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Abstract—Despite advances in measurement technology, it is
still challenging to reliably compile large-scale networkdatasets.
For example, because of flaws in the measurement systems or
difficulties posed by the measurement problem itself, missing,
ambiguous or indirect data are common. In the case where
such data have spatio-temporal structure, it is natural to try
to leverage this structure to deal with the challenges posed
by the problematic nature of the data. Our work involving
network datasets draws on ideas from the area of compressive
sensing and matrix completion, where sparsity is exploitedin
estimating quantities of interest. However, the standard results on
compressive sensing are (i) reliant on conditions which generally
don’t hold for network datasets, and (ii) don’t allow us to exploit
all we know about their spatio-temporal structure. In this paper
we overcome these limitations with an algorithm that has at
its heart the same ideas espoused in compressive sensing, but
adapted to the problem of network datasets. We show how this
algorithm can be used in a variety of ways, in particular on traffic
data, to solve problems such as simple interpolation of missing
values, traffic matrix inference from link data, prediction , and
anomaly detection. The elegance of the approach lies in the fact
that it unifies all of these tasks, and allows them to be performed
even when as much as 98% of the data is missing.

Index Terms—Compressed sensing, Interpolation, Prediction
methods, Tomography.

I. I NTRODUCTION

Network data can often be arranged in the form of multi-
dimensional arrays (e.g., matrices or tensors). For example,
traffic measurements that specify the traffic volumes ex-
changed between origin and destination pairs in a network
during a given time period naturally form a 2-dimensional
matrix or, when viewed over multiple time periods, a 3-
dimensional array or tensor. The resulting objects are known
as traffic matrices (TMs)and are prime examples of network
data. They are a critical input to many network tasks including
traffic engineering [1], [2], capacity planning [3], and anomaly
detection [4], [5]. Due to their importance, there is now a
substantial body of work on TMs, for instance see [6] and
the references therein. The thrust of much of this research has
been on measurement [7], [8] and inference [9]–[16] of TMs,
and more recently on topics such as anomaly detection [4],
[5], [17]–[19]. At the same time, TMs serve as important
examples that network data, due to the engineered nature
of the underlying network, are often highly structured, with
pronounced spatial or temporal dependencies.
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A key challenge that lies at the heart of many problems
involving network data is how to cope with missing values.
Missing values are common in measurement of real-world
systems and can have a detrimental effect on many network
tasks, especially those that require complete information.
Using the example of TMs and applying novel interpolation
techniques for accurately reconstructing missing values in TMs
based on direct and/or indirect measurements, we provide in
this paper a unified approach to several common network
tasks involving measurement and analysis of network data.
Our approach uses the first truly spatio-temporal model of
TMs and performs well for network tasks ranging from TM
estimation and prediction to anomaly detection. A critical
feature of our proposed method is that it combines key ideas
and recent results from the active area of compressive sensing
with detailed domain knowledge that has accumulated over
the last few years of TM research.

Motivation: In practice it is challenging to reliably measure
TMs for large networks. First, in many networks the TM is
not directly observable, and can only be estimated through
link load measurements. Such measurements, while linearly
related to the TM itself, are not sufficient to unambiguously
identify the true TM. Typically, the problem has been posed as
an underconstrained linear-inverse problem, where the solution
relies on a prior model of the TM (e.g., the Poisson model of
Vardi [9], the gravity model [12], [14], or the independent flow
model [16]). Second, although many networks now collect
(sampled) flow-level measurements for at least part of their
network, there are still serious impediments toreliable large-
scale or network-wide TM data collection: data collection sys-
tems can fail, flow collectors often use an unreliable transport
protocol, and legacy network components may not support
flow collection or be resource-challenged. Third, scalability
requirements may mean that flow-level collection cannot occur
at the edge of a network (where we would wish it for true TM
recovery [7]), but has to be restricted to just some subset of
the routers. Finally, when we find an anomaly in a set of TMs,
we often need to know the non-anomaly-related traffic either
for other network tasks, or just so that we can infer the cause
of the anomaly.

Recognizing this aspect of real-world networks, any large
set of TM measurements is bound to have some, and quite
often, a significant number of missing values, and recovery
of the actual ingress-egress TM from such incomplete data is
non-trivial. At the same time, the accurate reconstructionof
missing values from partial and/or indirect TM measurements
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is important because many network engineering tasks that
require TMs are either intolerant or highly sensitive to missing
data.Interpolationis the mathematical term for filling in these
missing values. In the context of matrices, interpolation is
sometimes referred to as matrix completion, and there is now
a developing set of methodologies for solving such problems
usingcompressive sensing, a generic methodology for dealing
with missing values that leverages the presence of certain
types of structure and redundancy in data collected from
many real-world systems. Compressive sensing has recently
attracted considerable attention in statistics, approximation
theory, information theory, and signal processing. Several
effective heuristics have been proposed to explicitly exploit
the sparse or low-rank nature of empirically obtained matrices
[20]–[24]. Meanwhile, the mathematical theory of compressive
sensing has also advanced to the point where the optimality
of many of these heuristics has been proven under certain
technical conditions on the matrices of interest [20]–[24].

Contributions: Despite much recent progress in the area of
compressive sensing, our evaluation of existing compressive
sensing algorithms on real TMs has shown that they do not
perform well [25], and moreover, are not flexible enough to
encompass the range of applications we wish to address. Real
TM measurements often violate the mathematical conditions
under which existing compressive sensing algorithms are de-
signed to operate and are provably optimal. Our approach
(originally proposed in [25]) is SPARSITY REGULARIZED

MATRIX FACTORIZATION (SRMF). It finds sparse approx-
imations (in the sense that they are low-rank) to TMs, aug-
mented by spatio-temporal operators and local interpolation to
achieve high accuracy. While most of the known approaches
are best described as purely spatial (e.g., [4], [12], [14], [16],
[17]) or purely temporal (e.g., [9], [26]), to the best of our
knowledge, SRMF represents the first genuine spatio-temporal
model of TMs, and its performance in problems involving
interpolation with real TMs is excellent. Low-rank approxi-
mation combined with spatio-temporal modelling works well
for high-loss scenarios, while local intepolation allows it to
perform equally well for low-loss scenarios.

We present in this paper the results of a detailed study where
we apply our SRMF approach to a wide range of TM-related
problems including network tomography, traffic prediction,
and anomaly detection. Using real TMs from three operational
networks to evaluate the effectiveness of our approach in these
diverse applications, we show that our SRMF-type algorithms
consistently outperform other commonly-used methods and
do so across the whole range of missing values scenarios,
from purely random to highly structured scenarios where
whole columns and/or rows of a TM are missing, and from
very low levels of missing values to very high levels (e.g.,
90% and more). While it may be surprising that such good
performance can be achieved with so little data, our results
are an indication of the degree of structure present in real-
world TMs and the fact that our approach can find and
exploit this structure. Indeed, the main reason for the superior
performance of our techniques when compared to their most
widely-used competitors (e.g., PCA, Tomo-gravity [12], [14],

or independent flows [16]) is their reliance on truly spatio-
temporal models of TMs that are capable of capturing much
of the global and local structure inherent in actual TMs.

We have applied our approach to matrices with close to
a million entries, and our algorithms can process them in
only a few seconds. In fact, the algorithms we developed
scale linearly with the size of the data so that in principle,
much larger matrices can be analyzed. Such larger matrices
arise naturally in the context of TMs (e.g., the AS-level TM
that gives the traffic volumes exchanged between pairs of
Autonomous Systems over some time period), but also in
many non-TM-related applications. For example, measuring
the performance between origin and destination nodes in a
network during some time interval yields so-callednetwork
matrices, with delay matrices denoting the special case where
the performance measure of interest is delay. While these
network matrices are notorious for containing many missing
values, they are also known to exhibit a significant degree
of structure or redundancy. They are therefore natural can-
didates for our spatio-temporal compressive-sensing inspired
approach, and one of our future research efforts will be to
extend our approach to such datasets and beyond. Our method
will not work on unstructured data, but its effectiveness and
robustness to real-world measurement issues are demonstrated
in this paper. The results suggest that the approach can be
applied when large amounts of missing data exist in much
larger and more diverse datasets than considered in this paper,
provided they exhibit equally strong spatio-temporal structure.

