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ABSTRACT

Multihoming is often used by large enterprises and stub ISPs to
connect to the Internet. In this paper, we design a series of novel
smart routingalgorithms to optimize cost and performance for mul-

tihomed users. We evaluate our algorithms through both analysis

and extensive simulations based on realistic charging models, traf-

fic demands, performance data, and network topologies. Our re-
sults suggest that these algorithms are very effective in minimizing

cost and at the same time improving performance. We further ex-
amine the equilibrium performance of smart routing in a global set-

ting and show that a smart routing user can improve its performance
without adversely affecting other users.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internetworking—
Internet

General Terms
Algorithms, Performance

Keywords

Multihoming, Smart Routing, Optimization, Algorithms

1. INTRODUCTION

Multihoming [31] is often used by large enterprises and stub ISPs
to connect to the Internet because of its perceived benefits in re-
liability, cost, or performance. A customer or ISP network (also
called a user) with multiple external links (either to a single ISP, or
to different providers) is said to baultihomed31]. When a user
actively controls how its traffic is distributed among its multiple
links to the Internet, we refer to it as implementisigart routing
Smart routing is also referred to as route optimization, or intelligent
route control.

Smart routing can potentially be useful in the following ways.
First, smart routing may help to improve network performance and
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reliability. Recent studies [27, 32, 33] have shown that when com-
pared with the ideal routing, network-level routing often yields sub-
optimal user performance due to routing hierarchy and BGP pol-
icy routing. Equipment failure, transient instability, and network
congestion may also affect user performance. Smart routing of-
fers a way for end users to exercise control over routes. In [1],
Akella et al. quantify the potential benefits of smart routing and
suggest that selecting the right set of providers can yield some per-
formance improvement. In [2], Akellat al. observe that the la-
tency and throughput achieved by multihoming to three ISPs are
within 5-15% of overlay routing employed in conjunction with 3-
multihoming. Second, when taking into account specific charg-
ing models, smart routing can potentially reduce users’ financial
cost. A recent economic analysis shows that smart routing has
the potential to benefit not only the end users, but also the service
providers [8].

Given the potential benefits of smart routing and the large num-
ber of multihomed users, many companies are actively developing
software to implement smart routing,g, [12, 19, 21, 24]. How-
ever, since these are commercial products, their technical details
are not available, and their performance and impact on the Internet
are not well understood. While there are a few research studies on
smart routinge.g, [1, 11], the focus of these studies is on network
performance only; users’ cost, which is another major incentive to
use multihoming, is not considered. In addition, previous studies
focus on thepotentialperformance benefits, not on the design of al-
gorithms; it remains an open question how such potential benefits
can be achieved in practice.

In this paper, we attempt to realize some of the benefits of smart
routing by developing a series of novel algorithms for optimizing
both cost and performance for multihomed users. We first demon-
strate that optimizing network performance alone can significantly
increase the cost of a user, thus rendering smart routing less at-
tractive. To address this issue, we propose novel offline and on-
line routing algorithms to minimize a user’s cost under common
usage-based charging models. Using realistic pricing data and traf-
fic demand traces from universities and enterprises, we show that
despite fluctuations in traffic, our online algorithm can significantly
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ing round robin or equal split algorithms to burstable links. We
also design online and offline algorithms to optimize the network
performance of a smart routing user under cost constraints. Using
realistic pricing data, traffic demand traces, and latency traces, we
show that our online algorithm achieves performance within 10—
20% of the optimal offline algorithm.

In this paper we assume that the user is already multihomed to
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among them to optimize cost and performance. The business deci-
sions of whether to use multihoming and which ISPs to choose are
by themselves very complicated and may involve many technical
and non-technical factors, which we do not attempt to address in



this paper. We also assume that cost and performance are the maifror instance, the authors in [4, 27] propose using overlay routing
factors of interest to the user. For many real Internet services suchto improve user performance. Achieving a large scale deployment
as Virtual Private Networks (VPNs), however, optimizing cost and with this approach is challenging, as cooperation among multiple
performance alone may not be enough. Other factors such as easerganizations is not easy to arrange in practice.
of management, ease of trouble-shooting, security, and Quality-of- Multihoming is an alternative way to enable users to control
Service (QoS) also play critical roles in users’ business decisions. routes. Many large enterprises, stub ISPs and even small businesses
So our techniques are not directly applicable in such contexts. Nev- already use multihoming as a way to connect to the Internet.
ertheless, we believe that in order to better understand the potential Much of the previous work on multihoming focuses on how to
role of smart routing in the future Internet, it is important to go design protocols to implement multihoming.g, [5, 7, 11, 30].
beyond previous performance-centric studies by placing both cost For example, the authors of [5, 7, 12, 24, 30] use BGP peering as
and performance in a common optimization framework. an implementation technique. Another technique is through DNS
Besides developing techniques for optimizing cost and perfor- or NAT, which is used in [9, 21]. Our work differs from the above
mance, we also evaluate the global effects of such optimization. We in that we do not focus on the implementations, but instead on de-
note that smart routing becomesedfishrouting scheme when each  signing algorithms to determine when and how much traffic a user
individual smart routing user adaptively changes its routes to opti- should assign to different ISPs to optimize both performance and
mize its own metrics without considering its effects on the network. cost. Consequently, our work is complementary to the above.
Such adaptation changes network performance and may cause self- There are several papers that evaluate the benefits of smart rout-
interference or interference with other smart routing or regilar ( ing, including [8, 28, 29]. More recently, Akelkt al. [1] quantify
single-homed) traffic. It remains to be seen whether smart routing the potential performance benefits of multihoming using real Inter-
can retain its performance benefits in the presence of such forms ofnet traces. Their results show that smart routing has the potential to
interference. achieve an average performance improvement of 25% or more for
We use extensive simulations to study the global effects of smart a 2-multihomed user in most cases, and that most of the benefit can
routing. We first examine the equilibrium performance of smart be achieved using 4 providers. Motivated by these results, we seek
routing in the presence of self-interferendee.( when the rout- to develop routing schemes to achieve such benefits in practice. In
ing decisions made by the smart routing user change the networkaddition, we study the effects of un-coordinated route optimization
performance, which in turn interferes with the decisions involved by multiple mutually interfering smart routing users.
in smart routing). Our results suggest that even in the presence Finally, there are a few research studies on designing algorithms
of self-interference, our algorithms still achieve good equilibrium for smart routinge.g, [1, 15, 17]. For example, Orda and Rom [17]
performance. We then evaluate how smart routing traffic interacts investigate where to place multihomed users and show that the
with other smart routing traffic as well as with single-homed traffic. problem is NP-hard. Caet al. [6] propose using hash functions
Our evaluations are based on an inter-domain network topology andto achieve load balancing among multiple links. In [11], the au-
user demands from real traffic traces. Our results show that smartthors compare several route selection schemes in a local area net-
routing improves performance without degrading the performance work and show that hashing can achieve performance comparable
of other traffic. to load-sensitive route selection. Our work differs from these stud-
Our key contributions can be summarized as follows: ies in that we use both cost and network performance as metrics
of interest. We also study the interactions between multiple smart

T We design offline and online algorithms to minimize cost routing users, and between smart routing and single-homed users.

based on realistic usage-based charging models.

t We design offline and online algorithms to optimize network 3. NETWORK AND CHARGING MODELS

performance under cost constraints. ) . . .
In this section, we describe our network model, ISP charging
t We use both analysis and simulations based on realistic traf- models, and the performance metric we use.
fic and performance data to demonstrate that our algorithms
yield good performance and low cost. 3.1 Network Model

T We evaluate the performance of smart routing when multiple
users selfishly optimize their own cost and performance. We
find that under this setting, smart routing traffic interacts well
with other traffic under traffic equilibria.

