 15 are fairly stable to 100% delivery rate, until in the
last one hour when they suddenly drop to almost 0%. Such
link characteristics allow us to stress test the performance and
resilience of S4.

3Unfortunately, we are unable to compare S4 against BVR in our testbed.
Current BVR implementation requires all motes have Ethernet boards con-
nected to send and receive routing commands. However our testbed only has
11 motes with Ethernet connections, which would make the evaluation less
interesting.

time period # pkts per sec routing success rate
0 - 70.1 min 1 99.9%

70.1 - 130.2 min 2 99.1%

TABLE III
ROUTING SUCCESS RATE IN THE42-NODE TESTBED.

A. Routing Performance

We randomly preselect 6 nodes out of 42 nodes as beacon
nodes for S4. The distance from any node to its closest beacon
is at most 2 hops. After 10 minutes of booting up all the motes,
we randomly select source and destination pairs to evaluate
routing performance. The sources are selected from all 42
motes and the destinations are selected from the 11 motes
that are connected to the Ethernet boards. All destinations
dump the packet delivery confirmation through UART to the
PC for further analysis. For each routing request, unless the
source is connected to an Ethernet board, we choose the
gateway mote that is the closest to the source to forward
a command packet. The command packet is sent with the
maximum power level, and up to 5 retransmissions so that
the source is very likely to receive it. Upon receiving the
routing request, the source will send back a response packet
with the maximum power level and potential retransmissions,
to acknowledge successful reception of the routing request.
Each routing request is tagged with a unique sequence number
to make the operation idempotent. After the command traffic,
the data packet will be sent at a lower power level in order to
have an interesting multihop network topology.

We send routing requests at 1 packet per second for the
first 70 minutes (altogether 4210 packets), and then double
the sending rate thereafter for another 60 minutes (altogether
7701 packets). As shown in Table III, the routing success rate
is 99.1-99.9%, and consistent over time. This demonstratesthe
resilience of S4 in a real testbed.

Next we use multiple constant bit rate (CBR) flows to
increase the network load. In each multiple flow test, we
randomly pickn source destination pairs, and instrument the
sources to send consecutive packets at the rate of 1 packet
per s seconds. This is essentially havingn/s random flows
per second. The flows start after a predefined idle period to
avoid potential collisions with the command traffic. We choose
s = 2, and test up to 6 concurrent flows (i.e., n is up to 12). For
each experiment, we repeat it for 10 times. Figure 20(a) plots
the median routing success rates in different flow settings.The
error bars indicate the best-case and worst-case routing success
rate. We see the median success rate gracefully degrades with
an increasing number of concurrent flows. Our log collected
from the gateway motes indicates that some of the failures are
due to the limitation of single forwarding buffer per node. Such
failure happens when two or more flows try to concurrently
route through the same node. Note that this is not a protocol
limitation in S4. We could remove many such failures by
having a more complete implementation that supports multiple
forwarding buffers.

Finally we study the routing efficiency of S4. Note that it
is impossible to calculate the true routing stretch in a real
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Fig. 20. Experiments on the 42-node testbed

wireless network because the topology is always changing
and the packet loss rates depend on the traffic pattern so that
the optimal routes are changing, too. Instead, we compare S4
against thepseudo optimal hop count metric. The pseudo opti-
mal hop count of a route is defined as the shortest path length
in a snapshot of the network topology. In our experiment, we
use broadcast-based active measurement to obtain the pairwise
packet delivery rates before the routing test starts. The delivery
rates are averaged over 1-hour measurement period. Note that
the real optimal routes could be either better or worse than
the pseudo optimal ones due to topology changes, and the
delivery rates tend to be optimistic due to no packet collision
in the measurement. The routing tests follow the measurement
within 30 minutes. We randomly select source and destination
pairs and send routing requests at 1 packet per second for
5000 seconds. Then we change the number of beacons from
6 to 3, and repeat the same test. The shortest paths from the
topology snapshot are computed offline. Figure 20(b) shows
that more than 95% of the routes are within 1-hop difference
from the pseudo optimal hops under 6 beacons. Interestingly,
S4 sometimes achieves better performance than the pseudo
optimal scheme. This is because during the 5000-second
routing experiment, S4 adapts to the change of topology so
that it can take advantages of new links and reduce path
lengths. The number of beacons also has both positive and
negative effects on routing performance. When fewer beacons
are selected, the nodes tend to have larger routing tables sothat
more nodes can be reached via the shortest paths; however,
having fewer beacons also leads to more control traffic so
that the link estimator will have a more pessimistic estimation
on link quality due to packet collision. Underestimating link
quality apparently hurts the routing performance.

In the same experiment, we also study the routing state
per node in S4. Figure 20(c) compares the numbers of local
routing table entries used under 6 and 3 beacons. Using 6
beacons yields smaller routing tables. A node in S4 has local
routing state towards its neighbor unless the neighbor is a
beacon node. Therefore the number of routing entries at each
node is generally larger than the number of its neighbors. We
find that on average, when 6 beacons are used, the routing
table has only 3 more entries than a typical neighborhood
table, which suggests that the routing state in S4 is small.

B. Routing Under Node Failures

To stress test the resilience of S4, we artificially introduce
node failure in our testbed. We randomly select non-gateway

motes to kill one by one, and study the routing performance.
We send one routing request per second for 50 minutes, alto-
gether generating 3000 packets. The source node is randomly
selected from the current live nodes and the destination is
one of the gateway motes. Note that we do not start any SDV
update or beacon broadcast after the initial setup stage in order
to study the effectiveness of the failure recovery mechanism
alone. As shown in Figure 20(d), in the first 30 minutes,
even when 20 motes are killed, including a beacon node,
the routing success rate is still close to 100%. The routing
success rate starts to drop after 30 minutes, due to congestion
at some bottleneck links. When the second beacon is killed, the
network is partitioned and more routing failures are expected.
The third major performance degradation occurs after all 31
non-gateway motes are dead, which causes further network
partitions. These results show that S4 is resilient to failures.

C. Summary

Our evaluation in the 42 node testbed shows that S4 achieves
close to 100% routing success rate in a normal condition
with a single flow. Meanwhile S4 degrades gracefully with an
increasing number of packet collisions (in multiple concurrent
flows) and node failures.

VII. C ONCLUSION

We present S4 as a scalable routing protocol in large
wireless networks to simultaneously minimize routing state
and routing stretch in both normal conditions and under node
or link failures. S4 incorporates a scoped distance vector
protocol (SDV) for intra-cluster routing, a resilient beacon
distance vector protocol (RBDV) for inter-cluster routing, and
distance-guided local failure recovery (DLF) for achieving
resilience under failures and topology changes. S4 uses small
amounts of routing state to achieve a worst-case routing stretch
of 3 and an average routing stretch of close to 1. Evaluation
across a wide range of scenarios, using high-level and packet-
level simulators, and real testbed deployment show that S4
achieves scalability, efficiency, and resilience.
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