Last but not least, the fact that we can perform such a variety
of network tasks so well with so little data suggests funda-
mental changes in the way TM measurements are collected
in practice. Much as sampling has enabled large-scale flow
collection, the type of SRMF-based techniques considered in
this paper can enable truly network-wide collection of TM
data that is provably robust to the existing impediments to
reliable measurement of TMs. In this sense, our work adds
traffic matrices to the set of examples where compressive
sensing theory asserts that one can accurately recover certain
objects from far fewer measurements than traditional methods
use [27]. Exploiting this observation in practice for more
efficient, effective, and robust TM data collection will be part
of our future work.

II. BACKGROUND

A. Traffic Matrices

A Traffic Matrix (TM) is a non-negative matrixZ(i, j)
that describes volumes of traffic (in bytes, packets, or flows)
between a sourcei and a destinationj. For a network withN
locations the TM is a squareN × N matrix. In practice we
need a number of addenda to this simple definition. First, a TM
is typically measured over some time interval, and the value
reported is an average. So we denoteZ(i, j; t) to be the traffic
from i to j averaged over[t, t+∆t). We call the TMZ(∗, ∗, t)
a snapshotdespite the fact that it really represents an interval.
Second, although it is common to speak of “origin-destination”
TMs, it is often difficult to accurately map IP addresses present
in traffic to the true origin and destination of traffic when we
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examine a network or Autonomous System (AS). So typically
the matrix is aggregated into a router-levelingress-egressTM,
where Z(i, j; t) describes the traffic entering a network at
router i, and leaving at routerj.

The TM may be thought of as a3-dimensional arrayZ ∈
R

N×R
N×R

m (where there arem time intervals present). It is
common to take a TM snapshot and stack the columns to form
a column vector which we denotext. We can compile these
vectors into the columns of a larger matrixX ∈ R

n × R
m

(where n = N2), and this form of the TM is often more
convenient for algebraic manipulation than a3-dimensional
array. The columns ofX represent the TM at different times,
while the rows represent the time evolution of a flow.

One example of how this notation is useful is in TM
inference (the so-called network tomography problem [9]).In
this problem the TM is related to the more easily measured
link loadsY by the following linear matrix equation

Y = AX, (1)

whereA is the routing matrix, which expresses which links
are used by which routes1. TM inference involves finding the
“best” solutionX̂ to (1) from link-load measurementsY .

More generally, we can combine link measurements with
additional TM measurement strategies, which often yields a
better estimate of the TM than using each individual type of
measurements by itself [15]. For example, flow-records are
typically collected at ingress routers [7]. In this case, each
router sees one row of a TM snapshot, so over time, router
i seesZ(i, ∗, ∗). Missing data from a single router means
we will be missing a row ofZ, or a group of rows ofX .
Flow-records could also be collected at egress or backbone
routers. In this case, although it is difficult to unambiguously
determine the ingress router for the observed traffic, we can
still form a set of linear constraints on where the traffic could
have originated. An alternative measurement strategy [8],[14]
is to collect local TMs at each router, which can again
be represented as linear constraints on the global TM. In
combination we have a set of linear constraints on the TM,

A(X) = B, (2)

whereA(·) is a linear operator, and the matrixB contains
the measurements. The operator expresses the information
available in our measurements. Note that the presence of
missing data is implicit in (2); for instance, the operatorA
could include TM measurements at ingress routers with no
measurement errors (but with missing data), by writing (2) as

M. ∗ X = M. ∗ D, (3)

whereD(i, j) contains the direct measurements (where avail-
able) andM is a N2 × m matrix given by

M(i, j) =

{

0, if X(i, j) is missing.
1, otherwise.

(4)

and.∗ denotes an element-wise product,i.e., A = C.∗B means
A(i, j) = B(i, j)C(i, j). When both link measurements and

1Issues such as changing network topology or routing have been dealt with
in practical network tomography algorithms [5], [14].

direct measurements are available, then constraints (3) will
(typically) be incorporated into (2) to simplify notation.

In addition to the above concerns we note that all data
sources contain errors. Flow-level collection usually involves
sampling, often at quite high rates, and the Simple Network
Management Protocol (SNMP) used for collecting link mea-
surements is often noisy [28].

We seek an estimated TM̂X that satisfies the conditions
imposed by the set of measurements. However, as is the
case in many such linear-inverse problems, there may not be
enough information to unambiguously determineX . We call
theseunderconstrainedlinear-inverse problems (in the case
of TM estimation from link data, the problem is very highly
underconstrained). To solve such problems, we can use side
information about the nature of the TM being considered, for
instance the gravity model of [12], [14] or independent-flows
model of [16]. Regularization is a process used to solve such
problems in which we “regularize” towards some prior model
of the data in question. The low-rank model we will propose
here is motivated by the literature on compressive sensing.

B. Compressive Sensing

Compressive sensing is a relatively new idea in signal
processing [20], [21]. The main idea is that many real-world
signals or datasets exhibit some structure or redundancy, and
we can utilize this prior knowledge for both acquisition and
reconstruction of the signal.

Structure and redundancy in data are often synonymous with
sparsity. A sparsevector is simply a vector that has only a
few non-zero elements. Often our vectors of interest might
have only a few large elements, and many small elements.
We call such a vectorcompressible, in the sense that most
of its information is carried in the larger elements. Note that
the majority of work on compressive sensing has concerned
vectors of data, so a naive approach to TMs might be to
compile these into vectors and then apply vector techniques.
However, some of the structure of a TM is inherent in the
matrix itself, so there is value in treating our matrixX as
a genuine matrix. In the context of matrices, low rank is
analogous to sparsity, because the spectrum formed by the
singular values of a low-rank matrix is sparse (see below).
It is now well known that TMs may be approximated by
matrices of low rank [4], [17], [29], and so this concept fits
well here. We explicitly use this type ofstructural sparsity
as our approach to resolve the underconstrained nature of the
measurement problems we face. In the following section we
draw on the recent matrix compressive-sensing literature [22]–
[24] to explain how such “sparsity regularized” algorithmscan
be constructed.

However, we cannot apply existing compressive sensing
algorithms. We observed that they performed poorly on real
traffic matrices, especially under real-world (i.e., structured,
non-random) data loss scenarios. This observation suggests
that real TMs often exhibit characteristics that violate the
mathematical conditions under which existing compressive-
sensing algorithms are designed to operate. Specifically, the
optimality results for existing compressive sensing algorithms
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often assume that (i) the matrix elements are drawn from a
Gaussian-like distribution, (ii) the matrix is exactly low-rank,
(iii) data loss is independent for different matrix elements, and
(iv) the measurement constraints on the matrix satisfy certain
technical conditions (e.g., the restricted isometry property
[23]). Unfortunately, none of these conditions hold for real
TMs. Real TM elements are non-negative and often exhibit
a highly skewed distribution, where the largest and smallest
elements often differ in size by several orders of magnitude.
Moreover, real TMs are only approximately low-rank, and data
loss in real network data tends to be highly structured [28].
Finally, the available measurements are limited by business
and technological constraints, not chosen according to a set
of desirable properties, and so there is no guarantee that the
constraints on real-world TM measurements satisfy technical
conditions such as restricted isometry. In fact we have ob-
served that this condition only occurs as a rare exception.

C. Singular Value Decomposition

One tool for creating low-rank matrix approximations is the
Singular Value Decomposition (SVD). Simply stated, anyn×
m real matrixX can be decomposed such that

X = UΣV T , (5)

whereV T is the transpose ofV , and U is a n × n unitary
matrix (i.e., UT U = UUT = I), andV is a m × m unitary
matrix (i.e., V T V = V V T = I), andΣ is a n × m diagonal
matrix containing the singular valuesσi of X . Typically the
singular values are arranged so thatσi ≥ σi+1. The rank of a
matrix is the number of linearly independent rows or columns,
which equals the number of non-zero singular values.