The rest of this paper is organized as follows. In Section 2, we
review related work. In Section 3, we discuss our network and
charging models. In Section 4, we motivate the importance of opti-
mizing cost and present novel cost optimization algorithms. In Sec-
tion 5, we optimize network latency under given cost constraints.
We present the methodology and results of our evaluations in Sec-
tion 6. In Section 7, we study the global effects of smart routing
and evaluate its interactions with other traffic. We conclude and
discuss future work in Section 8.

Figure 1: An illustration of a user with K service providers.

A multihomed user has multiple links to the Internet for sending
and receiving traffic, as shown in Figure 1. The implementation
techniques of distributing traffic to the links are different for outgo-
2. RELATED WORK ing and incoming traffic. For outgoing traffic, a border router inside

Several recent studies have shown that Internet routing often the user’s network can actively control how traffic is distributed.
yields sub-optimal user performanazg, [4, 27, 32, 33]. There For incoming traffic, a user can use NAT or DNS to control the
are a number of contributing factors, including routing hierarchy, routes. For more detailed discussions about the implementations,
policy routing, and slow reaction (if any) to transient network con- we refer the readersto [1, 5, 7, 11, 30].
gestion or failures. BGP routing instabilities can further exacerbate  Note that the implementations of multihoming are complemen-
the problem. These observations have generated considerable retary to our study, as our focus is on determining when and how
search interest in offering end-users more control in route selection. much traffic should be assigned to each link. Consequently, our



algorithms can be applied to a wide variety of multihoming im- ISP B“éségble F%Ilggte B“ésct%b'e F%'ggte
plementations, and work for both out-going and incoming traffic. (24 Mbps) | (45 Mbps) | (100 Mbps) | (155 Mbps)
Since our traffic traces, as described below, consist of only out- SPL S1213L | $13.000 $32500 $43.245
going traffic, we evaluate traffic assignment only in the out-bound [SP2 | $I11.160 | $18.652 | $29.900 $46.930
direction in this paper. ISP3| $9,870 | $12,600 | $37,088 | $45,989

. ISP4 | $7,600 $10,500 $19,600 $29,000
3.2 Charging Models ISP5| $6,300 | $9,000 | $24,700 | $28,750

Users pay ISPs for using their service. The cost incurred is usu-
ally based on the amount of traffic a user generdtes,cost =
c(x), wherex is a variable determined by a user’s traffic (which
we will term thecharging volumgandc is a non-decreasing func-
tion that maps to cost. Various charging models differ from one
another in their choices of charging volumend cost functior. 15000

Usually, the cost functionis a piece-wise linear (non-decreasing)
function, which we will use for our design and evaluation. There
are several ways in which the charging volumecan be deter-
mined. Percentile-based charging and total-volume based charging
are both in common use. 5000

Table 1: The pricing data.

20000

10000 -

Monthly Charge ($)

t Percentile-based chargind his is a typical usage-based charg- e
ing scheme currently in use by ISPs [26]. Under this scheme, 0 5 10 15 20 25 30 35 40 45
an ISP records the traffic volume a user generates during Mbps
every 5-minute interval. At the end of a complete charg- (a) DS3 pricing functions
ing period, they-th percentile of all 5-minute traffic volumes 50000 .
is used as the charging volumefor g-percentile charging. 45000 - [ |
More specifically, the ISP sorts the 5-minute traffic volumes 40000 |-
collected during the charging period in ascending order, and
then computes the charging volumas the(q% £ 1)-th vol-
ume, wherd is the number of intervals in a charging period.
For example, if 95th-percentile charging is in use and the 20000
charging period is 30 days, then the cost is based on the traf- 15000 |
fic volume sent during the 8208-tA§% £30£24 £60=5 = 10000
8208) sorted interval. 5000 |

35000
30000
25000

Monthly Charge ($)

t Total-volume based charging@his is a straightforward charg- 0 20 40 60 80 100 120 140 160
ing model, where the charging volurmmes the total volume o Mees
of traffic a user generates during the entire charging period. (b) OC3 pricing functions

In this paper, we focus primarily on percentile-based charging. Figure 2: The more complex pricing functions.
We describe how to deal with total-volume based charging in Ap- delay or rapidly increasing latency as a sign of a potential avail-
pendix C. In our evaluations, we use two sets of pricing functions. abjlity problem. Our algorithms can be easily extended to work
The first set of functions are simple pricing functions: if the charg- with alternative metricse.g, a combination of latency and loss

ing volume is 0, the price is 0; otherwise, the price is a constant rate:latency +w ¢log( , wherew is the relative weight
value. We pick the values from the entries in Table 1, which is pub- ¢ |oss rate.

lished in [25]} In this table, a burstable link is a link whose price

is determined by the percentile-based charging model; a full-rate

link is also called a dedicated link and has a fixed price indepen- 4. MINIMIZING TOTAL COST

dent of usage. To evaluate the sensitivity of our algorithms to cost ~ Since the previous studies focus on improving network perfor-

functions, we also use another set of functions shown in Figure 2. mance without considering cost, we first motivate the need to opti-

These functions are the more complex step functions. The prices atmize cost. We show that by optimizing network performance alone,

24 Mbps for DS3 and at 100 Mbps for OC3 match those in Table 1. users may incur high cost. Since the percentile-based charging
The overall trend of the pricing curves reflects the general pricing model is in common use, we illustrate our point below using a sim-

practice of decreasing unit cost as bandwidth increases; it is alsople example under this model. Our performance results in Section 6

TiTossrats)
1 j lossRate

consistent with the pricing curves we are awareed, [3, 18]. will further support this point using real data.
. Consider a user witl identical links toK ISPs. Suppose the
3.3 Network Performance Metric user has one unit of traffic to send at each interval, and the latency

