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Abstract—Despite advances in measurement technology, it is A key challenge that lies at the heart of many problems
still challenging to reliably compile large-scale networkdatasets. jnvolving network data is how to cope with missing values.
For example, because of flaws in the measurement systems OrMiSSing values are common in measurement of real-world

difficulties posed by the measurement problem itself, missqg, t d h detri tal effect work
ambiguous or indirect data are common. In the case where Systems and can have a detrimental efiect on many networ

such data have spatio-temporal structure, it is natural to ty tasks, especially those that require complete information
to leverage this structure to deal with the challenges posed Using the example of TMs and applying novel interpolation
by the problematic nature of the data. Our work involving  techniques for accurately reconstructing missing valnds
network datasets draws on ideas from the area of compressive pasaq on direct and/or indirect measurements, we provide in
sensing and matrix completion, where sparsity is exploitedn thi ified ht | twork
estimating quantities of interest. However, the standard esults on IS pgper "_’1 unined approach to severa_ common networ
compressive sensing are (i) reliant on conditions which gemally ~ tasks involving measurement and analysis of network data.
don’t hold for network datasets, and (ii) don’t allow us to exploit  Our approach uses the first truly spatio-temporal model of
all we know about their spatio-temporal structure. In this paper TMs and performs well for network tasks ranging from TM

we overcome these limitations with an algorithm that has at ggtimation and prediction to anomaly detection. A critical
its heart the same ideas espoused in compressive sensingt bu,

adapted to the problem of network datasets. We show how this feature of our proposed methqd is that it Comblnes_key |de§s
algorithm can be used in a variety of ways, in particular on traffic ~@nd recent results from the active area of compressiverggnsi
data, to solve problems such as simple interpolation of migsg with detailed domain knowledge that has accumulated over
values, traffic matrix inference from link data, prediction, and the |ast few years of TM research.

anomaly detection. The elegance of the approach lies in thadt

that it unifies all of these tasks, and allows them to be perfoned  \jotivation:  In practice it is challenging to reliably measure
even when as much as 98% of the data is missing. TMs for large networks. First, in many networks the TM is
Index Terms—Compressed sensing, Interpolation, Prediction not directly observable, and can only be estimated through
methods, Tomography. link load measurements. Such measurements, while linearly
related to the TM itself, are not sufficient to unambiguously
. INTRODUCTION identify the true TM. Typically, the problem has been posged a
an underconstrained linear-inverse problem, where thdisal

Network data can often be arranged in the form of multF" : :
relies on a prior model of the TMe(g, the Poisson model of

dimensional arrayse(g, matrices or tensors). For example X i X
traffic measurements that specify the traffic volumes eyardi[9], the gravity model [12], [14], or the independerut

changed between origin and destination pairs in a netwdf@de! [16]). Second, although many networks now collect
during a given time period naturally form a 2-dimensioné§amp|ed) flow-level measurements for at least part of their
matrix or, when viewed over multiple time periods, a 3[1etworl<, there are still serious impedimentsrétiable large-
dimensional array or tensor. The resulting objects are knO\ﬁcale or netyvork—W|de TM data collection: data (?O||eCtI§IB—S
astraffic matrices (TMsjand are prime examples of networld€Ms can fail, flow collectors often use an unreliable transp
data. They are a critical input to many network tasks ineigdi Protocol, and legacy network components may not support

traffic engineering [1], [2], capacity planning [3], and analy flow _collection or be resource-challenged. T_hird, scaigbil
detection [4], [5]. Due to their importance, there is now Lequirements may mean that flow-level collection cannotiocc

substantial body of work on TMs, for instance see [6] anft the edge of a network (where we would wish it for true TM

the references therein. The thrust of much of this reseamsh HECCVETY [7]), but has to be restricted to just some subset of

been on measurement [7], [8] and inference [9][16] of TMéhe routers. Finally, when we find an anomaly in a set of TMs,

and more recently on topics such as anomaly detection [Me often need to know the non-anomaly-related traffic either

5], [L7]-[19]. At the same time, TMs serve as importanflo,r other network tasks, or just so that we can infer the cause
examples that network data, due to the engineered natﬂféhe ano-m-aly. .
of the underlying network, are often highly structured,twit Recognizing this aspect of real-world networks, any large

pronounced spatial or temporal dependencies. set of TM measurements is bound to have some, and quite
often, a significant number of missing values, and recovery
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is important because many network engineering tasks tlatindependent flows [16]) is their reliance on truly spatio-
require TMs are either intolerant or highly sensitive tosing temporal models of TMs that are capable of capturing much
data.Interpolationis the mathematical term for filling in theseof the global and local structure inherent in actual TMs.
missing values. In the context of matrices, interpolatisn i We have applied our approach to matrices with close to
sometimes referred to as matrix completion, and there is navmillion entries, and our algorithms can process them in
a developing set of methodologies for solving such problerosly a few seconds. In fact, the algorithms we developed
usingcompressive sensing generic methodology for dealingscale linearly with the size of the data so that in principle,
with missing values that leverages the presence of certamuch larger matrices can be analyzed. Such larger matrices
types of structure and redundancy in data collected froanise naturally in the context of TM®(g, the AS-level TM
many real-world systems. Compressive sensing has recetitigt gives the traffic volumes exchanged between pairs of
attracted considerable attention in statistics, appration Autonomous Systems over some time period), but also in
theory, information theory, and signal processing. Sdvemaany non-TM-related applications. For example, measuring
effective heuristics have been proposed to explicitly eipl the performance between origin and destination nodes in a
the sparse or low-rank nature of empirically obtained roati network during some time interval yields so-calledtwork
[20]-[24]. Meanwhile, the mathematical theory of compiess matrices with delay matrices denoting the special case where
sensing has also advanced to the point where the optimatitye performance measure of interest is delay. While these
of many of these heuristics has been proven under certaigtwork matrices are notorious for containing many missing
technical conditions on the matrices of interest [20]-[24] values, they are also known to exhibit a significant degree
of structure or redundancy. They are therefore natural can-
Contributions:  Despite much recent progress in the area @figates for our spatio-temporal compressive-sensingriesp
compressive sensing, our evaluation of existing compresshnnroach, and one of our future research efforts will be to
sensing algorithms on real TMs has shown that they do ngftend our approach to such datasets and beyond. Our method
perform well [25], and moreover, are not flexible enough Q|| not work on unstructured data, but its effectiveness an
encompass the range of applications we wish to address. Rg@lstness to real-world measurement issues are demtedstra
TM measurements often violate the mathematical conditiops this paper. The results suggest that the approach can be
under which existing compressive sensing algorithms are plied when large amounts of missing data exist in much
signed to operate and are provably optimal. Our approagfiger and more diverse datasets than considered in thes,pap
(originally proposed in [25]) is BARSITY REGULARIZED provided they exhibit equally strong spatio-temporal ctine.
MATRIX FACTORIZATION (SRMF). It finds sparse approx-- | ast but not least, the fact that we can perform such a variety
imations (in the sense that they are low-rank) to TMs, augt petwork tasks so well with so little data suggests funda-
mented by spatio-temporal operators and local intermie®  mental changes in the way TM measurements are collected
achieve high accuracy. While most of the known approach@spractice. Much as sampling has enabled large-scale flow
are best described as purely spateab( [4], [12], [14], [16], collection, the type of SRMF-based techniques considered i
[17]) or purely temporal &9, [9], [26]), to the best of our his paper can enable truly network-wide collection of TM
knowledge, SRMF represents the first genuine spatio-teapQiata that is provably robust to the existing impediments to
model of TMs, and its performance in problems involvingg|iaple measurement of TMs. In this sense, our work adds
interpolation with real TMs is excellent. Low-rank approXiraffic matrices to the set of examples where compressive
mation combined with spatio-temporal modelling works wellgnsing theory asserts that one can accurately recoveircert
for high-loss scenarios, while local intepolation allowsid  ypjects from far fewer measurements than traditional netho
perform equally well for low-loss scenarios. use [27]. Exploiting this observation in practice for more
We present in this paper the results of a detailed study whesféicient, effective, and robust TM data collection will barp
we apply our SRMF approach to a wide range of TM-relatesf our future work.
problems including network tomography, traffic prediction
and anomaly detection. Using real TMs from three operationa Il. BACKGROUND
networks to evaluate the effectiveness of our approacheiseth , .
diverse applications, we show that our SRMF-type algorghnf\ Traffic Matrices
consistently outperform other commonly-used methods andA Traffic Matrix (TM) is a non-negative matrixz (s, j)
do so across the whole range of missing values scenarithegt describes volumes of traffic (in bytes, packets, or flows
from purely random to highly structured scenarios whetwetween a sourceand a destination. For a network withV
whole columns and/or rows of a TM are missing, and froecations the TM is a squar® x N matrix. In practice we
very low levels of missing values to very high levels.d, needa number of addenda to this simple definition. First,a TM
90% and more). While it may be surprising that such goasd typically measured over some time interval, and the value
performance can be achieved with so little data, our resuteported is an average. So we dendtg, j;¢) to be the traffic
are an indication of the degree of structure present in reflem to j averaged ovelt, t+ At). We call the TMZ (x, x, t)
world TMs and the fact that our approach can find angsnapshotlespite the fact that it really represents an interval.
exploit this structure. Indeed, the main reason for the sape Second, although itis common to speak of “origin-destorati
performance of our techniques when compared to their mds¥ls, it is often difficult to accurately map IP addresses gnés
widely-used competitorse(g, PCA, Tomo-gravity [12], [14], in traffic to the true origin and destination of traffic when we