To understand SVD’s use in matrix approximations, con-
sider the following interpretation of the SVD. The matrixΣ
is diagonal, so the SVD of a matrixX can be rewritten as:

X = UΣV T =

min(n,m)
∑

i=1

σiuiv
T
i =

min(n,m)
∑

i=1

σiAi, (6)

whereui andvi are theith columns ofU andV respectively,
and the matricesAi are (by construction) rank-1. We can
then create a rank-r approximationX̃ from the SVD by
keeping only ther largest singular values in the summation
and dropping the others:

X̃ =
r

∑

i=1

σiAi. (7)

The aboveX̃ is known to be the best rank-r approximation
with respect to the Frobenius norm||·||F of the approximation
errors, where||Z||F △

=
√

∑

i,j Z(i, j)2 for any matrixZ. That
is, truncation of the SVD provides the natural solution to:

minimize ||X − X̃ ||F ,

subject to rank(X̃) ≤ r.
(8)

In Internet measurement, the SVD has most commonly
appeared in the form of the Principal Components Analysis
(PCA), which has been used, for instance in anomaly detec-
tion [4], [17]. PCA is directly related to SVD by the fact

that the columns ofU form the principal axes of the PCA
coordinate transform.

Sparsity Regularized SVD: Many matrix interpolation
techniques try to create a SVD-like factorization of a matrix
X , though it is common to write this in the equivalent form

X = UΣV T = LRT , (9)

where L = UΣ1/2 and R = V Σ1/2, and so we will
subsequently use this form for consistency.

Now SVD by itself is not an interpolation algorithm. Typical
algorithms for calculating the SVD assume thatX is com-
pletely known. Where there is missing data we can instead
look for a factorization that satisfies the measurement equa-
tions, i.e., A(LRT ) = B. Previous studies have suggested that
typical TMs inhabit a relatively low-dimensional subspace[4],
[17], so an intuitive approach for finding such a factorization
is to solve the following rank minimization problem:

minimize rank(LRT ),
subject to A(LRT ) = B.

(10)

Rank minimization has a non-convex objective and is thus
difficult to solve. A key insight from the matrix compressive-
sensing literature [22]–[24] is that under certain conditions,
we can solve a simpler problem instead and obtain equiva-
lent results. Specifically, when a certain technical condition
(the restricted isometry property [23]) holds onA(·), then a
heuristic — minimizing the nuclear norm — can perform rank
minimization exactly for a matrix of low enough rank. Further,
if the rank of X is less than the rank ofLRT then (10) is
equivalent to

minimize ||L||2F + ||R||2F ,
subject to A(LRT ) = B.

(11)

In TM interpolation, looking for a low-rank solution that
strictly satisfies the measurement equations is likely to fail,
because (i) the real TMX is often only approximately low-
rank, and (ii) the measurements often contain errors. So instead
we solve the following

minimize ||A(LRT ) − B||2F + λ
(

||L||2F + ||R||2F
)

. (12)

This solution aims for a low-rank approximation without
strictly enforcing the measurement equations. The regulariza-
tion parameterλ allows a tunable tradeoff between a precise
fit to the measured data and the goal of achieving low rank.

We deriveL and R from (12) using an alternating least
squares procedure. We initializeL andR randomly. We then
solve the above optimization taking one ofL andR to be fixed
and the other to be the optimization variable (which is a stan-
dard linear least squares problem). We then swap their roles,
and continue alternating towards a solution till convergence.
Our implementation of the alternating least squares procedure
in Matlab further utilizes sparse matrix operations to minimize
memory requirement and maximize speed (details are omitted
due to space restriction, but we will supply Matlab code on
request). The above approach will be referred to asSparsity
Regularized SVD (SRSVD)interpolation.
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D. Other Interpolation Algorithms

There are a number of approaches that have been proposed
in the recent literature for matrix interpolation besides SVD.
These algorithms can be classified as either low-rank approxi-
mation algorithms or local interpolation algorithms, depending
on whether they exploit the global low-rank structure or the
local structure and redundancy. We describe them here for
comparison with our approach.

1) Low-Rank Approximation Algorithms:Baseline Ap-
proximation: Many techniques (for instance PCA) implicitly
assume that the data has zero mean. So our first step for
dealing with network matrices might be to “center” them.
However, centering the matrices where we do not have all the
data also requires interpolation. Our baseline approximation
algorithm implicitly constructs such an interpolation matrix
Xbase to compute row and column means of the matrix. For
instance, if we knew all elements of the inputX , then the row
and column sums ofX − Xbase would all equal zero. Apart
from its use in zeroing the mean, it also forms an interpolation
in its own right, and so we will compare its performance below.

variable description

X̄ an estimate of the mean ofX over all i and j.
Xrow a vector of lengthm such that

Xrow(i) = an estimate of
P

j(X(i, j) − X̄)/n.
Xcol a vector of lengthn such that

Xcol(j) = an estimate of
P

i(X(i, j) − X̄)/m.
Xbase the baseline estimate forX given by

Xbase(i, j) = X̄ + Xrow(i) + Xcol(j).

TABLE I
OUTPUTS OF BASELINE ESTIMATION.

To computeXbase, we use the variables described in Table I.
In matrix form, we can representXbase as a rank-2 approx-
imation to X : Xbase = X̄ + Xrow1

T + 1XT
col, where1 is a

column vector consisting of all ones. We use the regularized
least-squares algorithm from [30] to computēX , Xrow, Xcol

from inputA(·) andB. That is, we solve the following

minimize ||A(X̄ + Xrow1
T + 1XT

col) − B||2F
+ λ

(

X̄2 + ||Xrow||2F + ||Xcol||2F
)

,
(13)

whereλ is a regularization parameter. The first term in this
formulation minimizes the Frobenius norm of the difference
A(Xbase)−B, and the second regularization term helps avoid
over-fitting.

SRSVD-base: Techniques like PCA implicitly assume that
the data has zero mean, but in TM interpolation we do not
know the true mean. Instead we useXbase as an estimate. It
is not obvious whether such centering is necessary or desirable
in interpolation, so we include results for both SRSVD applied
to X and SRSVD applied to(X−Xbase). We refer to the latter
as SRSVD-base.

Nonnegative Matrix Factorization: Nonnegative Matrix
Factorization (NMF) [31], [32] tries to find nonnegative factor

matrices L and R that minimize the Frobenius norm2 of the
differenceA(LRT )−B over the observations. The approach is
very similar to the SVD, except for insistence on non-negative
factor matrices. We avoid over-fitting by regularizing in the
same manner that we do for SVD,i.e., we solve (12) but with
the additional constraint of non-negativity. We implementthe
two most common algorithms for NMF: multiplicative update
[32] and alternating nonnegative least squares. Both algorithms
are designed for the case where the matrixX is completely
known. So we extend them to further cope with measurement
equations (2). The two algorithms give similar interpolation
performance, but multiplicative update is more efficient. So
our results are based on this algorithm.

2) Local Interpolation Algorithms:We also test one com-
pletely different approach:k-Nearest Neighbors (KNN). Sim-
ple nearest neighbors directly uses the nearest neighbor ofa
missing value for interpolation. KNN extends this by using
a weighted average of thek nearest-neighbors’ values. For
TMs (and many other datasets) it is difficult to apply KNN
because the rows are ordered arbitrarily (for instance based on
the names of routers). So the nearest elements in the matrix
X may have little correspondence. Hence we need to derive
a good distance metric between matrix elements.

We use the approach described in [30]. We can perform the
algorithm on either rows or columns ofX , but let us start with
rows. If two rows are similar (i.e., two TM elements exhibit
similar behavior), then it is natural to assume that one might
provide a good interpolant of the other. Hence, we base our
distance metric on the similarity between rows,i.e., the more
similar two rows are, the closer together we consider them.
Following [30], we measure the similarity by an approximation
to the correlation coefficient of the two rows based on only
those directly observed TM elements. To form this coefficient,
we would ideally first subtract the mean, but as the mean is
unknown we use our proxyXbase. The weights used in thek
averaged neighbors are proportional to the similarities [30].