There are several ways to measure network performance. In ourof each link at each interval is drawn uniformly from a common
evaluations, we use end-to-end latency as the metric. As shownrange. In each interval, to minimize latency, the user sends all of its
in [24], |atency not 0n|y reflects network response time but also traf'fip through the |Ink with the lowest Iatency_WhiIe the other |i.nkS
serves as a measure of availability, as users often consider largeeceive no traffic. Since the latency through different links are iden-
Py ) ) ) tically distributed, each link receives traffic for approximatehK

PrICQS are based on a February 2002 Blind RFP. All prices |.|Sted of the intervals. Therefore whdq is less than ng’ K = 4, the
are discounted, based on a two-year, $240,000 annual commitmeniysth-percentile of each link is one. This implies that by optimizing

with installation in a San Jose, CA facility. Prices do not include - - - -
recurring and non-recurring local access fees. Given a set of ded_performance, the user pal@times the cost of using a single link.

icated links available, the cost of using dedicated links is the min- 1hiS K-fold increase in cost is clearly unacceptable to most users.
imum cost of links such that their total capacity exceeds the max- ~ Given this potential of a large cost increase, in this section we
imum traffic load. Note that the price of ISP5 is corrected from study how to design effective smart routing algorithms to optimize

$23,750 in the original publication to $28,750. cost. As mentioned in Section 3, we focus on the percentile-based




charging model. We present an algorithm for dealing with the total-
volume based charging model in Appendix C.

4.1 Problem Specification
We first introduce the following notation.

K
Ck

The number of ISPs. We uséeas the index.

The cost function of ISK. Without loss of generality,
we assume thaty is a piece-wise linear non-decreasi
function.

The number of time intervals in a charging period. We yse
i as the index.

The number of flows. We usk as the index.

ng

The traffic volume of flowf during intervali.

He total traffic volume during interva, i.e., vlil
f VL']. Lettime seriey = fvlilj1 =i = Ig.

The volume of traffic distributed to ISR during interval

i Le]:g'me seriesl = ftL'] j1 = i = Ig. Note that

V = Tk (with vector summation).

The charging percentile of ISR, e.g, qx = 0:95 if an

ISP charges at 95th-percentile.

Thedg—]jXje-th value inXggteg(or 0 if g = 0), where

Xsortedis X sorted in non-decreasing order, aodj is

the number of elements X.

The charging volume of ISR, (i.e. px = qt(Tk; qk))-

For example, if ISR charges at 95th-percentile, thpgp

is the 95th-percentile of the traffic assigned to ISP

We now formally specify thélow assignment problenGiven
cost functions, the flow assignment problem is to firtb] that
minimizes the total cost |, ck(pk).

We consider two cases$ractional flow assignmerdandintegral
flow assignmentUnder fractional flow assignment, flows are in-
finitely splittable. In contrast, integral flow assignment assumes
that during each interval each flow is assigned to only one ISP. In
the latter case, flows can be naturally defined using destination pre-
fixes when BGP is used to implement smart routing.

The traffic assignment problem, be it fractional or integral, can
be further classified into two categoriesifline or online. The of-

fline version assumes thai'] are given in advance, whereas the

Ok

qt(X;q)

Pk

online version needs to predi‘zi('] and deals with prediction er-
rors. The online integral algorithms are more practical and have
lower control overhead. The offline fractional algorithms are also
important because they provide a lower bound on cost, and further
serve as a basis for designing our online algorithms.

4.2 Offline Fractional Flow Assignment

We begin by solving the offline fractional flow assignment prob-
lem. We first present an efficient algorithm to compute an optimal
traffic assignment when ISPs do not have capacity constraints. We
then extend the algorithm to deal with capacity constraints.

4.2.1 An Optimal Algorithm for Percentile-based
Charging Without Capacity Constraints

A key to optimizing cost is to determine the charging volumes.

4.2.2 Computing Charging Volumes

In this section, we describe how to compute the optimal charg-
ing volumes to minimize total cost. We show that the charging
volumes can be derived jtwo steps: (i) compute the sum of the
charging volumes, namely , pk, and (i) compute individuapk
values based on the sum.

4.2.2.1 Computing the sum of charging volumes.

We first describe how to compute the sum of charging volumes to
minimize cost. This is based on the following two important obser-
vations, which we will formally prove below. Our first observation
is that the total cost has a monotonicity property with respect to the
sum of the charging volumes. gbhis monotonicity property suggests
that to minigize the total cost | ck(pk), we need to minimize
the valugof | px. Our second obgervation is that the minimum
value of |, pxisequaltogt(V;1§ (1 i gk)). As an exam-
ple, suppose we have 4 ISPs and all of fsem charge based on the
95th-percentile volume; then the minimum,_px is equal to the
80th-percentile of the total traffic (sindej 471 § 95%) = 0:80).

The two obsgsvations together gtggest that to minimize cost, we
need to have |, px = qt(V;1 i (1 i gk)), which is easy to
compute giverV andg.

Now we formglly prove the above two observations. Define
Cmin(S) =minf  ck(px)] Pk = sg. We have

THEOREM 1. If g , S1 » 0, thencmin(So) » Cmin(S1).

p PROOF. Suppose the seix minimjzes | ck(pk jsubject to

K Pk = So. We haveCmin(So) =  Ck(Px) »  j Ck(Pk ¢
$1=80) » Cmin( Pkt EE) = Cmin(S1), where the first inequality
is because the cost functions are monotonically non-decreasing,
and the second inequality is by the definitiorcafin. [

The second observation, which is fgsmalized in Theorem 2, es-
tablishes the (reachable) lower bound of, pk.

def

P (1 a0) % vo.

We need the following lemma to prove the above theorem. The
proof of the lemma is in Appendix A.

P
THEOREM 2. |, Pk » qE(V;1 j

LEMMA 3 (QUANTILE INEQUALITY). GivenK equal-length
time seriesTx = ft,[(l];t,[f]mw ;t,[("]g, wheren = jTgj and0 =
akx = 1, we have

<

qt(Tk; 1 i ax) » qt(
Kk k

< <
Tk;1 i ak):
K

Given the above lemma, we can prove Theorem 2 as follows.
< <
Pk at(Tik; 1§ (1§ ge))
<

K>
Tl i (1
k

k

qt( idk))

def

i Vo:

(11 a))

Note that in the above proof, we implicitly assume thatah1

For example, when ISPs use the 95th-percentile charging model,are integers, wheré = jVj. Whenge~"1 is not an integer, we

we need to determine the 95th-percentile traffic volume for each can easily enforce its integrality by readjustipgto dge.—"Te=1.