examine a network or Autonomous System (AS). So typicalljirect measurements are available, then constraints (1B) wi
the matrix is aggregated into a router-leirgress-egres§M, (typically) be incorporated into (2) to simplify notation.
where Z(i, j;t) describes the traffic entering a network at In addition to the above concerns we note that all data
router:, and leaving at routey. sources contain errors. Flow-level collection usuallyoines
The TM may be thought of as &dimensional array? € sampling, often at quite high rates, and the Simple Network
RY xRN xR™ (where there are: time intervals present). It is Management Protocol (SNMP) used for collecting link mea-
common to take a TM snapshot and stack the columns to fosmrements is often noisy [28].
a column vector which we denote. We can compile these We seek an estimated TM that satisfies the conditions
vectors into the columns of a larger matdk € R” x R™ imposed by the set of measurements. However, as is the
(wheren = N?), and this form of the TM is often more case in many such linear-inverse problems, there may not be
convenient for algebraic manipulation than3adimensional enough information to unambiguously determikie We calll
array. The columns oK represent the TM at different times,these underconstrainedinear-inverse problems (in the case
while the rows represent the time evolution of a flow. of TM estimation from link data, the problem is very highly
One example of how this notation is useful is in TMunderconstrained). To solve such problems, we can use side
inference (the so-called network tomography problem [9]). information about the nature of the TM being considered, for
this problem the TM is related to the more easily measur@tstance the gravity model of [12], [14] or independent-fiow
link loadsY by the following linear matrix equation model of [16]. Regularization is a process used to solve such
V- AX ) problems in_which we “regularize” towards some p_rior model
’ of the data in question. The low-rank model we will propose
where A is the routing matrix, which expresses which link§iere is motivated by the literature on compressive sensing.
are used by which rout&sTM inference involves finding the
“pest” solution X to (1) from Iink-!oad_measuremenlé. % Compressive Sensing
More generally, we can combine link measurements wit ] o ) ) o
additional TM measurement strategies, which often yields aCompressive sensing is a relatively new idea in signal
better estimate of the TM than using each individual type &focessing [20], [21]. The main idea is that many real-world
measurements by itself [15]. For example, flow-records afignals or datasets exhibit some structure or redundandy, a
typically collected at ingress routers [7]. In this caseghea W€ can utll!ze this prior knowledge for both acquisition and
router sees one row of a TM snapshot, so over time, rouf§construction of the signal. .
i seesZ(i,*, *). Missing data from a single router means Structure and redundancy in data are often synonymous with
we will be missing a row ofZ, or a group of rows ofX. sparsity A sparsevector is simply a vector that has only a
Flow-records could also be collected at egress or backbdf# non-zero elements. Often our vectors of interest might
routers. In this case, although it is difficult to unambigsigu have only a few large elements, and many small elements.
determine the ingress router for the observed traffic, we c¥y¢ call such a vectocompressiblein the sense that most
still form a set of linear constraints on where the traffic ldou Of its information is carried in the larger elements. Notatth
have originated. An alternative measurement strategy[18], the majority of work on compressive sensing has concerned
is to collect local TMs at each router, which can agaMectors of data, so a naive approach to TMs might be to
be represented as linear constraints on the global TM. $ampile these into vectors and then apply vector techniques

combination we have a set of linear constraints on the TMHowever, some of the structure of a TM is inherent in the
matrix itself, so there is value in treating our mattk as

A(X) = B, (2) a genuine matrix. In the context of matrices, low rank is
analogous to sparsity, because the spectrum formed by the

where A(-) is a linear operator, and the matr® contains . | I fal K matrix | bel
the measurements. The operator expresses the informa giguiar values ot a fow-rank matrix is sparse (_see elow).
t i1s now well known that TMs may be approximated by

available in our measurements. Note that the presence of> . .
missing data is implicit in (2); for instance, the operatér matrices of low rank [4], [17], [29], and so this concept fits

could include TM measurements at ingress routers with l%e" here. We explicitly use this type adtructural sparsity

measurement errors (but with missing data), by writing €) 2s our approach to resolve the underconstrained natures of th
measurement problems we face. In the following section we

M.« X =M.xD, (3) draw on the recent matrix compressive-sensing litera@&-{
4] to explain how such “sparsity regularized” algorithoan
e constructed.

However, we cannot apply existing compressive sensing
M(i, j) = { 0, if X(4,7) is missing. @) algo.rithms..We observgd that they performed poorly on real
’ 1, otherwise. traffic matrices, especially under real-worlde(, structured,
non-random) data loss scenarios. This observation sugygest
éhat real TMs often exhibit characteristics that violate th
mathematical conditions under which existing compressive

lissues such as changing network topology or routing have tealt with sen_sing_ algorithms are. d.eSigned to operate. Spec!fichﬂy, t
in practical network tomography algorithms [5], [14]. optimality results for existing compressive sensing atbars

where D(i, j) contains the direct measurements (where ava,
able) andM is a N? x m matrix given by

and.x denotes an element-wise produa, A = C.xB means
A(i,j) = B(i,5)C(i, 7). When both link measurements an



often assume that (i) the matrix elements are drawn fromtlzat the columns o/ form the principal axes of the PCA
Gaussian-like distribution, (ii) the matrix is exactly leank, coordinate transform.

(iii) data loss is independent for different matrix elen®@ind - g5 ity Regularized SVD:  Many matrix interpolation
(iv) the measurement constraints on the matrix satisfyagert iocpnigues try to create a SVD-like factorization of a matri

technical conditions €.g, the restricted isometry propertyX, though it is common to write this in the equivalent form
[23]). Unfortunately, none of these conditions hold forlrea

TMs. Real TM elements are non-negative and often exhibit X =UxvT = LRT, 9)
a highly skewed distribution, where the largest and smialles .
elements often differ in size by several orders of magnitugghere L = UXY? and R = VX2, and so we will

Moreover, real TMs are only approximately low-rank, andadasubsequently use this form for consistency.
loss in real network data tends to be highly structured [28]. Now SVD by itself is not an interpolation algorithm. Typical
Finally, the available measurements are limited by busineglgorithms for calculating the SVD assume thtis com-
and technological constraints, not chosen according tota petely known. Where there is missing data we can instead
of desirable properties, and so there is no guarantee that ipok for a factorization that satisfies the measurement equa
constraints on real-world TM measurements satisfy teetinidions,i.e., A(LR") = B. Previous studies have suggested that
conditions such as restricted isometry. In fact we have otypical TMs inhabit a relatively low-dimensional subsp{tk
served that this condition only occurs as a rare exception. [17], so an intuitive approach for finding such a factoriaati

is to solve the following rank minimization problem:

C. Singular Value Decomposition minimize  ranKLRT),

One tool for creating low-rank matrix approximations is the subject to A(LR”) = B.
Singular Value Decomposition (SVD). Simply stated, any
m real matrixX can be decomposed such that

(10)

Rank minimization has a non-convex objective and is thus
difficult to solve. A key insight from the matrix compressive
X=UuxvT, (5) sensing literature [22]-[24] is that under certain cordisi,
we can solve a simpler problem instead and obtain equiva-
lent results. Specifically, when a certain technical caodit
(the restricted isometry property [23]) holds of{-), then a
heuristic — minimizing the nuclear norm — can perform rank

QstrLTafir;ﬁilgéngréh:rrsai?]g25;;’1';;6; (;f X ;Kg'f::z ;?Z minimization exactly for a matrix of low enough rank. Funthe
9 9 = Tirl if the rank of X is less than the rank of R” then (10) is

matrix is the number of linearly independent rows or columns .
. : equivalent to
which equals the number of non-zero singular values.
To understand SVD’s use in matrix approximations, con- minimize  ||L||% + || R||%,
sider the following interpretation of the SVD. The matdik subjectto A(LRT) = B. (11)
is diagonal, so the SVD of a matriX can be rewritten as:

where VT is the transpose oV, andU is an x n unitary
matrix (.e, UTU = UUT = I), andV is am x m unitary
matrix (.e, VIV =VVT =1), andX is an x m diagonal

In TM interpolation, looking for a low-rank solution that
strictly satisfies the measurement equations is likely th fa
because (i) the real TNK is often only approximately low-

) rank, and (ii) the measurements often contain errors. Sedads
whereu; andv; are theith columns oft/ andV respectively, e solve the following

and the matricesd; are (by construction) rank-1. We can
then create a rank-approximation X from the SVD by minimize [|[A(LR") — B||% + A (||L||F + ||1RIZ) . (12)
keeping only ther largest singular values in the summation

min(n,m) min(n,m)

X=Uusv"= > ouv/= > oA, (6)

i=1 i=1

and dropping the others: This solution aims for a low-rank approximation without
, strictly enforcing the measurement equations. The realar

X = Z oA, @) t!on parameter\ allows a tunable tradeoff betlwe_en a precise

= fit to the measured data and the goal of achieving low rank.