Formally, the algorithm proceeds by
step 1 FormX ′ = X − Xbase where data is available,

and zero otherwise.
step 2 Compute similaritiesS between rows ofX ′

C(u, v) =
∑

k

X ′(u, k)X ′(v, k).

S(u, v) = C(u, v)/
√

C(u, u)C(v, v).

step 3 Find thek-nearest neighborsN(i, j) for each
missing point(i, j) ignoring rowsk missing points
(k, j).

step 4 estimate missing valueX(i, j) using weighted
average

Xknn(i, j) = Xbase +

∑

k∈N(i,j) S(k, j)X ′(k, j)
∑

k∈N(i,j) S(k, j)
.

In our results we found that temporal similarity was stronger
than spatial similarity, so we perform the above algorithms

2There is nothing intrinsically special about the Frobeniusnorm for this
approach. The Kullback-Leibler divergence [32] has also been suggested but
our experiments found that the performance of this approachwas much worse,
and it is not presented here.
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on columns first, and then on rows if enough neighbors with
positive similarity are not found.

An advantage of KNN is that it is computationally straight
forward. It does not rely on convergence of some non-convex
optimization problem. However, the choice ofk is problematic.
When applying this method, we found that in some cases larger
values were needed, but often the reverse was true.

III. O UR SOLUTION: SPATIO-TEMPORAL COMPRESSIVE

SENSING

The methods above are non-adaptive in the sense that
they do not account for the special properties of a particular
traffic matrix. Particular TMs have been shown to have strong
cyclical behavior [33] (often linked to the diurnal or weekly
cycle of network consumers), and strong spatial structure [34].
However, the spatial structure, in particular, is not knownab
initio, and so we need to be able to estimate the type of spatial
structure operations to use for a particular traffic matrix.The
result is an algorithm that can adapt to the structures in the
data, other than the pure structural sparsity exploited by the
majority of the prior algorithms.

The KNN approach is intrinsically different from the other
methods described above. It explicitly targets local structure in
a TM, whereas the low-rank methods look for global structure,
and it estimates this structure as part of the algorithm. This
is one of the key motivations for developing a method that
seeks to capture both global and local structure. It consists of
two key components: (i) SPARSITY REGULARIZED MATRIX

FACTORIZATION (SRMF) for incorporating global spatio-
temporal properties, and (ii) a mechanism for incorporating
local interpolation.

A. Sparsity Regularized Matrix Factorization

The SRSVD approach starts with (12) to find global low-
rank structure in the TM. On the other hand, we maya priori
know that the matrix has additional spatio-temporal structure,
e.g., TM rows or columns close to each other (in some sense)
are often close in value. We seek to exploit this insight in
the new technique we propose here. We propose to solve the
following

minimize ||A(LRT ) − B||2F + λ
(

||L||2F + ||R||2F
)

+ ||S(LRT )||2F + ||(LRT )T T ||2F ,
(14)

whereS and T are the spatial and temporal constraint ma-
trices, respectively. MatricesS andT express our knowledge
about the spatio-temporal structure of the TM (e.g., temporally
nearby TM elements have similar values). We solve the above
optimization problem again using alternating least squares.
We call the resulting algorithmSparsity Regularized Matrix
Factorization (SRMF). It has the advantages of SRSVD, but
is more general, allowing us to express other objectives in our
TM approximation/interpolation algorithm through different
choices ofS andT .

Below we discuss how to chooseS and T . To better
illustrate the idea and benefit of SRMF, we intentionally use
relatively simple choices ofS andT . Both SRSVD and SRMF

also require specification of the input rank ofL and R. Our
evaluation in Section IV shows that SRMF is not sensitive to
the input rank parameter.

Choice of T : The temporal constraint matrixT captures
the temporal smoothness of the TM. A simple choice for the
temporal constraint matrix isT = Toeplitz(0, 1,−1), which
denotes the Toeplitz matrix with central diagonal given by
ones, and the first upper diagonal given by negative ones,i.e.,

T =















1 −1 0 . . .

0 1 −1
. . .

0 0 1
. . .

...
. . .

. . .
. . .















(15)

This temporal constraint matrix intuitively expresses thefact
that TMs at adjacent points in time are often similar. For
instanceXT T is just the matrix of differences between tempo-
rally adjacent elements ofX . By minimizing ||(LRT )T T ||2F
we seek an approximation that also has the property of
having similar temporally adjacent values. A more sophis-
ticated choice taking into account domain knowledge (say
knowledge of the periodicity in traffic data) can result in some
improvements, and allows almost arbitrary temporal structure
into the approach. In general, it is not difficult to develop
such temporal models of TMs, as they show strong signs of
periodicity over 24 hours and 7 day intervals (for obvious
reasons), however, in more difficult cases a more adaptive
approach such as used forS below could be used.

Choice of S: The spatial constraint matrixS can be used to
express which rows of a TM are close to each other, but due to
the arbitrary ordering of rows in the TM, a simple matrix of the
above form is not appropriate. We findS by first obtaining an
initial TM estimateX̊ using a simple interpolation algorithm,
and then choosingS based on the similarity between rows of
X̊ (which approximates the similarity between rows ofX).

1. Computing X̊. In our current implementation, we take
X̊ = Xbase.∗ (1−M)+D.∗M , where.∗ means element-
wise product,M is defined in (4) and specifies which TM
elements are directly measured, andD contains the direct
measurements. That is, we use direct measurements where
available, and interpolate usingXbase at other points.

2. ChoosingS based on̊X. There are many possible methods
for choosingS based onX̊. For example, one general
method is to (i) construct a weighted graphG, where each
node represents a row of̊X and each edge weight repre-
sents certain similarity measure between two rows ofX̊,
and (ii) setS to be the normalized Laplacian matrix [35]
of graphG, which acts as a differencing operator onG
and induces sparsity by eliminating redundancy between
similar nodes ofG (i.e., rows of X̊).
We have experimented with several such methods. The
following method for choosingS based on KNN and linear
regression consistently yields good performance in our
tests, and we use it in our evaluation. For each rowi of X̊,
we find theK most similar rowsjk 6= i (k = 1, . . . , K).
We perform linear regression to find a set of weightsw(k)
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such that the linear combination of rowsjk best approx-
imates rowi: X̊(i, ∗) ≈ ∑K

k=1 w(k)X̊(jk, ∗). Assuming
that

∑K
k=1 w(k)X(jk, ∗) approximatesX(i, ∗) well, we

then setS(i, i) = 1 andS(i, jk) = −w(k).

Scaling of S and T : Finally, we need to scaleS
and T properly so that||S(LRT )||F , ||(LRT )T T ||F , and
||A(LRT )−B||F are of similar order of magnitude — other-
wise they may overshadow each other during the optimization
of (14). In our experiments, we simply scaleS and T such
that ||SX̊||F = 0.1

√
λ ||B||F and ||X̊T T ||F =

√
λ ||B||F ,

where
√

λ ||B||F reflects the level of approximation error
||A(LRT ) − B||F that we are willing to tolerate. Our results
show that such scaling yields good performance over a wide
range of scenarios and that the performance is not sensitive
to the choice ofλ. Note that we intentionally make||SX̊||F
smaller than||X̊T T ||F because we expect the temporal model
obtained through domain knowledge is more reliable.

B. Combining Global and Local Methods

A quick preview of the (non-hybrid) performance results
that follow shows that for small amounts of missing data,
KNN is the best performer (in most cases). On the other
hand, for large amounts of loss, SRMF outperforms KNN. The
intuition behind this result is obvious. When only a few data
points are missing, thek-nearest neighbors of a missing data
point will be close by. There are strong temporal and spatial
correlations in our data, so the nearest neighbors provide good
interpolants for the missing data. However, when there is
substantial missing data, the nearest neighbors will come from
further away. As the correlations between data points drop,
the low-rank global model of the data expressed by the matrix
factorization becomes superior.

To take advantage of local structure and redundancy present
in the TM, we use the low-rank approximation obtained by
SRMF as a prior and augment it with a local interpolation
procedure. In this way, we obtain a TM estimate that is close to
the low-rank prior yet can account for constraints imposed by
the local interpolation procedure. Note that such an approach
generalizes the Tomo-gravity method for TM estimation [12],
[14], which uses a rank-1 approximation (i.e., gravity model)
as the prior solution.