ISP. Once we know the charging volume for each ISP, we can as- Clearly such readjustment does not affect the outconud 04; qk )

sign traffic by ensuring that the number of intervals in which ISP (i-€. 9t(V;dx) = qt(V; dge~"Te=I), wherel = jVj). Through-

k serves more than its charging volume of traffic does not exceed out the rest of the paper, we assume that such readjustment has

(1 i q}1 (e.q, 5%1 for 95th-percentile charging). been made for evergi in advance. For example, when we dis-
Based on the above observation, we develop an efficient algo- cuss 95th-percentile charging with charging period of one week

rithm that computes an optimal traffic assignment in two steps: (i) (-€. I = 7 £ 24 £ 60=5 = 2016), we are really usingj =

compute the charging volume for each ISP, and (i) assign traffic 40:95~"le=I = d1915:2e=2016 = 1916=2016 (as opposed to

based on the charging volumes. gk = 0:95 = 1915:2=2016).



4.2.2.2 Computing individual charging volumes.
OnceV, is determined, the next stepgs to compute the opti-
fal charging volumesy, which minimize | ck(pk) subject to
Pk = Vo.
'll('heorem 4 shows that the optimal charging volumesare easy
to derive when altk are concave (proof omitted for the interest of
brevity).

THEOREM 4. If all cost functionsyk are concave, then an opti-
mal solution is one in which the charging volumes arfer all but
one ISP. More specifically, I = argmin, [ck (Vo) otk (0)]. De-
fﬂsepf: Vo whenk = ko and O ptherwise. We have , ck(px) =

« Ck(pk) for anypy satisfying |, px = Vo.

For general cost functiong.g, non-decreasing step functions),
it is more involvgehto determine the ggtimal charging volurpes
(which minimize |, ck(px) subjectto |, pk = Vo). Below we
introduce a dynamic programming algorithm to solve this problem.
Letopt(v; k) be the optimal cost for serving traffic volumady the
firstk ISPs. We have:

N ci(v) k=1
opt(v; k) = Jmin fopt(v i x;k i 1) +cc(x)g k>1
-X=V

We can start fronopt(v; 1) and computept(v; k) based on the
above recurrence relation, while keeping track of the corresponding
allocations. The value aipt(Vo; K) gives the optimal cost, and its
corresponding allocation determingg. The time complexity of
the algorithm isO(K ¢ V¢); the space complexity i© (K ¢ Vo).
Note that the above algorithm assumes that the desired precisio

of the pricing curve are often very coarse-grained. It is easy to
handle any desired precision through discretization. For example,
if we wantV, andpk to be accurate up to 100, we only need to
computeopt(v; k) whenv is a multiple of 100. This reduces both
time and space complexity. More precisely, with precidionthe

time and space complexity of the algorithm will 9 K¢ (Vo=P )?)
andO(KtVo=P), respectively. In practice, we typically only need
to handleK <« 10 andV,=P <« 1000, so the complexity of the
algorithm is quite low.

4.2.3 Traffic Assignment Given Charging Volumes

Given the charging volumes, namgly for ISPk, next we de-
scribe how to assign traffic during each time interval. The goal of
traffic assignment is to ensure that is the charging volume for
ISP K; that is, forqe~"1 intervals, the traffic volumes assigned to
ISP k are less than or equal fk, and ISPk is only allowed to
serve more thapg for the remaining1 j qx)~71 intervals. This
can be achieved by dividing intervals into non-peak intervals and
peak intervals.

According to the definition o¥, during the intervals when to-
tal traffic volumes are no larger thaf, all traffic can be assigned
without having any ISP receiving traffic more than its charging vol-
ume. Therefore, we call these intervaln-peak intervalsFor the

remaining intervals, at least one ISP needs to serve traffic more than

its charging volume. As a result, we call the latter interyzdak
intervals We will use this terminology throughout this paper.

Based on the above definitions of peak and non-peak intervals,
we assign traffic in the following way. If an interval is a non-peak
interval, we assign traffic such that the traffic assigned tok$#
less than or equal fo. There are multiple ways to assign traffic to

satisfy the above constraint, and all of these assignments give theiEgl

same cost. Therefore, we can pick any one of them. In Section 5,
we will take advantage of such flexibility to improve performance.
For a peak interval, we randomly select an ISP burst {.e., its
assigned traffic exceeg). This is done by assigning each of the
remaining ISPs its charging volunpg, and then assigning all re-

that ISPs do not have capacity constraints. (We will study the case
of limited capacity in the following section.)

Putting everything together, we have the algorithm shown in Fig-
ure 3 to minimize cost for splittable flows. Itis easy to see phds
ensured as the charging volume for IEFsince ISPk serves more
thanpy for exactly (1 j qk)~71 intervals. Since the sum of the
achieved is equal toVy, according to Theorem 2, the algorithm
achieves minimum cost.

find Vo P P
find px by mingmizing Ck(pk) subjectto | px = Vo
foreach(1 j (1§ qb)/l non-peak interval
traffigassigned to ISR is less than or equal foc
for each | (1 j q)}~1 peakinterval
pick ISPk that has bursted fewer th&h j qx)}"1 intervals
assignpk + V' i Vo to ISPk
assigrpo to ISPK?, wherek 6 K°

Figure 3: An offline optimal flow assignment algorithm for
splittable flows under the percentile-based charging model and
without capacity constraints.

4.2.4 Dealing with Capacity Constraints

The previous algorithm assumes that ISPs do not have capacity
constraintsi(e., they each can carry all traffic in an interval). This
is a reasonable assumption as multihoming is often used to provide
high reliability—even if all other ISPs fail, a user can still send out
traffic using the single remaining ISP. However, it is still possible

X - - . I0Mhat a single ISP may not always have enough capacity to handle
is one. In practice, this may not be necessary, since the cut points

all of the traffic.

f= '-k(l i k) /linitialize the fraction of peak intervals

assignable = false

while assignable is false
Vo = qt(V; 1i f) P
find pk by minimizing | cik(pk) subjectto | px = Vo
assignable = IsPeakAssignable(V;Vo; T; fpkg)
reducef by A if assignable is false

assignE~1 peak intervals such that
each ISF bursts in at mostl j qx)~"1 intervals, and
there is enough total capacity for each peak interval

Figure 4: The global fractional offline assignment (GFA-offline)
algorithm: an algorithm for percentile-based charging with
link capacity constraints. The cost functionck(X) is assumed
to be 1 if x exceeds the capacity of ISR. The constantA con-
trols the step size when we search fof, the largest assignable
fraction of peak intervals (A = 0:01 in our evaluations).

We use the algorithm in Figure 4 to accommodate such capac-
ity constraints. The basic idea is to properly choose the fraction of
peak intervals, denoted & so that there are multiple burst ISPs
during each peak interval that together provide enough total capac-
ity to carry all of the traffic. More formally, givefi and the corre-
spondingVy andpk (computed inside thevhile-loop in Figure 4),
we need to knowsPeakAssignable(V;Vo; F; fpkg), i.e., whether
itis possible to assign different ISPs to burs€it1 peak intervals
so that (i) no IS bursts more thafil j qk)~71 intervals, and (ii)
there is enough total capacity in each peak interval.