. o We derive L and R from (12) using an alternating least
The aboveX is known to be the best rankapproximation gqares procedure. We initialiZe and R randomly. We then
with respect to the Frobenius notfr||» of the approximation gq|ye the above optimization taking onelofind R to be fixed
errors, wheré|Z||r = /3", . Z(i, j)? for any matrixZ. That  and the other to be the optimization variable (which is a-stan
is, truncation of the SVD provides the natural solution to: dard linear least squares problem). We then swap their,roles
and continue alternating towards a solution till convemgen
(8) Our implementation of the alternating least squares pnaeed
in Matlab further utilizes sparse matrix operations to mizie
In Internet measurement, the SVD has most commomyemory requirement and maximize speed (details are omitted
appeared in the form of the Principal Components Analysikie to space restriction, but we will supply Matlab code on
(PCA), which has been used, for instance in anomaly deteequest). The above approach will be referred tdSparsity
tion [4], [17]. PCA is directly related to SVD by the factRegularized SVD (SRSVDiterpolation.

minimize  ||X — X||p,
subjectto  rankX) <.



D. Other Interpolation Algorithms matrices L and R that minimize the Frobenius néraf the
differenceA(L RT)— B over the observations. The approach is
There are a number of approaches that have been propog&§ similar to the SVD, except for insistence on non-nagati
in the recent literature for matrix interpolation besidégDS factor matrices. We avoid over-fitting by regularizing ireth
These algorithms can be classified as either low-rank approxame manner that we do for SVDe., we solve (12) but with
mation algorithms or local interpolation algorithms, de@@g the additional constraint of non-negativity. We implemere
on whether they exploit the global low-rank structure or thgyo most common algorithms for NMF: multiplicative update
local st_ructure_ and redundancy. We describe them here ng] and alternating nonnegative least squares. Both iligos
comparison with our approach. are designed for the case where the maffixs completely
1) Low-Rank Approximation AlgorithmsBaseline Ap- known. So we extend them to further cope with measurement

proximation: Many techniques (for instance PCA) implicitlyequ"’ltlons (2). The tW(_) "?"go_f'thms glve_S|m|Iar mte_rpcdau
assume that the data has zero mean. So our first step QSFformance, but mult|pI|ca_t|ve up(_JIate s more efficiers. S
dealing with network matrices might be to “center” them®!' results are based on this algorithm.

However, centering the matrices where we do not have all the?) Local Interpolation Algorithms:We also test one com-
data also requires interpolation. Our baseline approxanat Pletely different approachi-Nearest Neighbors (KNN). Sim-
algorithm implicitly constructs such an interpolation mpat PI€ nearest neighbors directly uses the nearest neighbar of
Xpase t0 cOmpute row and column means of the matrix. FPISSing value for interpolation. KNN extends this by using
instance, if we knew all elements of the inpkit then the row @ Weighted average of the nearest-neighbors’ values. For
and column sums ok — Xy, would all equal zero. Apart TMs (and many other datasets) |F is .dlfﬂcullt to apply KNN
from its use in zeroing the mean, it also forms an interpofati because the rows are ordered arbitrarily (for instancecbase

in its own right, and so we will compare its performance beloA® names of routers). So the nearest elements in the matrix
X may have little correspondence. Hence we need to derive

a good distance metric between matrix elements.
We use the approach described in [30]. We can perform the
algorithm on either rows or columns &f, but let us start with

variable | description

X | an estimate of the mean & over alli andj.
Xrow | @ vector of lengthm such that

Xrow(i) = an estimate ofy~; (X (i, ) — X)/n. rows. If two rows are similarife., two TM elements exhibit
Xcol | @vector of lengtm such that similar behavior), then it is natural to assume that one migh
Xone tﬁ";L(;S)eﬁngnezsz‘ée&%é;(’6;) - X)/m. provide a good interpolant of the other. Hence, we base our
Xpase(i,7) = X + Xrow (1) + Xeo1 (5)- distance metric on the similarity between rows,, the more
TABLE | similar two rows are, the closer together we consider them.
OUTPUTS OF BASELINE ESTIMATION Following [30], we measure the similarity by an approxiroati

to the correlation coefficient of the two rows based on only
those directly observed TM elements. To form this coeffigien
To computeX..., we use the variables described in Table V€ would ideally first subtract the mean, but as th_e mean is
In matrix form, we can represemty,... as a rank-2 approx- UNKnown we use our prox{yas.. The weights used in the
imation 10 X: Xpase = X + Xiowl? + 1X7,, wherel is a averaged neighbors z.;\re proportional to the similaritiey.[3
column vector consisting of all ones. We use the regularizedFormally, the algorithm proceeds by ) )
least-squares algorithm from [30] to compute X.ow, Xcol step 1 FormX’ = X — Xp.s. Where data is available,

from input A(-) and B. That is, we solve the following and zero othe_rwi_sg.
step 2  Compute similaritieS between rows ofX’

) — B||% C(u,v):ZX'(u,k)X’(v,k).

(13) k
S(u,v) = C(u,v)/+/C(u,u)C(v,v).

where ) is a regularization parameter. The first term in thisstep 3~ Find thek-nearest neighborsV(i,j) for each

minimize || A(X + X,owl1T +1XT

col

+A (XQ + ||XrOW||% + ||Xcol||%“) )

formulation minimizes the Frobenius norm of the difference missing point(¢, j) ignoring rowsk missing points
A(Xpase) — B, and the second regularization term helps avoid (k. 7). o _ i
over-fitting. step 4  estimate missing valu& (i, j) using weighted
average
SRSVD-base: Techniques Iikg PCA ﬁmplicitly assume that e (i X >oken(ig Sk, 3)X (k. 5)
the data has zero mean, but in TM interpolation we do not knn (7, ) = Xbase + Sk 7
ZkeN(i,j) ( ,J)

know the true mean. Instead we uX¥g,... as an estimate. It

is not obvious whether such centering is necessary or #siran our results we found that temporal similarity was strange

in interpolation, so we include results for both SRSVD a@@li than spatial similarity, so we perform the above algorithms
to X and SRSVD applied tX — X},.«. ). We refer to the latter

as SRSVD-base. 2There is nothing intrinsically special about the Frobemmgsm for this
N . Matrix F T N . Matri approach. The Kullback-Leibler divergence [32] has alsenbguggested but
onnegative Matrix Factorization: onnegative Matrix our experiments found that the performance of this appreashmuch worse,

Factorization (NMF) [31], [32] tries to find nonnegative fac and it is not presented here.



on columns first, and then on rows if enough neighbors witllso require specification of the input rank bfand R. Our
positive similarity are not found. evaluation in Section IV shows that SRMF is not sensitive to
An advantage of KNN is that it is computationally straighthe input rank parameter.

forward. It does not rely on convergence of some non-conve¥gice of 7:  The temporal constraint matri¥ captures
optimization problem. However, the choicelols problematic. o temporal smoothness of the TM. A simple choice for the
When applying this method, we found that in some cases |arQ§anoral constraint matrix i’ = Toeplitz(0, 1, —1), which
values were needed, but often the reverse was true. denotes the Toeplitz matrix with central diagonal given by
ones, and the first upper diagonal given by negative dres,
I1l. OUR SOLUTION: SPATIO-TEMPORAL COMPRESSIVE
SENSING I -1 0