The choice of the local interpolation procedure is applica-
tion dependent, and we present below two hybrid algorithms,
SRMF+KNNandSRSVD-base+KNN, both of which incorpo-
rate KNN.

SRMF+KNN: We first compute the SRMF interpolation of
X . Call this XSRMF. For each missing data point (i, j) we
then examine its row to see if any of the elementsX(i, j −
3), . . . , X(i, j + 3) are present. If we cannot observe any of
these neighbors, then we simply use the valueXSRMF(i, j),
but if we do have any of these values, we will use them to
better approximateX(i, j). We do so by forming a local model
for the temporal process using all of the other rows of the TM.
We perform a regression to find a set of weightsw(k) that best
approximatesXSRMF(p, j) =

∑

k∈nbrs w(k)XSRMF(p, k) for
all p = 1, 2, . . . , n. Then we apply a weighted linear inter-
polation of the nearest neighbors, using the weights derived

above,i.e.,

XSRMF+KNN(i, j) =
∑

k∈nbrs

w(k)X(i, k). (16)

SRSVD-base+KNN: We will show that the above approach
is superior, but to understand the importance of incorporating
the spatio-temporal constraints (given byS and T ), we also
consider an algorithm that uses SRSVD-base as the prior in
the same procedure. We call the resulting algorithm SRSVD-
base+KNN.

IV. I NTERPOLATION PERFORMANCE ONTM DATA

For the basic network task of TM interpolation, we illustrate
in the following the performance of our approach with real-
world TM data where we generate a whole range of missing
values scenarios, from purely random to highly structured
scenarios, and from low levels of missing values to very high
levels. Comparisons to commonly-used alternative techniques
attest to the effectiveness and robustness of our approach to
real-world measurement issues.

A. Data

The main dataset we use here is real TM data. The first
two are the Abilene (Internet2) [36] dataset used previously
in various studies [4], [5], [17], and the ǴEANT TM dataset
provided in [37], and previously examined in [6]. Although
these are now older datasets, we use them because they are
valuable for comparisons with other work. In addition, we use
one longer and more recent commercial TM dataset from a
large Internet service provider.

In addition, we use one set of SNMP link load data (also
from Abilene) collected using the RRD tool [38]. Although
this is still traffic data, it has rather different characteristics to
the raw traffic matrix data. As with all SNMP data we only see
link loads, and so there are only 28 rows in the data, but such
data is easier to collect, process and analyze, and so we have
a longer dataset with finer resolution,i.e., the matrix we study
in this case has rather different size from our traffic matrices
(which are not so far from square).

The properties of the data are summarized in Table II.

Dataset Date Duration Resolution Size

Abilene TM Apr. 2003 1 week 10 min. 121 × 1008
Commercial TM Oct. 2006 3 weeks 1 hour 400 × 504

GÉANT TM Apr. 2005 1 week 15 min. 529 × 672
Abilene SNMP Jan 4th-Mar. 12 weeks 5 min. 28 × 23, 498

28th, 2006

TABLE II
DATASETS UNDER STUDY.

B. Methodology

The methodology we use here is to drop some data from
existing measurements, and then apply the interpolation algo-
rithm. This provides us with ground truth for comparison. The
pseudo-missing data is not used in the interpolation algorithms
in any way.
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The typical approach when measuring the performance of an
interpolation algorithm is to drop data at random. We will start
our experiments with this case. However, in real measurements
of TMs there are different mechanisms that result in missing
data, and these result in the missing data having structure.Such
structure is obviously important for interpolation, so we will
explore several structured models of missing data in Section
4.5 below.

We measure performance using the Normalized Mean Ab-
solute Error (NMAE) in the interpolated values. That is, we
calculate

NMAE =

∑

i,j:M(i,j)=0 |X(i, j) − X̂(i, j)|
∑

i,j:M(i,j)=0 |X(i, j)| , (17)

whereX̂ is the estimated matrix. Note that weonly measure
errors on the missing values. So the NMAE is defined only
when there is at least one missing value, and will not approach
zero as the proportion of missing data decreases. We computed
three other performance metrics (root mean squared error,
normalized root mean squared error, and the correlation-
coefficient) but the results are substantively the same. In each
case we perform the process of randomly dropping data and
reconstructing the matrix10 times. The results presented show
the mean NMAE.

C. Initial Comparisons

Figure 1 shows a comparison of algorithms for independent
random loss for data loss rates ranging from 0.02 to 0.98. We
perform these algorithms using the same regularization and
input rank parametersλ = 0.1 and r = 8 for each global
algorithm, andk = 4 in KNN (we defer justification of these
choices to the section below).

First consider the three TM datasets shown in Figure 1
(a)-(c). For low loss probabilities KNN achieves better per-
formance than SRMF. For high loss probabilities we see
that SRMF’s performance exceeds KNN. However, the hybrid
SRMF+KNN outperforms all algorithms over the whole range
of loss values. Interestingly, the hybrid is noticeably better than
either method individually.

Meanwhile, the hybrid SRSVD-base+KNN also performs
well, though not as well as SRMF+KNN. The performance
gap typically widens for large amounts of loss. This is because
under independent random loss, when the loss rate is not
too high, it is likely that the near neighbors of a missing
value are directly observed, making KNN an effective recovery
strategy. However, when loss is large or when the loss is highly
structured (see Section IV-E), the performance gap between
SRSVD-base+KNN and SRMF+KNN widens.

The other methods all have worse performance. For low
loss, the baseline method is the worst (as we might expect
given it is only a rank-2 approximation). However, for high
loss, the baseline performs surprisingly well, certainly better
than SRSVD, whose performance is very bad for high loss.
However, the SRSVD applied after baseline removal achieves
reasonable performance over the whole loss range, in some
cases almost as good as the simple SRMF. NMF performs
poorly for all loss probabilities.

We have examined many such graphs. Several approaches
are uniformly poor, so we do not examine them in further
detail, in order to simplify our presentation.

Figure 1 (d) shows the algorithms applied to SNMP link
data. The results are substantively similar, though the differ-
ence between the various algorithms is much smaller, and
for small loss, SRSVD-base+KNN performs marginally better
than SRMF+KNN. The size of the matrix in this dataset is
very different (it has only 28 rows, but many more columns)
than our TM datasets. We hypothesize that the smaller number
of rows allows a lower-rank approximation to fit the data
better, and that the larger number of columns provides more
data, so most techniques can perform better in this case, but
nevertheless, SRMF+KNN still shows the best performance
over the widest range of parameters.

D. Parameter Sensitivity and Settings

The algorithms we consider have several input parameters.
The performance of these algorithms in relation to these
parameters is (in most cases) dependent on the dataset in
question. In practice, when interpolating a real dataset, we
would not be able to precisely optimizeλ andr for the dataset
in question, so it is desirable to have algorithms that are not
very sensitive to their values. In fact, all algorithms display
some dependence on the parameter settings, and no single
parameter setting is optimal for all datasets. However, we
found rough parameter settings that are never too far from
optimal.

The first input parameter is the rank. Given our motivation
from the compressive sensing literature,i.e., that we will aim
to minimize matrix sparsity or rank, it may seem strange that
we input a rank when performing the algorithm. However,
although they seek to minimize the rank of the decomposition,
the algorithms work by optimizing anL and R that have a
fixed number of columnsr (the input rank). The final rank of
the solution might be smaller.

In theory, as long as the input rank is greater than the
real rank ofX , the various algorithms will converge to the
correct matrix [22]–[24]. However, note that the theoretical
results that inform our intuition here concern matrices with
exact ranks, whereas our matrices typically have a number
of small, but non-zero singular values. Moreover, there are
measurement errors in our data, so we cannot expect to get
zero error reconstructions.