Letg denote a set of ISPs that when bursting toggther can carry
ffic in any peak interval. A sufficient condition fgiis k2g Ot

Ko2g PR = maxL.oad, whereCy is the capacity of linkk and
maxLoad is the maximum load of a charging period. ligtde-
note the number of intervals during which the ISPs in gropbprst.

Let G be the set of all{*) possible ISP groups. When the fol-
lowing conditions hold, there exists a peak interval assignment and

maining traffic to the burst ISP. This is feasible because we assumelsPeakAssignable(V; Vo; F; fpig) returns true.



/I update traffic prediction at intervalusing EWMA

> PredictTraffic()f )
max ty . £1 Predicted Total = fL-Vl + (1 j fl)~"Predicted Total
092G for each flowF appearing in interval or in Predicted Flow
> if flow f does not appear ifPredicted Flow
ty - (1 i qk)/| for all k: PredictedFlow(f) = VE:]
else
g: k2g

PredictedFlow(f) = fJ/vL'] + (1 § fl)~"PredictedFlow(f)
if PredictedFlow has more than 2*MAXFLOW_NUM flows
keep only the MAXFLOW_NUM largest flows
normatize traffic inPredicted Flow such that
¢ PredictedFlow(f) = Predicted Total

A few comments follow. FirstK is usually small é.g, below
10), so the number of variables is manageable. Second, the above
conditions are sufficient but not necessary, because the conditions
ensure that we have an assignment even when the traffic load dur-| 4
ing a peak interval is always equal to the maximum load. However,
since the load during a peak interval may be smaller than the max- _. . )
imum load €.g, the 95th-percentile load is smaller than the maxi- Figure 5: The PredictTraffic()
mum load), itis possible to have a peak-load assignment even whentotal and per-flow traffic volumes.
the above conditions are not satisfied. When the difference between
the maximum load and the smallest peak load is small, the condi- ¢ V¢ and recompute all the charging volumes based on the new
tions are tight. Third, all these constraints are linear constraints, Vo. For our traces, with = 1:05 we are able to track increases in

subroutine: predicting

so we can determine the existence of a peak load assignment byo quickly without overshooting too much.

solving an integer programming problem. Since the number of in-
tervals is large, in practice we first solve the problem without the
integer constraints and then use rounding to derive the results.

We refer to this assignment algorithm as global fractional offline
assignment (GFA-offline).

4.3 Online Integral Assignment Algorithms

The offline fractional assignment algorithms described in the pre-

When recomputing the charging volumes, we need to ensure that
for everyk the new charging volume!, is no less than the old
charging volumepx. Otherwise, withp}, < pk, there may be
many (possibly more tha(l j qk)l) past intervals in which we
assign more thap!, (but less tharpx) amount of traffic to ISF,
thus making it difficult to ensurgt(Tk; qk) = pk. We can apply
the same dynamic programming algorithm as in Section 4.2.2.2 to
computefplg; the lower bound€pkg can be easily enforced by

vious sections assume that traffic patterns are known in advance andettingck (x) = 1 for all X < px.

that flows are splittable. In practice, traffic patterns are not gaven
priori. Moreover, one may prefer not to split flows (to reduce con-
trol overheade.g, when BGP is in usé).In this section, we present

4.3.2 Performing Offline Integral Assignment
We first note that even in an offline setting with perfect knowl-

online integral assignment algorithms to address both issues. Ouredge of traffic, the integral assignment problem is already hard.

solution consists of two steps:
1. Predict the traffic antly in the next interval.
2. Compute an integral assignment based on predicted traffic.

We will now describe each step in detail.

4.3.1 Predicting Traffic angl,

First, as shown in Figure 5, we predict total and per-flow traffic
using an exponentially weighted moving average (EWMA). That
is, Prediction = " currTraffic+ (1 i flrPrediction. Note that
fl = 1 corresponds to predicting traffic using only the preceding
interval. Our evaluation shows that the predictions itk 1 and
fl = 1 yield very similar performance.

There are several technical details about traffic prediction worth
mentioning. First, to avoid keeping history for too many flows,
we periodically remove the flows with the smallest predicted traffic
volumes. Second, when a flow appears for the first time, we will
directly use its traffic volume in the current interval to predict its
traffic in the next interval (since it does not have any other history
yet). Third, since the predicted total traffic may not match the sum
of the predicted traffic of the flows that we keep track of, we add a
normalization step shown in the algorithm.

Besides the traffic, we also need to predigtin order to decide
whether the next interval is a peak interval. Clearly, if we underesti-

mateVy, then we may end up exhausting the quota of peak intervals
too early, thus increasing the total cost due to increased charging

volumes of individual ISPs. To avoid this penalty, we updéaén

the following conservative way. We use thig in the past charg-
ing period as an initial estimate &,. We also maintain a sliding
window (with length equal to the charging period) and after each
interval we compute th¥, value for the most recent sliding win-
dow, denoted a!s{(?. Wheneverv(? exceeds/y, we increaseé/y to

More specifically, we have the following negative result (please see
Appendix B for its proof):

THEOREM 5. There is no polynomial-time algorithm that can
achieve a constant approximation ratio for integral assignment with
general cost functions, unless P=NP.

The above negative result makes it very natural to consider ap-
proximation algorithms. We propose the following (offline) greedy
algorithm for integral assignment. As shown in Figure 6, we first
run the offline fractional flow assignment algorithm to find the charg-
ing volumespk. Based ormpk for ISPk, we then compute the tar-
geted amount of traffic to be assigned to it; we call this value its
pseudo capacitguring the interval (abbreviated @eudoCap).

For a non-peak interval or a peak interval in which IE not a
burst ISP, the pseudo capacity of IBIs its charging volume com-
puted by the fractional assignment algorithm; for a peak interval in
which ISPk is a burst ISP, its pseudo capacity is its link capacity
Ck. Our goal is to ensure that the traffic assigned to any ISP does
not exceed its pseudo capacity.

Conceptually, this is a problem similar to bin packing, and can
therefore be solved using a greedy heuristic. Specifically, we can
initialize each ISP with its pseudo capacity, sort the flows in de-
scending order of the traffic volumes they generate, and then itera-
tively assign the flows to the ISP with the largest remaining pseudo
capacity. The actual algorithm in Figure 6 splits this conceptual
greedy assignment process into two separate steps. It first tries to
assign traffic usin@k as the bin size, and then refills the bin size by
(PseudoCap, i px) and assigns the remaining traffic. We find that
using such a two-step approach makes it more likely for there to be
ISP with large remaining bin size. This ISP can then be used in an
online setting to accommodate traffic for prefixes not seen before.