The methods above are non-adaptive in the sense that o 1 -1 .
they do not account for the special properties of a particula T= .. (15)
traffic matrix. Particular TMs have been shown to have strong '
cyclical behavior [33] (often linked to the diurnal or wegkl

cycle of network consumers), and strong spatial struct4 [ Thi | . i intuitivel th
However, the spatial structure, in particular, is not knaaim IS temporal constraint matrix intuitively expresses taet

initio, and so we need to be able to estimate the type of spaﬂ?ﬂ?t TM&;; Tdd.Jace?]t points |r} (;|_rfrf1e are ofgen similar. For
structure operations to use for a particular traffic maffike Instanc I Just the matrix of differences between tempo-

i inimizi T\ T ||2
result is an algorithm that can adapt to the structures in tf‘%ly adjacent elemen_ts OX By minimizing ||(LE)T™ ||z
we seek an approximation that also has the property of

data, other than the pure structural sparsity exploitedhgy t™~ - . :
majority of the prior algorithms having similar temporally adjacent values. A more sophis-
The KNN approach is intrinsically different from the othett'catecj choice takmg '”_“.’ a_ccoun_t domain knowled_ge (say
knowledge of the periodicity in traffic data) can result im0

methods described above. It explicitly targets local strecin 4 all | bi |
a TM, whereas the low-rank methods look for global Structurgnprovements, and aflows a mos_t ar |trary_t¢mpora stect
to the approach. In general, it is not difficult to develop

and it estimates this structure as part of the aIgorithmsTHP .

is one of the key motivations for developing a method thﬁyc.h t_er_nporal madels of TMs, as they show strong signs of

seeks to capture both global and local structure. It cansist periodicity over 24 hours and.7_ day intervals (for obwou.s

two key components: (i) BARSITY REGULARIZED MATRIX reasons), however, in more difficult cases a more adaptive

FACTORIZATION (SRMF) for incorporating global spatio- approach such as used irbelow could be used.

temporal properties, and (i) a mechanism for incorpogatirChoice of S:  The spatial constraint matri% can be used to

local interpolation. express which rows of a TM are close to each other, but due to

the arbitrary ordering of rows in the TM, a simple matrix oéth

above form is not appropriate. We firtlby first obtaining an

initial TM estimate X using a simple interpolation algorithm,
The SRSVD approach starts with (12) to find global lowand then choosing based on the similarity between rows of

rank structure in the TM. On the other hand, we naagriori  x (which approximates the similarity between rowsXy.

know that the matrix has additional spatio-temporal strrest . , ,

e.g, TM rows or columns close to each other (in some sensé) COMPUting.X. In our current implementation, we take

are often close in value. We seek to exploit this insight in -X = “base-* (1 —M)+D.x M, where.x means element-

the new technique we propose here. We propose to solve the'ViS€ productM is defined in (4) and specifies which TM
following elements are directly measured, aiddcontains the direct

measurements. That is, we use direct measurements where
minimize || A(LR") — B||% + A (|IL]|% + || RI|%) available, and interpolate usingj,... at other points.
+ |IS(LRD||% + ||[(LRTYTT |2, 2. ChoosingS based onX . There are many possible methods
for choosingS based onX. For example, one general
where S and T" are the spatial and temporal constraint ma- method is to (i) construct a weighted graghwhere each
trices, respectively. MatriceS andT" express our knowledge  node represents a row df and each edge weight repre-
about the spatio-temporal structure of the Téy, temporally sents certain similarity measure between two rowsXof
nearby TM elements have similar values). We solve the above and (ii) setS to be the normalized Laplacian matrix [35]
optimization problem again using alternating least saaiare of graph G, which acts as a differencing operator 6h
We call the resulting algorithn$parsity Regularized Matrix and induces sparsity by eliminating redundancy between
Factorization (SRMF)It has the advantages of SRSVD, but similar nodes ofG (i.e., rows of X).
is more general, allowing us to express other objectivesim o We have experimented with several such methods. The

A. Sparsity Regularized Matrix Factorization

TM approximation/interpolation algorithm through difést following method for choosing based on KNN and linear

choices ofS andT. regression consistently yields good performance in our
Below we discuss how to choosg and 7. To better tests, and we use it in our evaluation. For each i@f X,

illustrate the idea and benefit of SRMF, we intentionally use we find the K’ most similar rowsj, #i (k =1,..., K).

relatively simple choices af and7'. Both SRSVD and SRMF We perform linear regression to find a set of weight)



such that the linear combi}gation of rows best approx- above,i.e,

imates rowi: X (i,%) ~ Y, w(k)X (ji,*). Assuming o .

that 31, w(k)X (ji,*) approximatesX (i, ) well, we Xsrursxan(i, 7) = kzb:‘ w(k)X (i, k). (16)

then setS(i,i) = 1 and S(i, ji) = —w(k). enors

Scaing of § and T:  Fiall we need (o scales | STSVDLSSENN: e il show at e sbove sporach
T T\T )

and T' properly so that||S(LE™)||r, [|((LE)T"||r, and the spatio-temporal constraints (given Byand T"), we also

Ty _ imi 1 J— ~
||“.4(LR ) = B||» are of similar order of magmtude .Ot.her.consider an algorithm that uses SRSVD-base as the prior in
wise they may overshadow each other during the optimizatign

of (14). In our experiments, we simply scafeandT' such ; e ngﬁl\?rocedure. We call the resulting algorithm SRSVD-
that [|SX||» = 0.1VX[[B|[r and [[XT7||p = VA|[Bllr, oo

where v/ ||B||r reflects the level of approximation error
||A(LRT) — B||F that we are willing to tolerate. Our results
show that such scaling yields good performance over a wideFor the basic network task of TM interpolation, we illusérat
range of scenarios and that the performance is not sensitiehe following the performance of our approach with real-
to the choice of\. Note that we intentionally makgSX||» world TM data where we generate a whole range of missing
smaller thar]| XT7'||» because we expect the temporal mod&Rlues scenarios, from purely random to highly structured

IV. INTERPOLATION PERFORMANCE ONTM DATA

obtained through domain knowledge is more reliable. scenarios, and from low levels of missing values to very high
levels. Comparisons to commonly-used alternative techasq
B. Combining Global and Local Methods attest to the effectiveness and robustness of our approach t

A quick preview of the (non-hybrid) performance resultéeal'world measurement Issues.

that follow shows that for small amounts of missing data,
KNN is the best performer (in most cases). On the othé Data
hand, for large amounts of loss, SRMF outperforms KNN. The The main dataset we use here is real TM data. The first
intuition behind this result is obvious. When only a few dattwo are the Abilene (Internet2) [36] dataset used previousl
points are missing, thé-nearest neighbors of a missing datén various studies [4], [5], [17], and theEANT TM dataset
point will be close by. There are strong temporal and spatiatovided in [37], and previously examined in [6]. Although
correlations in our data, so the nearest neighbors prowdd g these are now older datasets, we use them because they are
interpolants for the missing data. However, when there v&luable for comparisons with other work. In addition, we us
substantial missing data, the nearest neighbors will coora f one longer and more recent commercial TM dataset from a
further away. As the correlations between data points drdarge Internet service provider.
the low-rank global model of the data expressed by the matrixin addition, we use one set of SNMP link load data (also
factorization becomes superior. from Abilene) collected using the RRD tool [38]. Although

To take advantage of local structure and redundancy presthig is still traffic data, it has rather different charaggtcs to
in the TM, we use the low-rank approximation obtained bghe raw traffic matrix data. As with all SNMP data we only see
SRMF as a prior and augment it with a local interpolatiolink loads, and so there are only 28 rows in the data, but such
procedure. In this way, we obtain a TM estimate that is close diata is easier to collect, process and analyze, and so we have
the low-rank prior yet can account for constraints imposgd la longer dataset with finer resolutidre., the matrix we study
the local interpolation procedure. Note that such an amprodn this case has rather different size from our traffic masic
generalizes the Tomo-gravity method for TM estimation [12]{which are not so far from square).
[14], which uses a rank-1 approximatioire(, gravity model) The properties of the data are summarized in Table II.
as the prior solution.