Figure 2 shows a sample of performance results with respect
to rank (note that the baseline algorithm is excluded here
because it is a fixed rank-2 approximation). We find that most
of the rank-dependent methods have better performance as the
input rank increases. Although this is not always the case, the
deviations are minor. However, note the logarithmicx-axis, so
that the results suggest a decrease in the marginal improvement
with increasing rank. There is also an additional computational
cost for higher ranks, and we find that an input rank ofr = 8
is a reasonable operating point for use on TM data. Going to
r = 16 yields only a very small incremental improvement at
the expense of extra computation. On the SNMP link data,
with fewer rows, we found that an even lower rank (r = 4)
performed as well, or sometimes better.
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Fig. 1. Interpolation performance for random loss (note that the legend is the same for plots (a-c) but we omit poorly performing approaches from plot (d)
to make the plot more legible.

The most important finding in these results, however, is the
relative insensitivity of the hybrid algorithm, SRMF+KNN.In
general it is the least dependent on the input rank of all the
algorithms. There is some improvement for higher ranks, but
it is typically smaller than those of other algorithms.

KNN does not use input rank, but ratherk, the size of
neighborhood. Figure 2 also shows the effect ofk on the
performance of KNN. We choose to usek = 4 for our
experiments, since it consistently avoids the worst results.

The final parameter of importance is the regularization pa-
rameterλ, which determines the tradeoff (in the optimization)
between the measurement constraints and the importance of
rank. Largerλ leads to lower rank approximations, whereas
smaller values lead to approximations that are a better fit to
the data. Figure 3 presents three examples showing the type of
variability we encounter over a range of values ofλ, for three
different loss rates and networks. KNN is omitted because it
does not use regularization. Once again note the logarithmic x-
axis – we are looking for order of magnitude effects here, not

fine tuning. None of the techniques is too sensitive. Among
them, SRSVD is the most sensitive (overall). Larger values
of λ typically perform better although again sometimes this
trend is reversed, and there are a number of cases where the
optimal case is aroundλ = 0.1. So we use this value in our
experiments.

Note again that SRMF+KNN is the most insensitive algo-
rithm with Figure 3 (c) showing the most extreme case of
parameter sensitivity that we observed for this algorithm.

E. Comparison: Other Loss Models

As earlier noted, not all data loss is random [28]. Losses
are often highly structured, and in this section we examine
the effect this has on the results. The boldface name denotes
the label used in our datasets, wherexx is replaced by the
percentage of rows (or columns) effected.

1. PureRandLoss: This is the simple random loss model.
Data points in the matrixX are dropped independently at
random with probabilityq.
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Fig. 2. Sensitivity with respect to the input rankr (or k in the case of KNN).
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Fig. 3. Sensitivity with respect toλ.

2. xxTimeRandLoss: This simulates a structured loss event
at certain times if, for example, our monitoring equipment
became overloaded. In these cases, we may lose some
random proportion of the data at a particular point in time.
We simulate this loss by choosing, at random,xx% of the
columns ofX , and dropping data from these at random
with probability q.

3. xxElemRandLoss:This simulates a structured loss event
where a set of randomly chosen TM elements suffers from
lost data. This type of loss might occur where unreliable
transport mechanisms are used to transport measurements.
Often the problems with such transport depend on the
locations where measurements are made (e.g., locations
close to the management station are less likely to suffer
congestion based losses). We randomly selectxx% of the
rows of X to be effected. Note that the case 100Elem-
RandLoss corresponds to PureRandLoss.

4. xxElemSyncLoss:This simulates a structured loss event
where a group of TM elements all suffer from missing data
from the same cause. Hence, the losses on each element
are synchronized. We do so by selectingxx% of rows of
X to be effected, and a set of times with probabilityq.
Lost data comes from the intersection of the selected rows
and columns.

5. RowRandLoss:Random element loss, as presented above,
is not a particular realistic model for data loss. With flow
level measurements, data are collected by a router. If that
router cannot collect data, then an entire row of each TM
snapshotZ will be missing. The effect onX is to remove
a set of structurally associated rows. We simulate this by
dropping rows from the original TMZ (before it is formed

into the matrixX).
6. ColRandLoss: It is perhaps less likely that a column of

the original TMZ is dropped from measurement. One can
construct scenarios where a software bug causes such an
error, but in fact we primarily consider the random column
loss scenario for completeness.

In this section we examine the impact of the loss model
on the performance of the interpolation algorithms. Obviously
there are many ways of viewing this data. Due to space
limitations, we present here only a two summary figures (more
details appear in [25]). Figure 4 shows bar charts of the
performance of the key algorithms for two different loss levels,
across all loss models. The key observations are that for low-
to moderate loss, SRMF+KNN performs significantly better
across all loss models. When loss is higher, there are some
cases where the performance of SRSVD-base and KNN is
similar to SRMF+KNN, and occasionally slightly better, but
where losses are highly structured (e.g., AllElemSyncLoss)
SRMF+KNN is always clearly superior.

F. Computational Times

We measure the computation times of SRMF (KNN takes
a small amount of additional time) on matrices of various
sizes. The computation time is linear in the number of matrix
elements, and quite reasonable. A200 × 1000 matrix (with
rank r = 10 used in the decomposition) can be approximated
in less than 3.5 seconds (using Matlab on a 2.66 GHz Linux
machine). Meanwhile, the computation time with respect tor
is reasonably modeled byO(r2). Figure 5 shows computation
times with respect to the number of rows and columns of the
matrix, and the input rankr.
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Fig. 4. Comparison between algorithms for the different loss models.
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Fig. 5. Computation times (seconds) for an × m matrix using a rankr decomposition.

V. A PPLICATIONS

A key contribution of this paper is demonstrate the effec-
tiveness and robustness of our approach beyond the simple
problem of interpolation to a much wider set of network tasks.
To this end, we consider the following different applications of
matrix interpolation, where the meaning or importance of the
missing values are determined by the application in question.
The general approach we use here is to remove some data from
existing measurements and then examine how well we can
perform a particular application (e.g., tomography, prediction,
anomaly detection) without this data. For instance, in the case
of prediction, we drop future data points and try to estimate
these using the remaining data. This provides us with the
ground truth for comparison. The pseudo-missing data is not
used in the interpolation algorithms so that we can perform
fair comparisons between algorithms.

A. Tomography

A special case of the our approach is the network tomogra-
phy problem of inferring a TM from link-load measurements.
In the interpolation examples discussed earlier, the constraints
come from direct measurements. In network tomography,
the constraints are given by (1). However, it is common to
have some combination of these sets of measurements. So
it is desirable to combine them to obtain the best possible
approximation to the TM. In this case, we can simply defineA
to incorporate both (1) and (3), resulting in a combined penalty
term of the form||A(LRT ) − Y ||2F + ||(LRT − D). ∗ M ||2F .

We do not compare all possible algorithms for TM esti-
mation. For instance, most recently Bhartiet al. [29], used
similar techniques to solve a problem with similar goals:
discovery of un-observed traffic. However, the goals of [29]are
somewhat broader – estimating a traffic matrix for the whole
Internet from the limited vantage that any one researcher or
network manager is likely to have, from a somewhat different
dataset (netflow) which we do not assume available in this
section, and moreover, the work assumes temporal information
is not available. Further performance improvements might be
obtained by using more recently developed algorithms (e.g.,
[16], which also includes a temporal component). However,
we concentrate here on two existing algorithms – the gravity
model and Tomo-gravity – because they use a consistent set
of data, and have been used in real network operations. The
gravity model [14] is a simple rank-1 approximation to a single
TM. It is known to be a poor estimator of real TMs, but
it has been successfully used as the first step in the Tomo-
gravity [14] algorithm. The latter is yet another regularization
based on the Kullback-Leibler divergence between the gravity
model and the measurements.

In this section we compare the gravity model and Tomo-
gravity against three alternatives: the baseline approximation,
SRMF, and Tomo-SRMF. In Figure 6 we show the perfor-
mance of the algorithms with respect to the proportion of
the TM elements that are missing, but note that in addition
to direct measurement of the matrices, we assume we can
measure all of the link loads on the networks. So in this figure,
100% data loss corresponds to the standard network tomog-
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Fig. 6. Network tomography performance. Note, loss probability=1 corresponds to the traditional network tomography problem.