4.3.3 Accommodating Prediction Errors

2avoiding splitting may cause packet losses. Our evaluations show ~ The integral assignment algorithm presented in Figure 6 works

that these loss rates are very low.

well for offline traffic demands. However, in an online setting, the



OfflinelntegralNum Peaks, Vo, ¥pk 9, TotalTraffic, FlowTraffic) ¥
/I compute pseudo capacities
for each ISRk, P seudoCapk = pk
if TotalTraffic . Vo and NumPeaks <
for each burst ISK, P seudoCapk = Ck
NumPeaks = NumPeaks + 1

P
k(liak)el

Il try to assignmin(Vo; TotalTraffic) amount of traffic
for eachk, Bink = pk
SortedFlowList = sort flows in descending order &flow Traffic
for each flowf in Sorted FlowList
find ISPk with the largest bin siz8inyx
if Bink . FlowTraffic(f)
Assignment(f) = k
Bing = Bink i FlowTraffic(f)

/I assign the remaining traffic
for eachk, Bink = Bink + PseudoCapk i Pk
RemainingFlowList = SortedFlowList j flows in Assignment
for each flowf in RemainingFlowList

Assignment(f) = k, where ISR has the largedBiny

Bing = Bink i FlowTraffic(f)

/I return the result
MazISP = argmax Bing
return Assignment; MaxISP

g

Figure 6: The Offlinelntegral() subroutine: an offline
greedy integral flow assignment algorithm.

predicted traffic may not match the real traffic due to prediction
errors. If we are too greedy in filling up pseudo capacities of the
links, then the prediction error may cause the actual usage to ex-
ceed the target pseudo capacities, thereby significantly increasing
the actual cost. Our solution is to add some margin when comput-
ing the charging volumes and then trim them down afterward; our
adjustment algorithm is shown in Figure 7. We find that setting
margin = 0:05-V, works well for the traces we have.

fpkg = OfflineFractional(Vo + margin="K)
for each ISK, px = maxf0; px § marging

Figure 7: Dealing with prediction errors by adjusting p.

4.3.4 Final Algorithm

Putting everything together, we have the final online algorithm
shown in Figure 8. This algorithm is also referred to as global
integral online assignment (GlA-online).

/I compute assignment for current interval
for each interval
/I updateVo based on most recehtintervals
V{ = FindVy(TotalTrafficli i 1::i i 1]; NumPeaks)
if V& = Vo
Vo = 1:05 ¢ V¢
margin = 0:05-"Vqo
fplg = OfflineFractional(Vo + margin=K ; fpkQ)
for eachk
pk = max(0; p?< i margin)

/I perform integral assignment using predicted traffic
(Assignment; MazISP) =
OfftineIntegral( NumP eaks; Vo; fpkg;
PredictedTotal; PredictedFlow)

/I actual assignment:
for every flow appearing in interval
if flow appears inPredicted Flow
use pre-computed ssignment
else// this is a flow not seen before
assign toMazISP
PredictTraffic()

Figure 8: The global integral online flow assignment (GIA-
online) algorithm.

5. OPTIMIZING PERFORMANCE UNDER

COST CONSTRAINT

In the preceding section we studied how to optimize cost for a

user. To be practical, a sensible smart routing algorithm needs to
consider both cost and performance.

5.1 Problem Formulation and Overview

There are multiple ways to formulate the problem of optimizing

both performance and cost. For example, one possibility is to de-
sign a metric that is a combination of both cost and performance.
However, it may be unclear to users exactly how to determine the
relative weights between cost and performance. A more intuitive
approach, which we propose in this paper, is to optimize perfor-

mance under a given cost constraint.
As before, we design both offline and online algorithms. Both

algorithms consist of two key components. The first component is
a building block of the second one.

1. Given the pseudo capacity of each ISP during each interval,
namely an upper bound on the traffic that can be assigned to
an ISP, we assign flows in such a way that the total delay is
minimized. We call this componeRiow Assignment Given
Pseudo Capacities

. Since a given cost constraint allows multiple pseudo capac-
ity assignments and these different assignments give differ-
ent delays, we will need to select the assignment that yields
good performance. We call this compon@seudo Capacity
Selection

5.2 Offline Traffic Assignment

We first present an offline algorithm.

5.2.1 Flow Assignment Given Pseudo Capacities
The goal of flow assignment given pseudo capacities is to mini-
mize the total latency such that the traffic assigned to each ISP does

not exceed its pseudo capacity.

We solve the flow assignment problem as a minimum-cost multi-
commodity flow (MCMCF) problem by constructing a graph as
shown in Figure 9. In the graph, each node in the top row represents
the source of a flow and the destination of the flow is in the bottom
row. The nodes in the middle two rows are ISP nodes. The cost
perf (k; f) of the link from the source node of flof/to ISP node
k on the next row is the latency incurred by assigning ffote ISP
k; the costs of other links are zero. The link capacity of each ISP
node on the second row to the corresponding ISP node on the third
row is the pseudo capacity of the ISP; the capacities of other links
are unlimited.

ISP

Figure 9: MCMCF formulation of the flow assignment prob-
lem.

5.2.2 Pseudo Capacity Selection

Given pseudo capacities, the above algorithm computes flow as-
signment to optimize latency. Next we study how to determine the
pseudo capacities of the links during each interval.



Pseudo capacities are determined by cost constraints. Withoutf’s volume during time interval. Similarly to Figure 6, we split
consideration of cost, each ISP can allocate traffic up to its link ca- the greedy assignment process into two separate steps so that we
pacity, i.e., a link’s pseudo capacity is its raw capacity. However, can better accommodate traffic that has not appeared before.
since our goal is to optimize performance under cost constraints,
we apply the algorithms described in Section 4, which impose con- 6. EVALUATIONS
straints on how much traffic each link can carry. More specifically,
we obtain the charging volunp for ISPk based on cost optimiza-
tion. Then, during a non-peak interval, each ISP’s traffic should be
no higher thapk (i.e., the pseudo capacity of IS€is pk).

The pseudo capacities of peak intervals are not completely de-
termined by cost optimization. The only constraint from cost op-
timization is that each ISP can excepd for only (1 j g}~
intervals, so we still have flexibility in picking the burst ISPs for
each individual peak interval. Below we describe the algorithms to
determine the pseudo capacities for peak intervals under the cos