The choice of the local interpolation procedure is applica- Dataset| Date | Duration | Resolution| Size |
tion dependent, and we present below two hybrid algorithms, Abilene TM | Apr. 2003 | 1 week | 10 min. | 121 x 1008

S Commercial TM| Oct. 2006 | 3 weeks | 1 hour 400 x 504
SRMF+KNNand SRSVD-base+KNNboth of which incorpo- GEANT TM | Apr. 2005 | Tweek | 15 min. | 529 x 672

rate KNN. Abilene SNMP | Jan 4th-Mar| 12 weekd 5 min. 28 x 23,498
SRMF+KNN: We first compute the SRMF interpolation ofl 28th, 2006

X. Call this Xggrmr. For each missing data point, ) we TABLE I

then examine its row to see if any of the elemeit§, j — DATASETS UNDER STUDY

3),...,X(i,5 + 3) are present. If we cannot observe any of

these neighbors, then we simply use the valigiir (4, 7).

but if we do have any of these values, we will use them to

better approximat& (i, ). We do so by forming a local model B- Methodology

for the temporal process using all of the other rows of the TM. The methodology we use here is to drop some data from
We perform a regression to find a set of weights) that best existing measurements, and then apply the interpolatigo- al
approximatesXsruvr (P, J) = D pensrs W(k) Xsrvr(p, k) for — rithm. This provides us with ground truth for comparisoneTh
all p =1,2,...,n. Then we apply a weighted linear inter-pseudo-missing data is not used in the interpolation dlyos
polation of the nearest neighbors, using the weights derivin any way.



The typical approach when measuring the performance of arlWe have examined many such graphs. Several approaches
interpolation algorithm is to drop data at random. We willrst are uniformly poor, so we do not examine them in further
our experiments with this case. However, in real measurésmedetail, in order to simplify our presentation.
of TMs there are different mechanisms that result in missing Figure 1 (d) shows the algorithms applied to SNMP link
data, and these result in the missing data having stru@ueh data. The results are substantively similar, though thierdif
structure is obviously important for interpolation, so wédlw ence between the various algorithms is much smaller, and
explore several structured models of missing data in Sectitor small loss, SRSVD-base+KNN performs marginally better
4.5 below. than SRMF+KNN. The size of the matrix in this dataset is

We measure performance using the Normalized Mean Awery different (it has only 28 rows, but many more columns)
solute Error (NMAE) in the interpolated values. That is, wéhan our TM datasets. We hypothesize that the smaller number

calculate of rows allows a lower-rank approximation to fit the data
S X () — X(' ) better, and that the larger number of columns provides more
NMAE — =03:M30,5)=0 I —— , (17) data, so most techniques can perform better in this case, but

2 gm(ig)=0 [X (@ 5)] nevertheless, SRMF+KNN still shows the best performance

where X is the estimated matrix. Note that vemly measure over the widest range of parameters.

errors on the missing valueso the NMAE is defined only D. Parameter Sensitivity and Settings

when there is at least one missing value, and will not apgiroac ] ) )
zero as the proportion of missing data decreases. We cothpute! "€ @lgorithms we consider have several input parameters.

three other performance metrics (root mean squared errbf€ Performance of these algorithms in relation to these
normalized root mean squared error, and the correlatidframeters is (in most cases) dependent on the dataset in
coefficient) but the results are substantively the sameaah e Guestion. In practice, when interpolating a real dataset, w
case we perform the process of randomly dropping data aWSUld not be able to precisely optimi2eandr for the dataset

reconstructing the matrix0 times. The results presented shoy! Guéstion, so it is desirable to have algorithms that are no
the mean NMAE. very sensitive to their values. In fact, all algorithms disp

some dependence on the parameter settings, and no single
. _ parameter setting is optimal for all datasets. However, we
C. Initial Comparisons found rough parameter settings that are never too far from
Figure 1 shows a comparison of algorithms for independegstimal.
random loss for data loss rates ranging from 0.02 to 0.98. WeThe first input parameter is the rank. Given our motivation
perform these algorithms using the same regularization afidm the compressive sensing literatuice,, that we will aim
input rank parametera = 0.1 andr = 8 for each global to minimize matrix sparsity or rank, it may seem strange that
algorithm, andk = 4 in KNN (we defer justification of these we input a rank when performing the algorithm. However,
choices to the section below). although they seek to minimize the rank of the decomposition
First consider the three TM datasets shown in Figure the algorithms work by optimizing ad and R that have a
(a)-(c). For low loss probabilities KNN achieves better-pefixed number of columns (the input rank). The final rank of
formance than SRMF. For high loss probabilities we sehe solution might be smaller.
that SRMF’s performance exceeds KNN. However, the hybridIn theory, as long as the input rank is greater than the
SRMF+KNN outperforms all algorithms over the whole rangeeal rank of X, the various algorithms will converge to the
of loss values. Interestingly, the hybrid is noticeablytiéethan correct matrix [22]-[24]. However, note that the theoratic
either method individually. results that inform our intuition here concern matriceshwit
Meanwhile, the hybrid SRSVD-base+KNN also performexact ranks, whereas our matrices typically have a number
well, though not as well as SRMF+KNN. The performancef small, but non-zero singular values. Moreover, there are
gap typically widens for large amounts of loss. This is beeaumeasurement errors in our data, so we cannot expect to get
under independent random loss, when the loss rate is meto error reconstructions.
too high, it is likely that the near neighbors of a missing Figure 2 shows a sample of performance results with respect
value are directly observed, making KNN an effective recpveto rank (note that the baseline algorithm is excluded here
strategy. However, when loss is large or when the loss idyighbecause it is a fixed rank-2 approximation). We find that most
structured (see Section IV-E), the performance gap betwesfthe rank-dependent methods have better performanceas th
SRSVD-base+KNN and SRMF+KNN widens. input rank increases. Although this is not always the cdse, t
The other methods all have worse performance. For ladeviations are minor. However, note the logarithmiaxis, so
loss, the baseline method is the worst (as we might expeélat the results suggest a decrease in the marginal impeavem
given it is only a rank-2 approximation). However, for highwith increasing rank. There is also an additional compaoieti
loss, the baseline performs surprisingly well, certaingttér cost for higher ranks, and we find that an input rank ef 8
than SRSVD, whose performance is very bad for high loss. a reasonable operating point for use on TM data. Going to
However, the SRSVD applied after baseline removal achieves- 16 yields only a very small incremental improvement at
reasonable performance over the whole loss range, in sothe expense of extra computation. On the SNMP link data,
cases almost as good as the simple SRMF. NMF performith fewer rows, we found that an even lower rank=£ 4)
poorly for all loss probabilities. performed as well, or sometimes better.
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Fig. 1. Interpolation performance for random loss (note tha legend is the same for plots (a-c) but we omit poorly grerfng approaches from plot (d)
to make the plot more legible.

The most important finding in these results, however, is tli@me tuning. None of the techniques is too sensitive. Among
relative insensitivity of the hybrid algorithm, SRMF+KNM  them, SRSVD is the most sensitive (overall). Larger values
general it is the least dependent on the input rank of all tleé )\ typically perform better although again sometimes this
algorithms. There is some improvement for higher ranks, bwend is reversed, and there are a number of cases where the
it is typically smaller than those of other algorithms. optimal case is around = 0.1. So we use this value in our

KNN does not use input rank, but rathér the size of experiments.
neighborhood. Figure 2 also shows the effectiobn the ~ Note again that SRMF+KNN is the most insensitive algo-
performance of KNN. We choose to ude = 4 for our fithm with Figure 3 (c) showing the most extreme case of
experiments, since it consistently avoids the worst rgsult Parameter sensitivity that we observed for this algorithm.

The final parameter of importance is the regularization pa- Comparison: Other Loss Models
rameterA, which determines the tradeoff (in the optimization%' P :
between the measurement constraints and the importance dis earlier noted, not all data loss is random [28]. Losses
rank. Larger\ leads to lower rank approximations, whereagre often highly structured, and in this section we examine
smaller values lead to approximations that are a better fit o effect this has on the results. The boldface name denotes
the data. Figure 3 presents three examples showing the typd§ label used in our datasets, wheveis replaced by the
variability we encounter over a range of values\offor three Percentage of rows (or columns) effected.
different loss rates and networks. KNN is omitted because 1. PureRandLoss: This is the simple random loss model.
does not use regularization. Once again note the logaiGtihmi Data points in the matri¥X are dropped independently at
axis — we are looking for order of magnitude effects here, not random with probability.



10

0.5 0.5 0.5 "
-©-SRMF \ﬂ\—ag\,
- SRMF+KNN 5
0.41 & SRSVD base 0.4 0.4 A
~#-KNN
w 0.31~*SRSVD base + KNN w 0.3 w 0.3r
< < <
= = =
Z0.2 ] z Oé e Z 0.2t
3
" 3 :
0. 0.1} 0.1}
02 4 8 16 O2 4 8 16 O2 4 8 16
rank r (or k in the case of KNN) rank r (or k in the case of KNN) rank r (or k in the case of KNN)
(a) Abilene, loss prob. = 0.2 (b) Commercial, loss prob. = 0.6 (c) GEANT, loss prob. = 0.95
Fig. 2. Sensitivity with respect to the input ramk(or k in the case of KNN).
0.5 0.5 0.5
-©-SRMF * *
-SRMF+KNN
0.4/l 4-Baseline 0.4 1 O.4§ V
-<-SRSVD base * *
w 0. . 1 .
<1:03 “7-SRSVD base + KNN liEJO3 liEJO3 )
= X » = =
=0 o o — < 702
e ;
0.H 0.1 ] 0.1
0 : : 0 : : 0 : :
107 107 \ 10" 10° 107 107 \ 10" 10° 107 107 \ 10" 10°

(a) Abilene, loss prob. = 0.2 (b) Commercial network, loss prob. = 0.6 (c) GEANT, loss prob. = 0.95

Fig. 3. Sensitivity with respect ta.