Abilene Commercial GÉANT
Tomo-gravity 0.197 / 0.197 0.292 / 0.292 0.441 / 0.439

Base 0.321 / 0.233 0.566 / 0.380 1.198 / 0.489
SRMF 0.280 / 0.204 0.483 / 0.285 1.185 / 0.516

Tomo-SRMF 0.227 / 0.155 0.288 / 0.203 0.433 / 0.240

TABLE III
NETWORK TOMOGRAPHY PERFORMANCE: THE FIRST NUMBER IS THE

PERFORMANCE WHERE WE HAVE NO DIRECTTM MEASUREMENTS, THE
SECOND SHOWS WHERE WE MEASURE ONLY0.5%OF THE ELEMENTS.

raphy problem. As this part of the figure is important, but
relatively hard to read, we have duplicated key performance
metrics in Table III.

First, note that the gravity model is so bad that its results
lie off the scale. The baseline technique is the second worst
in most cases, but is still much better than the gravity
model. Second, SRMF performs poorly at the pure network
tomography task where no direct measurements are available.
However, if even a few (as few as 0.5%) of the TM elements
are directly observed, then SRMF’s performance improves
dramatically, whereas Tomo-gravity’s performance improves
roughly linearly with respect to the increase in information.
Finally, by combining SRMF and Tomo-gravity, Tomo-SRMF
gets the best of both worlds and significantly outperforms each
individual method by itself. Figure 6 and Table III show the
improvements.

Note that Souleet al. [11] also propose to incorporate flow-
level measurements in TM estimation. Compared with their
“third generation” TM estimation methods, Tomo-SRMF has
two key advantages: (i) it does not require any expensive
calibration phase in whichentire TMs are directly measured,
and (ii) it is highly accurate and can reduce the error of
Tomo-gravity by half with only 0.5-5% observed TM elements
(whereas 10-20% directly observed TM elements are required
according to [11]).

B. Prediction

In this section we consider the behavior of SRMF with
respect to TM prediction. We do so by dividing our data into
two segments, an initial training segment up to some timet,
and then a test segment over which we try to predict the TM.

Prediction is rather different from the general problem of
interpolation. Several techniques (SRSVD and NMF) just fail.
KNN does not work well because there are no temporally
“near” neighbors, and no spatial neighbors at all. However,if

we can use the temporal pattern in the data more creatively
we can make progress. For instance, rather than using a
simple nearest neighbors technique, we use seasonal nearest
neighbors. TMs show strong diurnal patterns, and so it is not
surprising that offsetting neighbors by the 24 hours periodhas
benefits. In essence, the seasonal nearest neighbor approach
assumes that today’s traffic has the same pattern as yesterdays.

Likewise for SRMF, we do not need to use the spatial
constraint matrix, as an entire slab of the data is missing
(the future data we are trying to predict). However, to allowa
fair comparison with seasonal nearest neighbors, we also use
seasonality in constructing ourT matrix. We construct a dif-
ference matrix, but where the interval between the differences
is 24 hours.

Figure 7 shows the results with respect to the proportion of
data being predicted. Note that SRMF outperforms the other
techniques, and further that SRMF’s performance degrades
very slowly as the length of data being predicted increases (and
the training data gets correspondingly smaller). This shows
that typical TMs exhibit temporal regularity and SRMF can
effectively take advantage of it.

C. Anomaly Detection

A common task in network operations is finding problems.
There are specific tools for finding some problems (e.g.,
SNMP is commonly used to find link failures), and other
problems such as specific attacks can be characterized by
a signature, which signals the attack. However, both of the
above approaches rely on pre-knowledge of the problems that
we will encounter. There is a complementary need to find
unanticipated problems in networks.

Such problems cannot be characterized before-hand, and so
the method commonly used to detect suchanomaliesis to
find significant differences from historical observations.Most
approaches involve some transformation of the data followed
by outlier detection [5]. Common examples include simple
filtering of the data, Fourier transform, wavelets, or PCA.
The transform is aimed at separating the “normal” space of
historical events, from the anomalous space. Techniques such
as PCA do this explicitly, while others rely on commonly
observed properties. For example, Fourier techniques relyon
the normal data primarily inhabiting a low- to mid-frequency
space, so that anomalies involve high-frequencies such as those
incurred by a rapid change. Outlier detection can be performed
by taking the normal model of the data, and comparing its
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Fig. 7. Network prediction performance.

values at each time point with the real data, and then seeking
points where the difference exceeds some thresholdT .

In this section we will compare several approaches to
anomaly detection. To keep things simple so that we can
gain an intuitive understanding of the various properties of
different approaches, we will consider only three algorithms:
one temporal, one spatial, and our spatio-temporal approach.
The three approaches we use are

1. Differencing: Differencing is a standard time-series tech-
nique to remove linear trends (typical traffic data are non-
stationary, and over periods of minutes to hours can often
be reasonably approximated as having a linear trend).
Differencing also highlights sudden changes, such as we
would see in a trafficspikeor a level shift [5]. Implicitly,
differencing is using the data from the previous time
step as a model for the current time, and so it has not
received a great deal of consideration in the networking
literature, but it provides a simple temporal benchmark
against which we can gain some intuition. We can write
the differencing operator as post-multiplication ofX by
T = Toeplitz(0, 1,−1), a purely temporal operation that
makes no use of spatial correlations between TM elements.

2. PCA/SVD: PCA/SVD has received much interest for
network anomaly detection in recent years [4], [5], [17]–
[19], [39], and is the most common spatial technique for
anomaly detection. As noted earlier, PCA/SVD is applied
by choosing the rankr of the normal subspace (based on
the power contained in the firstr singular values), and
projecting the input dataX into the abnormal subspace,
where artifacts are then tested for size. Implicitly, we are
looking at the difference between the normal model of
the data created by the low-rank SVD approximation and
the data itself. Intuitively, the process builds a (simple)
model from the historical relationships between TM el-
ements. New time points are compared to see if they
satisfy this relationship. If not, they are declared to be
anomalies. It is a purely spatial technique, since reordering
of the data in time (the columns ofX) has no effect on
the results. Interestingly, compressive sensing ideas have
already appeared in the context of PCA based anomaly
detection [39], though in that context the goal was to
reduce the volume of data transmitted to a NOC, and the
missing data could be controlled, whereas in our context
the missing data are out of our control.

3. SRMF: SRMF is used for interpolation of missing data

throughout most of the paper, but it can equally be
thought of as an approximation algorithm. Here we apply
SRMF directly to the traffic dataincluding the anomalies,
much as one would with SVD, to find a model against
which we compare the actual traffic. Large differences
indicate anomalies. Our technique, however, is truly spatio-
temporal as the model that we create involves both the
spatial and temporal properties of the underlying TM. The
low-rank approximation is then used as a model for the
normal data, and the differences between this and the real
traffic are used to signal anomalies. Once again, we use
the standard method of thresholding these differences to
detect outliers.

We will compare each of these algorithms using simulations.
Ringberget al. [19] explain in detail why simulation should
be used for accurate comparisons of anomaly detection tech-
niques. In brief their reasons are: (i) accurate and complete
ground truth information is needed to form both false-alarm
and detection probability estimates (both are needed for com-
parisons, as one by itself can be entirely misleading); (ii)
many more results are needed (than one can obtain from
data) to form accurate estimates of probabilities, and (iii)
simulation allows one to vary parameters (say the anomaly
size) to study their effects. Simulation is necessary, but not
sufficient for validation, so we expect that further work is
needed on this type of anomaly detection before it is used
by network operators.

Our approach to simulation is intended to highlight the
features of the different techniques. We make no claim that the
simulation is completely realistic, only that it clearly illustrates
the properties of the different anomaly detection techniques.
We simulate in two steps: we first create the normal traffic,
and then inject anomalies. We create the TM by an orthogonal
composition of a synthetic gravity model TM [34] in the
spatial domain, and a periodic Norros model [40], [41] in the
temporal domain. Both models have arguments in their favor
but principally we need to create a TM with low rank, but
some local spatio-temporal structure that we might find in a
real TM.