In this section, we evaluate the performance of the algorithms
developed in the preceding sections. We obtain two sets of traffic
traces: Abilene traces and a large Web server trace. The Abilene
traces contain netflow data from a number of universities and en-
terprises on the Internet-2 from Oct. 8, 2003 to Jan. 6, 2004. We
select traffic traces from the organizations, shown in Table 2, for
our evaluations. To speed up our evaluations, during each 5-minute
interval, we only use the 2000 destination prefixes with the largest
volumes. We call these prefixésp prefixes Note that in different
ttime intervals, the sets of top prefixes are different, but they always

constraints. L ;
A key step in determining the pseudo capacities of a peak inter- account for over 90% of the total traffic in an interval.
val is to decide which ISP or set of ISPs to burst. Selecting burst AS [ Organization [ Traffic Rate (Vbps)]
ISPs for a given peak interval can be done in two steps. First, we 3582 University of Oregon 215576 (202.527)
derive the best performance achieved by bursting any set of ISPs 3 MIT Gateways 64.508 (64.587)
at a given peak interval. This step can be achieved by first setting 52 UCLA 52.245 (52.234)
the pseudo capacities of the chosen burst ISPs to their link capaci- 59 Univ. of Wisconsin, Madison| 33.333 (33.253)
ties, the pseudo capacities of the remaining links to their charging 237 NSF (MERIT-AS-14) 117.366 (108.621)
volumes, and then calling the algorithm developed in Section 5.2.1. 6629 NOAA Silver Springs Lab 62.340 (62.335)
Next, we optimize performance across the entire charging period 13?)1 Naﬁo”a’llkigf;gsoég'emd”e 72.810 (72.691)
while preserving the cost constrainmie(, each ISP can burst up to )
a1 time intervals). LetBestPerf(g; 1) denote the best perfor- 55753 (GOddardReSdpﬂ(; I';I'Cght Centey) g;gii Eg;'gggg
mance computed by the algorithm in Section 5.2.1, when ISP set Anonymized Commercial Web Server 156.231 (64.124)

g bursts at interval. Then the step of determining which ISPs to - X -
burst at each peak interval can be cast into a mixed integer pro- Table 2: Traffic trace.s'used |n.our evaluatlon, where the last
gramming (MIP) problem as shown in Figure 10. The MIP can be column shows the original traffic rates averaged over 91 days,
solved using LP software such asdplve [14]. and the traffic rates after filtering, which are shown in paren-
> theses.
minimize  BestPerf(g; i} IsPeak(g; i)
gidg For diversity, we also use the trace collected from a large com-
subject to IsPeak(g;i) = (1 § ql-1 8K mercial Web server from Oct. 1, 2003 to Dec. 31, 2003. This is
. one of the busiest Web sites. The trace contains IP addresses of
L2t . . hosts that issue Web requests, along with time-stamps and sizes of
IsPeak(g; i) - 1forany peakinterval requested files. Note that for efficiency, a set of proxy caches are
deployed in front of the Web server. About half of the requests
seen at the Web server are re-directed from the proxies with the IP
addresses replaced by the proxies’ IP addresses. Since we are inter-
ested only in wide-area network traffic, we filter out the re-directed
requests. In addition, as with Abilene traces, we only consider the
traffic contributed by the top 2000 prefixes during each 5-minute
: : interval. The last column in Table 2 shows the mean traffic volume
5.3 Online Algonthms . before and after filtering. Note that the difference between filtered
Next we present the online algorithms. There are two new prob- tyaffic and original traffic of the Web server is larger than that of the
lems that we need to address in designing an online algorithm. apjjene traces due to the filtering of the redirected requests.
First, we need to predict both traffic and performance. Second, we
need an efficient algorithm to select pseudo capacities and assigng.1 Evaluation of Cost Optimization

flows to ISPs. We compare the performance of our cost optimization algorithms
described in Section 4.€., GFA-online in Figure 4 and GlA-online
in Figure 8), with the following alternatives:

]
IsPeak(g; 1) 2 10; 19

Figure 10: MIP formulation to determine which ISPs to burst.

5.3.1 Predicting Traffic and Performance

We predict traffic patterns in the same way as shown in Figure 8.
To predict performance, we again use the exponentially weighted 1+ Round robin: in each time interval, traffic is assigned to a

moving average. single ISP, and we rotate the responsible ISP in a round robin
. . . fashion. If the chosen ISP does not have enough capacity to
5.3.2 Performing Traffic Assignment carry all of the traffic, the remaining traffic is assigned to the
We use the following greedy heuristic to assign traffic online. other ISPs in the same round robin manner.

During a time interval, a flow is assigned to the ISP that has the
best predicted performance among all of the ISPs with sufficient
pseudo capacities. We observe that the ordering of flow assignment

affects the performance. In particular, we find that assigning flows . ) N i

in order of descendin@iffPerf ()} performs very well, where sign ISPk an amount of traffic which is the minimum
In oraer ot ae: : £ P ! y wetl, andrem_traf=rem_nisps, whererem_traf is the amount
DiffPerf (f) is the predicted performance difference _between the of traffic that remains to be assigned, artgh_nisps is the
best performing ISP and the worst performing ISP, aﬂdis flow number of ISPs that have not yet been assigned traffic.

Equal split: in each time interval, traffic is split equally among
all ISPs. When there are capacity constraints, we first sort
links in order of ascending capacity. In this order, we as-
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Figure 11: Comparison of the total cost across different traces, Figure 12: Comparison of the total cost across different traces,
where each user has 4 links to the Internet, and each link’s cost where each user has 4 links to the Internet, and each link’s cost
is determined by a simple pricing function. is a piece-wise linear function of traffic volume as shown in Fig-
ure 2.

t Local fractional offline (LFA offline): in eatig intervdlwe
determine the traffic aIIocatiot{:] such that ck(t,[(']) is
minimized. This essentially minimizes the total cost assum-
ing that the cost is a function of the traffic in the current in-
terval (instead of based ap percentile traffic volume). To
determine the optimal allocation, we apply the dynamic pro-
gramming algorithm described in Section 4.2, which takes

Nevertheless, it is still able to yield cost comparable to (and of-
ten slightly lower than) LFA-offline, and much lower cost than
the round robin and equal split. Second, we observe that apply-
ing GFA-offline, GlA-online or LFA-offline to burstable links can
result in lower cost than using dedicated links. On the other hand,
9 X . . applying round robin or equal split to burstable links can incur sig-
gh% égiﬁ)'rfrt?]fgf|él£iocmfﬁr:?r:]eu%a:;g:t'npUt to derive an nificantly higher cost than using dedicated links. Finally, we ob-