2.

. RowRandLoss:Random element loss, as presented aboﬁ

xxTimeRandLoss: This simulates a structured loss event into the matrix X).

at certain times if, for example, our monitoring equipmen6. ColRandLoss: It is perhaps less likely that a column of
became overloaded. In these cases, we may lose somethe original TM Z is dropped from measurement. One can
random proportion of the data at a particular point in time. construct scenarios where a software bug causes such an
We simulate this loss by choosing, at randox% of the error, but in fact we primarily consider the random column
columns of X, and dropping data from these at random loss scenario for completeness.

with probability g. In this section we examine the impact of the loss model

where a set of randomly chosen TM elements suffers frofRere are many ways of viewing this data. Due to space
lost data. This type of loss might occur where unreliablgnitations, we present here only a two summary figures (more
transport mechanisms are used to transport measuremegisajls appear in [25]). Figure 4 shows bar charts of the
Often the problems with such transport depend on thgrformance of the key algorithms for two different losselsy
locations where measurements are maelg,(locations across all loss models. The key observations are that for low
close to the management station are less likely to sufigy moderate loss, SRMF+KNN performs significantly better
congestion based losses). We randomly setg®b of the  5¢ross all loss models. When loss is higher, there are some
rows of X' to be effected. Note that the case 100Elemsases where the performance of SRSVD-base and KNN is
RandLoss corresponds to PureRandLoss. similar to SRMF+KNN, and occasionally slightly better, but

- XxElemSyncLoss:This simulates a structured loss evenfhere losses are highly structuree.d, AllElemSyncLoss)

where a group of TM elements all suffer from missing dat§rmF+KNN is always clearly superior.
from the same cause. Hence, the losses on each element

are synchronized. We do so by selectiogb of rows of Computational Times

X to be effected, and a set of times with probability L

Lost data comes from the intersection of the selected rows'/& measure the computation times of SRMF (KNN t"?"‘es
and columns. a small amount of additional time) on matrices of various
zes. The computation time is linear in the number of matrix

is not a particular realistic model for data loss. With flow cments, and quite reasonable.280 > 1000 matrix (with

level measurements, data are collected by a router. If tﬁa{:kr :hlo u;ed n theddecomposnml)ng can bg ggp(r;oxmgted
router cannot collect data, then an entire row of each T} 'ess than 5 seconds (using Matlab on a 2. Hz Linux

snapshotZ will be missing. The effect orX is to remove machine). Meanwhile, the computation time with respeact to

a set of structurally associated rows. We simulate this

B?r:easonably modeled by(r?). Figure 5 shows computation
dropping rows from the original TMZ (before it is formed times with respect to the number of rows and columns of the

matrix, and the input rank.
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V. APPLICATIONS We do not compare all possible algorithms for TM esti-

tiveness and robustness of our approach beyond the sim _[gllar tecrf\mquebs to s(;):veﬁ_a Eroblem mth sw:ulafr goals:
problem of interpolation to a much wider set of network task IScovery ot un-observed trattic. However, the goais o el
To this end, we consider the following different applicatmf somewhat broader_ — estimating a traffic matrix for the whole
matrix interpolation, where the meaning or importance &f tHnternet from the !|m!ted vantage that any one resear.cher or
missing values are determined by the application in questiJ‘etworL( matrllc;':lger 'Shl_'kﬁly to gave, Irom a somew?a;ldlffer?hnt
The general approach we use here is to remove some data f t_se (nz ow) whic thwe (:(no assurpe aval ?. fe n t'ls
existing measurements and then examine how well we A '(t)n' ar_1| grorle:ovtehr, evx;or assumes emporatm wm?l;
perform a particular applicatiore(g, tomography, prediction, IS not avaliable. FUTther periormance Improvements migh
anomaly detection) without this data. For instance, in tgec obtalneq by using more recently developed algoritheng,(
of prediction, we drop future data points and try to estima{&‘s]’ which also includes a temppral component). Howevgr,
these using the remaining data. This provides us with tijf¢ concentrate here on two existing algorithms — the_ gravity
ground truth for comparison. The pseudo-missing data is ng(;ietl and (;I'%mo-gl;awty B bdegause Ithe¥ usi a con?stenthhet
used in the interpolation algorithms so that we can perfor ata, and have Deen used in real network operations. the
fair comparisons between algorithms gravity model [14] is a simple rank-1 approximation to a $ng
' TM. It is known to be a poor estimator of real TMs, but
it has been successfully used as the first step in the Tomo-
A. Tomography gravity [14] algorithm. The latter is yet another regulatinn
A special case of the our approach is the network tomogﬂ%@sed on the Kullback-Leibler divergence between the tyravi
phy problem of inferring a TM from link-load measurementgnodel and the measurements.
In the interpolation examples discussed earlier, the caimss In this section we compare the gravity model and Tomo-
come from direct measurements. In network tomographyravity against three alternatives: the baseline appration,
the constraints are given by (1). However, it is common 8RMF, and Tomo-SRMF. In Figure 6 we show the perfor-
have some combination of these sets of measurements.nfance of the algorithms with respect to the proportion of
it is desirable to combine them to obtain the best possilttee TM elements that are missing, but note that in addition
approximation to the TM. In this case, we can simply defihe to direct measurement of the matrices, we assume we can
to incorporate both (1) and (3), resulting in a combined fignameasure all of the link loads on the networks. So in this figure
term of the form||A(LRT) — Y||% + |[|(LRT — D). M||%. 100% data loss corresponds to the standard network tomog-

A key contribution of this paper is demonstrate the effednation. For instance, most recently Bhaeti al. [29], used
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Abilene Commercial | GEANT ; ;
Tomo-gravity | 0.197 70197 0292 7 0.292| 0,441 1 0439 we can use the temporal pattgrn in the data more crea.t|vely
Base | 0.321/0.233| 0.566/0.380| 1.198 / 0.489 we can make progress. For instance, rather than using a
SRMF | 0.280 / 0.204| 0.483/0.285| 1.185/0.516 simple nearest neighbors technique, we use seasonal heares
Tomo-SRMF | 0.227/0.155] 0.288 /0.203] 0.433 /0.240 neighbors. TMs show strong diurnal patterns, and so it is not
TABLE Il

surprising that offsetting neighbors by the 24 hours pehasl
benefits. In essence, the seasonal nearest neighbor approac
assumes that today’s traffic has the same pattern as yeserda
Likewise for SRMF, we do not need to use the spatial
constraint matrix, as an entire slab of the data is missing
(the future data we are trying to predict). However, to alkow
raphy problem. As this part of the figure is important, bufair comparison with seasonal nearest neighbors, we akso us
relatively hard to read, we have duplicated key performangeasonality in constructing odr matrix. We construct a dif-
metrics in Table Il1. ference matrix, but where the interval between the diffeesn
First, note that the gravity model is so bad that its resulis 24 hours.
lie off the scale. The baseline technique is the second worsfFigure 7 shows the results with respect to the proportion of
in most cases, but is still much better than the gravigata being predicted. Note that SRMF outperforms the other
model. Second, SRMF performs poorly at the pure netwot¥chniques, and further that SRMF’s performance degrades
tomography task where no direct measurements are availallgry slowly as the length of data being predicted increames (
However, if even a few (as few as 0.5%) of the TM elementRe training data gets correspondingly smaller). This show
are directly observed, then SRMF's performance improvesat typical TMs exhibit temporal regularity and SRMF can
dramatically, whereas Tomo-gravity’s performance imgV effectively take advantage of it.
roughly linearly with respect to the increase in informatio
Finally, by combining SRMF and Tomo-gravity, Tomo-SRMFE .
gets the best of both worlds and significantly outperfornMeaC' Anomaly Detection
individual method by itself. Figure 6 and Table Ill show the A common task in network operations is finding problems.
improvements. There are specific tools for finding some problengsg(
Note that Soulet al.[11] also propose to incorporate flow-SNMP is commonly used to find link failures), and other
level measurements in TM estimation. Compared with théioblems such as specific attacks can be characterized by
“third generation” TM estimation methods, Tomo-SRMF hag signature which signals the attack. However, both of the
two key advantages: (i) it does not require any expensi@d@ove approaches rely on pre-knowledge of the problems that
calibration phase in whickntire TMs are directly measured, we will encounter. There is a complementary need to find
and (i) it is highly accurate and can reduce the error ¢fanticipated problems in networks.
Tomo-gravity by half with only 0.5-5% observed TM elements Such problems cannot be characterized before-hand, and so