We use this model to generate 100 instances of the TM
X consisting of one weeks worth of measurements at 15-
minute intervals. In each instance we inject one anomaly. The
anomaly is a spike added to the TM at a single randomly
chosen time point, so that one anomaly cannot interfere with
the detection of another. The value of the spike is a vector
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of Gaussian random variables (in each element of the TM)
but we normalize the total size of the spike (measured by its
L2 norm) to be a fixed size, which we vary from 0.1 to 100.
Spikes of size 0.1 (in our dataset) are almost indistinguishable
(by the naked eye) from the standard random variations in the
traffic. Spikes of size 100 are much larger than the typical TM
elements, and so are easily observed. We then apply each of
the three techniques above to create a “normal” traffic vector,
and detect anomalies by thresholding on differences between
the normal and measured vector. Note that we do not have
missing data in the inputs (it is not obvious how to fairly
compare the three algorithms when there are missing data,
given the better interpolation performance of SRMF). However
the anomaliesare included in the inputs, so that both SVD and
SRMF can be compared fairly.

An important detail is the choice of thresholds for outlier
detection. Non-stationarity in our data makes setting thresh-
olds more difficult than in some problems. For instance, in
PCA/SVD the anomaly pollutes the data used to create the
normal subspace, and so invalidates the standard statistical
assumptions used to determine thresholds [19]. So it is hard
to theoretically derive thresholds that produce the same false-
alarm probabilities for large and small anomalies. Instead,
we choose the threshold empirically to fix the false alarm
probability. We perform a number of simulations, and choose
a threshold such that the false alarm probability falls at a
suitably low value10−5 (in practice even smaller values may
be desirable, however, estimation of very small probabilities
becomes problematic). We then plot the detection probability
and compare these.

Figure 8 shows the detection probabilities for the three
techniques. First, let us compare PCA/SVD and Differencing
for small anomalies. When anomalies are small (in value)
and hence the differences they create will be small, the
probability of detection of these differences will be small. Note
that, even though we allow a larger false-alarm probability
as the anomalies get smaller, the detection probability for
Differencing drops dramatically. On the other hand, PCA/SVD
exploits the spatial relationships between the data elements.
It uses all the information available at a particular time
point instead of processing the information from each time
sequence independently. While the performance of PCA/SVD
also declines for smaller anomalies, it is much better than

Differencing.
For moderate sized anomalies, both techniques have perfect

detection records. These anomalies are not particularly hard to
detect whichever method one uses. On the other hand, when
we consider large anomalies, a different story emerges. The
larger anomalies pollute the data used to create the normal
subspace in PCA/SVD, and this has a tangible effect in that the
detection probability drops dramatically. Note that although
the false-alarm probabilities of the Differencing and PCA/SVD
methods are slightly different, the detection probabilityof
PCA/SVD drops almost to zero, whereas Differencing main-
tains its perfect detection record. So we can discount the minor
difference in false-alarm probability as causing this drop. The
result is consistent with those observed in data [19].

A solution might be to temporally pre-filter the data to
remove large anomalies, and then apply PCA/SVD. This intro-
duces the problem of interpolating data, which we have noted
before. A preferable approach would be to use an approach
that deals well with both ends of the spectrum. SRMF provides
such a method. Figure 8 shows its performance. We can see
that its detection probability is almost indistinguishable from
the better of the two other methods for each anomaly size. So
SRMF provides a method that deals well with the complete
range of anomalies.

Another alternative comes from Brauckhoffet al. [42] where
a standard extension of PCA was used to improve the perfor-
mance of PCA for traffic anomaly detection. The approach
copes with correlations between measurement intervals, along
with the standard spatial approximation used in PCA. In that
sense they also propose a spatio-temporal solution to the
problem, however, there is no attempt to deal with the pollution
of subspace estimates from large anomalies.

SRMF does this through its use of a spatio-temporal model.
In the case where the spatial model is more effective (small
anomalies) this is the part of the algorithm that is “biting”,
whereas when the anomalies are large, they are being detected
in the temporal domain, essentially by differencing. What we
see here is that by imposing temporal smoothness constrainton
LRT , the effect of contamination is much smaller. Intuitively,
if too much energy leaks into the normal subspace (as in PCA),
then the projection ofX into the normal subspace is no longer
smooth, which would then result in a too big penalty in the
smoothness term. Thus the smoothness term helps to limit the
damage of contamination — the problem seen in PCA/SVD.

Moreover, the technique of [42] cannot be easily extended
to deal with missing data. Although we use SRMF here purely
to derive an approximate model for the typical traffic, it canbe
used to both interpolate and approximate, and hence to detect
anomalies where data is missing, something that most anomaly
detection algorithms cannot do without a preprocessing step
of interpolation.

Note that we do not argue that with the naive choices of
temporal operatorT that we use here that SRMF is the best
prediction or anomaly technique for TMs. Given the wealth
of methods available for these applications (e.g., see [5]),
one can undoubtedly do better by more careful choice ofT .
However, there is a lesson to be learned here. First, our regu-
larization approach can be generalized to apply to any linear
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prediction/anomaly detection technique through appropriate
choice of T . In each case we would hope for performance
improvements as well, but the more important aspect of this
work comes from the features we have demonstrated above:
(i) our approach naturally deals with missing data, (ii) it can
flexibly include additional data sources (e.g., link data), and
(iii) anomaly detection (and exclusion) are an inherent part of
the algorithm. We argue that these are ideal features for any
set of algorithms based on TMs.

VI. CONCLUSIONS ANDFUTURE WORK

By drawing on recent developments in compressive sensing
and relying on readily available domain knowledge in the
area of TMs, we present in this paper a unified approach
to measurement and analysis of TMs. We achieve this by
applying our recently developed spatio-temporal compres-
sive sensing framework that exploits the presence of both
global structure (e.g., low rank) and local structure (e.g.,
spatio-temporal properties) in real-world TMs. Whether ap-
plied to TM estimation (i.e., tomography), TM prediction,
or anomaly detection, our algorithms consistently outperform
other commonly-used methods and do so across the whole
range of missing values scenarios, from purely random to
highly structured scenarios where whole columns and/or rows
of a TM are missing, and from very low levels of missing
values to very high levels (e.g., 90% and more). The main
reason for the superior performance of our proposed technique
when compared to its most widely-used competitors is its
reliance on truly spatio-temporal models of TMs that capture
much of the localized structure inherent in actual TMs. The
reported results confirm the effectiveness and robustness of
our approach to many real-world measurement issues and
highlight the practical relevance of our algorithms for dealing
with important network engineering tasks.

There are a number of avenues for future work. From an
algorithmic perspective, it is worthwhile to note that many
of the techniques described here (including SRMF) naturally
extend to tensors (i.e., multi-dimensional arrays), so that the
original (unvectorized) TMs can be analyzed directly,i.e., as
true 3-d objects with traffic source, traffic destination, and time
as the three axis. Such a tensor treatment of TMs has great
potential and presents an opportunity to build more sophis-
ticated spatio-temporal descriptions of the TM, includinga
more detailed modeling of the spatial and temporal constraint
matricesS andT .

From an applied view, our work to date has focused ex-
clusively on intra-domain TMs. However, applications of the
proposed techniques to other types of TMs (e.g., arising in
the context of data centers [43]) and, more generally, to the
more diverse set of network matrices loom as an intriguing
open problem. In particular, inter-domain TMs that describe
the volume of traffic exchanged between pairs of ASes in the
Internet per time period are of great interest to researchers and
network operators alike, but essentially nothing is known about
them (for an initial attempt, see [44]). Our results provide
a promising new direction for estimating such matrices. In
the context of inter-domain TMs, the main challenge is that

there will be no measurements for the majority of the TM
elements, mainly because most ASes view this as sensitive
information and are generally not willing to share it with
third parties. However, in view of our results, just a few
measurements of a few TM elements (say from a small
number of contributing ASes), maybe combined with some
inter-AS link measurements or some other linear combinations
of available TM data could provide enough information for
an algorithm such as SRMF to obtain an approximate inter-
domain TM. An important note is that not all of this hard-
to-come-by information would be needed from the same time
interval, and that even different measurements intervals might
be accommodated through interpolation.
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