(whereas 10-20% directly observed TM elements are requiré@ method commonly used to detect suafomaliesis to
according to [11]). find significant differences from historical observatiokBost

approaches involve some transformation of the data follbwe
. by outlier detection [5]. Common examples include simple
B. Prediction filtering of the data, Fourier transform, wavelets, or PCA.
In this section we consider the behavior of SRMF witfThe transform is aimed at separating the “normal” space of
respect to TM prediction. We do so by dividing our data inthistorical events, from the anomalous space. Techniguss su
two segments, an initial training segment up to some timeas PCA do this explicitly, while others rely on commonly
and then a test segment over which we try to predict the TMbserved properties. For example, Fourier techniquesarely
Prediction is rather different from the general problem dhe normal data primarily inhabiting a low- to mid-frequgnc
interpolation. Several techniques (SRSVD and NMF) judt faspace, so that anomalies involve high-frequencies sudioas t
KNN does not work well because there are no temporaligcurred by a rapid change. Outlier detection can be pedrm
“near” neighbors, and no spatial neighbors at all. Howei¥er,by taking the normal model of the data, and comparing its

NETWORK TOMOGRAPHY PERFORMANCETHE FIRST NUMBER IS THE
PERFORMANCE WHERE WE HAVE NO DIRECTTM MEASUREMENTS, THE
SECOND SHOWS WHERE WE MEASURE ONL®.5%O0OF THE ELEMENTS
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Fig. 7. Network prediction performance.

values at each time point with the real data, and then seeking throughout most of the paper, but it can equally be
points where the difference exceeds some thresiold thought of as an approximation algorithm. Here we apply
In this section we will compare several approaches to SRMF directly to the traffic datincludingthe anomalies,
anomaly detection. To keep things simple so that we can much as one would with SVD, to find a model against
gain an intuitive understanding of the various properties o which we compare the actual traffic. Large differences

different approaches, we will consider only three algaonish indicate anomalies. Our technique, however, is truly spati
one temporal, one spatial, and our spatio-temporal approac temporal as the model that we create involves both the
The three approaches we use are spatial and temporal properties of the underlying TM. The

. . ) L . . low-rank approximation is then used as a model for the
1. Differencing: Differencing is a standard time-series tech-  ,ma| data, and the differences between this and the real
nique to remove linear trends (typical traffic data are non- i ¢ic are used to signal anomalies. Once again, we use

stationary, and over periods of minutes to hours can often {he standard method of thresholding these differences to
be reasonably approximated as having a linear trend). yetect outliers.

Differencing also highlights sudden changes, such as we
would see in a traffispikeor a level shift [5]. Implicitly, We will compare each of these algorithms using simulations.
differencing is using the data from the previous tim&ingberget al. [19] explain in detail why simulation should
step as a model for the current time, and so it has nlp@ used for accurate comparisons of anomaly detection tech-
received a great deal of consideration in the networkiniques. In brief their reasons are: (i) accurate and complet
literature, but it provides a simple temporal benchmaigound truth information is needed to form both false-alarm
against which we can gain some intuition. We can writend detection probability estimates (both are needed for-co
the differencing operator as post-multiplication &f by parisons, as one by itself can be entirely misleading); (ii)
T = Toeplitz(0,1,—1), a purely temporal operation thatmany more results are needed (than one can obtain from
makes no use of spatial correlations between TM elemerfigta) to form accurate estimates of probabilities, ang (iii
2. PCA/SVD: PCA/SVD has received much interest fosimulation allows one to vary parameters (say the anomaly
network anomaly detection in recent years [4], [5], [17]Size) to study their effects. Simulation is necessary, kit n
[19], [39], and is the most common spatial technique faufficient for validation, so we expect that further work is
anomaly detection. As noted earlier, PCA/SVD is appliedeeded on this type of anomaly detection before it is used
by choosing the rank of the normal subspace (based oy network operators.
the power contained in the first singular values), and Our approach to simulation is intended to highlight the
projecting the input dat&X into the abnormal subspace features of the different techniques. We make no claim tiat t
where artifacts are then tested for size. Implicitly, we argmulation is completely realistic, only that it clearljuistrates
looking at the difference between the normal model dhe properties of the different anomaly detection techesu
the data created by the low-rank SVD approximation anfe simulate in two steps: we first create the normal traffic,
the data itself. Intuitively, the process builds a (simplegnd then inject anomalies. We create the TM by an orthogonal
model from the historical relationships between TM eleomposition of a synthetic gravity model TM [34] in the
ements. New time points are compared to see if thepatial domain, and a periodic Norros model [40], [41] in the
satisfy this relationship. If not, they are declared to bemporal domain. Both models have arguments in their favor
anomalies. It is a purely spatial technique, since reongeribut principally we need to create a TM with low rank, but
of the data in time (the columns of) has no effect on some local spatio-temporal structure that we might find in a
the results. Interestingly, compressive sensing ideas haeal TM.
already appeared in the context of PCA based anomalyWe use this model to generate 100 instances of the TM
detection [39], though in that context the goal was t& consisting of one weeks worth of measurements at 15-
reduce the volume of data transmitted to a NOC, and th&inute intervals. In each instance we inject one anomalg. Th
missing data could be controlled, whereas in our conteahomaly is a spike added to the TM at a single randomly
the missing data are out of our control. chosen time point, so that one anomaly cannot interfere with
3. SRMF: SRMF is used for interpolation of missing datahe detection of another. The value of the spike is a vector
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f PN -~ ) Differencing.
> % M - For moderate sized anomalies, both techniques have perfect
% 0.8- ! 1 detection records. These anomalies are not particularty toa
2 f detect whichever method one uses. On the other hand, when
206’ K i we consider large anomalies, a different story emerges. The
S04l | larger anomalies pollute the data used to create the normal
3 & -&-Differencing subspace in PCA/SVD, and this has a tangible effect in tleat th
302 -©O-SVD detection probability drops dramatically. Note that althb

< SRMF the false-alarm probabilities of the Differencing and PEXD
10t 10° 10" 10 methods are slightly different, the detection probabilitly

anomaly size

PCA/SVD drops almost to zero, whereas Differencing main-

tains its perfect detection record. So we can discount ti@mi
difference in false-alarm probability as causing this droipe
result is consistent with those observed in data [19].
] ) . A solution might be to temporally pre-filter the data to
of Gaussian random variables (in each element of the TWimove large anomalies, and then apply PCA/SVD. This intro-
but we normalize the total size of the spike (measured by {$ces the problem of interpolating data, which we have noted
L norm) to be a fixed size, which we vary from 0.1 to 10Qsefgre. A preferable approach would be to use an approach
Spikes of size 0.1 (in our dataset) are almost indistingi8h 5t deals well with both ends of the spectrum. SRMF provides
(by the naked eye) from the standard random variations in thgch 4 method. Figure 8 shows its performance. We can see
traffic. Spikes of size 100 are much larger than the typical T4t jts detection probability is almost indistinguistetilom
elements, and so are easily observed. We then apply each@f petter of the two other methods for each anomaly size. So
the three techniques above to create a “normal” traffic vectgrnE provides a method that deals well with the complete
and detect anomalies by thresholding on differences betwergnge of anomalies.
the normal and measured vector. Note that we do not haveanother alternative comes from Brauckheffal. [42] where
missing data in the inputs (it is not obvious how to fairly, standard extension of PCA was used to improve the perfor-
compare the three algorithms when there are missing da{tance of PCA for traffic anomaly detection. The approach
given the better interpolation performance of SRMF). Hovev ¢4 with correlations between measurement intervalagal
the anomaliesre included in the inputs, so that both SVD andyjth the standard spatial approximation used in PCA. In that
SRMF can be compared fairly. sense they also propose a spatio-temporal solution to the
An important detail is the choice of thresholds for outlieproblem, however, there is no attempt to deal with the pioltut
detection. Non-stationarity in our data makes settingste of subspace estimates from large anomalies.
olds more difficult than in some problems. For instance, in SRMF does this through its use of a spatio-temporal model.
PCA/SVD the anomaly pollutes the data used to create thethe case where the spatial model is more effective (small
normal subspace, and so invalidates the standard stakistignomalies) this is the part of the algorithm that is “biting”
assumptions used to determine thresholds [19]. So it is hayflereas when the anomalies are large, they are being ditecte
to theoretically derive thresholds that produce the sansefa in the temporal domain, essentially by differencing. What w
alarm probabilities for large and small anomalies. Insteagee here is that by imposing temporal smoothness consbraint
we choose the threshold empirically to fix the false alarmp?”, the effect of contamination is much smaller. Intuitively,
probability. We perform a number of simulations, and choo$ftoo much energy leaks into the normal subspace (as in PCA),
a threshold such that the false alarm probability falls at tAen the projection oX into the normal subspace is no longer
suitably low valuel0~? (in practice even smaller values maysmooth, which would then result in a too big penalty in the
be desirable, however, estimation of very small probaédit smoothness term. Thus the smoothness term helps to limit the
becomes problematic). We then plot the detection proligbildamage of contamination — the problem seen in PCA/SVD.
and compare these. Moreover, the technique of [42] cannot be easily extended
Figure 8 shows the detection probabilities for the three deal with missing data. Although we use SRMF here purely
techniques. First, let us compare PCA/SVD and Differencirig derive an approximate model for the typical traffic, it den
for small anomalies. When anomalies are small (in valuaped to both interpolate and approximate, and hence totdetec
and hence the differences they create will be small, tl@momalies where data is missing, something that most ayomal
probability of detection of these differences will be smhlibte detection algorithms cannot do without a preprocessing ste
that, even though we allow a larger false-alarm probabilityf interpolation.
as the anomalies get smaller, the detection probability forNote that we do not argue that with the naive choices of
Differencing drops dramatically. On the other hand, PCAISVtemporal operatof” that we use here that SRMF is the best
exploits the spatial relationships between the data el&snemrediction or anomaly technique for TMs. Given the wealth
It uses all the information available at a particular timef methods available for these applicatioresg, see [5]),
point instead of processing the information from each tim@ne can undoubtedly do better by more careful choic& of
sequence independently. While the performance of PCA/S\HIbwever, there is a lesson to be learned here. First, our regu
also declines for smaller anomalies, it is much better théarization approach can be generalized to apply to anylinea

Fig. 8. Detection probability (for fixed false alarm prodapiof 10~?).
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prediction/anomaly detection technique through appederi there will be no measurements for the majority of the TM
choice of T. In each case we would hope for performancelements, mainly because most ASes view this as sensitive
improvements as well, but the more important aspect of thiformation and are generally not willing to share it with
work comes from the features we have demonstrated abotrerd parties. However, in view of our results, just a few
(i) our approach naturally deals with missing data, (ii)anc measurements of a few TM elements (say from a small
flexibly include additional data sources.g, link data), and number of contributing ASes), maybe combined with some
(iii) anomaly detection (and exclusion) are an inherent pér inter-AS link measurements or some other linear combinatio
the algorithm. We argue that these are ideal features for awfyavailable TM data could provide enough information for
set of algorithms based on TMs. an algorithm such as SRMF to obtain an approximate inter-
domain TM. An important note is that not all of this hard-
to-come-by information would be needed from the same time
interval, and that even different measurements intervédhim

By drawing on recent developments in compressive sensibpg accommodated through interpolation.
and relying on readily available domain knowledge in the
area of TMs, we present in this paper a unified approach
to measurement and analysis of TMs. We achieve this Bgknowledgments
applying our recently developed spatio-temporal compres-We thank the many people who have provided feedback on
sive sensing framework that exploits the presence of bathis work for their valuable input. This work was supportad i
global structure €.g, low rank) and local structuree(@, part by NSF grants CNS-0546720, CNS-0615104, and CNS-
spatio-temporal properties) in real-world TMs. Whether a@627020, and ARC grants DP0665427 and DP110103505. We
plied to TM estimation ite., tomography), TM prediction, would also like to thank IPAM at UCLA for providing a forum
or anomaly detection, our algorithms consistently outpenf for many valuable discussions related to this work, and the
other commonly-used methods and do so across the whalsilene and GEANT networks for providing data.
range of missing values scenarios, from purely random to
highly structured scenarios where whole columns and/osrow
of a TM are missing, and from very low levels of missing
values to very high levelse(g, 90% and more). The main [1] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weightsa changing
reason for the superior performance of our proposed teakniq \r’]"gﬂgv" 'EE% go%ga'zggzse'ecmd Areas in Communicatjovs!. 20,
wh_en compared to i_ts most widely-used competitors is itfz] M.'R’Oﬁghan‘ M. T’horup" and Y. Zhang, “Traffic engineerimgth
reliance on truly spatio-temporal models of TMs that ca@tur ~ estimated traffic matrices,” i\CM SIGCOMM Internet Measurement
much of the localized structure inherent in actual TMs. The Conference (IMC)Miami Beach, FL, USA, 2003, pp. 248-258.
reported results confirm the effectiveness and robustnss ﬁé :' Eékch?::"vﬁfji:gggi;\'ne;‘;vz’rkMD'eé'%'\‘,e'\ﬂ;”rgg” I;ilt{f”é"fmbglzz%k’
our approach to many real-world measurement issues and and N. Taft, “Structural analysis of network traffic flowsji ACM

highlight the practical relevance of our algorithms for litez SIGMETRICS / Performanc@004.

PR : : [5] Y. Zhang, Z. Ge, M. Roughan, and A. Greenberg, “Networlorang-
with important network engineering tasks. raphy,” in Proceedings of the Internet Measurement Conference (IMC
There are a number of avenues for future work. From an '05), Berkeley, CA, USA, October 2005.

algorithmic perspective, it is worthwhile to note that manyl6] D. Alderson, H. Chang, M. Roughan, S. Uhlig, and W. Wier,

. . . . “The many facets of Internet topology and traffidiletworks and
of the techniques described here (including SRMF) naturall Heterogeneous Mediavol. 1, no. 4. pp. 569-600, December 2006.

extend to tensorsi.¢., multi-dimensional arrays), so that the [7] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexfeand
original (unvectorized) TMs can be analyzed directlg, as F. True, “Deriving traffic demands for operational IP netisrMethod-

_ : : ; - : : ’ ology and experience,IEEE/ACM Transactions on Networkingp.
true 3-d objects with traffic source, traffic destinationd &ime 265-279, June 2001,

as the three axis. Such a tensor treatment of TMs has gregt . varghese and C. Estan, “The measurement manifesto,2rid
potential and presents an opportunity to build more sophis- Workshop on Hot Topics in Networks (HotNets-2p03.

ticated spatio-temporal descriptions of the TM, incIudialg [9] Y. Var(_ji,“‘Network tomography,”Journal of the American Statistical
Association March 1996.

more detailed modeling of the spatial and temporal corrsttra'[lo] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyyad a@. Diot,
matricesS andT'. “Traffic matrix estimation: Existing techniques and newediions,” in

; ; _ ACM SIGCOMM Pittsburg, USA, August 2002.
From an apphed view, our work to date has focused eﬁl] A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Saktian, A. Nucci,

clusively on intrg-domain TMs. However, applicati_o_ns O_é th M. Crovella, and C. Diot, “Traffic matrices: Balancing measuents,
proposed techniques to other types of TMsg( arising in inference and modeling,” iIMCM SIGMETRICS2005, pp. 362-373.

the context of data centers [43]) and, more generally, to tHg! Y- Zhang, M. Roughan, N. Duffield, and A. Greenberg, ‘Fascurate
. . LT computation of large-scale IP traffic matrices from linkded in ACM
more diverse set of network matrices loom as an intriguing s|GMETRICSSan Diego, California, June 2003, pp. 206-217.

open problem. In particular, inter-domain TMs that deseritj13] Y. Zhang, M. Roughan, C. Lund, and D. Donoho, “An infotioa-

the volume of traffic exchanged between pairs of ASes in the theoretic approach to traffic matrix estimation,” ACM SIGCOMM
. . . Karlsruhe, Germany, August 2003, pp. 301-312.
Internet per time period are of great interest to reseascied [14] ——, “Estimating point-to-point and point-to-multipt traffic matri-

network operators alike, but essentially nothing is knowors ces: An information-theoretic approachEEE/ACM Transactions on
them (for an initial attempt, see [44]). Our results providg_  Networking vol. 13, no. 5, pp. 947-960, October 2005.
.. directi f timati h tri I[lg]_5] Q. Zhao, Z. Ge, J. Wang, and J. Xu, “Robust traffic matskireation
a promising new direction for esimating such matrices. with imperfect information: making use of multiple data Ewes.”
the context of inter-domain TMs, the main challenge is that SIGMETRICS Perform. Eval. Revol. 34, no. 1, pp. 133-144, 2006.

VI. CONCLUSIONS ANDFUTURE WORK
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