) serve that the relative ranking among these algorithms remains the

t Dedicated links: in today’s market there is an option to pur- Same as the charging period changes from one week to one month.
chase dedicated links besides burstable links. Dedicated links We next use the more complex pricing functions, described in

have flat rates which are independent of usage, even when theSection 3, to evaluate the robustness of our algorithms to vary-
assigned traffic is 0. ing pricing functions. Figure 12 summarizes the results. We ob-

serve that GFA-offline continues to perform the best. Its online
We derive the cost of a burstable link based on the 95th-percentile version performs slightly worse due to prediction errors, but still
charging model throughout our evaluation. For a given trace, we out-performs the other algorithms.
determine the cost of using dedicated links by finding the cheap- Next, we study the impact of varying the number of available
est set of links whose total capacity can accommodate the maximallinks. Figure 13 shows the cost as we vary the number of links
load in the current charging period. from 2 to 15. As before, GFA-offline yields the best performance,
We start our evaluation by considering simple pricing functions: with GIA-online closely following it. We observe that the normal-
the price of an ISP link is a constant value if the charging volume is ized cost of GFA-offline and GlA-online tend to decrease with the
greater than 0, and the value is one of the entries shown in Table 1.number of available links. This is because they can burst ISPs at
In our first experiment, we consider a user with 4 links connected their full capacities during peak load without incurring additional
to the Internet. We randomly pick 4 burstable links from the ten cost. In comparison, we observe that the normalized costs of the
links shown in Table 1 with the corresponding capacity constraints. round robin, equal split, and LIA-offline algorithms increase with
We allow duplicates, since it is possible to have multiple links of the number of links.
the same type. Figure 11 shows the normalized cost achieved us- Finally, we look at the dynamics of cost over time. Figure 14
ing different traffic assignment algorithms across 5 sets of traces. plots how cost varies over a period of 13 weeks, where the charg-
Here normalized cost is defined as the ratio between the cost of aing period is one week. As shown, GFA-offline and GIlA-online
burstable link based on a specific traffic assignment algorithm and perform significantly better than the other three algorithms. Since
that of using the dedicated links. Note that except for GIA-online, the normalized costs of GFA-offline and GlA-online are often much
all of the algorithms are offline algorithms; thus they know traffic lower than 1, the cost of using these algorithms on burstable links is
patterns in advance. significantly lower compared with using dedicated links. We also
We make the following observations. First, as expected, GFA- observe that GFA-online can sometimes outperform GFA-offline,
offline yields the best performance. GlA-online incurs a moder- e.g, week 4 in Figure 14 (b). This is because GFA-offline is not
ately higher cost than its offline version due to prediction errors. guaranteed to be optimal when there are capacity constraints.
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Figure 13: Comparison of cost among different routing schemes using piece-wise linear pricing functions shown in Figure 2.
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Figure 14: Time series plots of cost across different traces, where each user has 4 links to the Internet, and each link’s cost is a
piece-wise linear function of its charging volume shown in Figure 2.

Summary: Our evaluation results show that the GFA-offline al- performance variations across ISPs.
gorithm achieves the lowest cost, as we expect. Moreover, its on- Note that the delay traces from NLANR are mostly between
line version is also competitive despite fluctuations in traffic — it hosts within the US, so we filter out traffic with destination prefixes
is often able to out-perform the other alternatives by a significant that are outside the US. Such filtering reduces traffic by 20% - 60%,

amount. and increases traffic variability (due to smaller aggregation). This
increased variability will further stress-test our online algorithms.
6.2 Evaluation of Performance Optimization Figure 15 compares the cost and performance of different routing
Under Cost Constraints schemes, where the cost in Figure 15 (a) is normalized by the cost
of the offline cost optimization scheme. We make the following

Next we evaluate latency optimization under cost constraints. In
this section, we mainly focus on evaluating our online algorithm in
the presence of realistic RTT variations in the Internet. In the next
section, we will further examine the performance of smart routing
when multiple users interact with each other.

To evaluate the performance benefits of smart routing for a given
traffic demand trace, we would ideally use round-trip time (RTT)
measurements between the sources and destinations in the traf
fic traces during the period of trace collection. Due to a lack of
such measurement data, we use the measurements published b
NLANR [16] for our evaluation. The NLANR traces consist of
RTT measurements between pairs of 140 universities from Oct.
2003 to Jan. 2004. In order to get the delay for a flow in the traffic
trace, we first construct virtual ISPs in the following way. We map
ISPs from the Rocketfuel dataset [22] to a set of universities by as-
signing each of their nodes to the geographically closest university
in the NLANR trace. In addition, we map the origin of each of our
Abilene traces to the closest university in the NLANR trace. Us-

observations.

First, comparing the three offline schemes, we observe that opti-
mizing performance alone increases cost by up to a factor of 2.75
compared with optimizing cost alone, whereas optimizing cost alone
increases latency by up to 33% compared with the performance op-
timal. In contrast, the offline cost-performance scheme achieves the
best of both worlds: it yields low cost and low latency.

Second, comparing the offline schemes with their corresponding
nline versions, we observe that the online versions incur higher
ost due to prediction errors. Note that the cost differences between

the offline and online versions are larger than those in the previous
sections, because here we filter out a significant amount of non-
US traffic and thus increase variability. Nevertheless, the online
cost-performance optimization yields much lower cost than opti-
mizing performance alone, while achieving similar latency (within
10-20%).

Figure 16 further compares the latency of different schemes us-
ing a database from CAIDAs NetGeo project, we obtain physical Ing tlmtiserlel_s plots. tAS 'thhOWS’ In mohst cas?s"the Iattﬁntcyfa%hlevfed
coordinates for each destination prefix in our Abilene traces. We #_smg ]? oniine °°Sttpe.r OtFma”Cﬁ SC er_lr_ﬁ oflows tathotthe o
map each prefix to the closest node of each ISP. The delay through /In€ pertormance optimization scheme. This Suggests that the on-

line cost-performance algorithm can effectively track variations in

agiven ISP from origin to prefix is then assigned to be the RTT be- latency and traffic volume. Sometimes its latency is noticeabl
tween the universities in the NLANR trace representing the origin 4 : y y

and the node of the ISP assigned to the prefix. We also add a Iasthigher than pure performance optimization. This is due to the cost

hop delay based on the speed of light and the distance between aconstraints, and indicates that there is a trade-off between optimiz-
prefix and its ISP node. In this way, we obtain delay traces reflect- Ing cost versus optimizing performance. But the performance dif-

I 0, -
ing realistic Internet RTT variations and geographically correlated ference between the two is usually small (below 10%). When com



traffic load ofx, ,, is the link capacity, angrop is the propagation
delay) for all links in the network to capture the effect of traffic load

on link latency.

We evaluate smart routing by connecting users to a varying num-
ber of ASes in the topology. For each smart routing user, its first-
hop nodes in different ASes are geographically co-located. Further,
we create traffic demands for each user using one of the nine Abi-
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lene traces described in Section 6. During each time interval, we
select the top 100 destination prefixes in the traces, which account
for over 90% traffic, and randomly map them to nodes in the sim-
[Boffine cost moffine costrperf Soniine cost Dol costrpert W offine per] ulation topology. The user sends traffic to the destination nodes at
the traffic rate specified by the trace.

During every 5-minute time interval, we derive the latency un-

o

59 6629 70

(a) Comparison of total cost

70 der different routing schemes by computing the traffic equilibria
5601 based on the current topology and traffic demands using the ap-
So0 proach in [20].

§ 404
390 7.2 Smart Routing with Self-Interference
gz"' We start with an evaluation on the effects of self-interference.
B The online smart routing algorithm described in Section 5 assumes
01 20753 3 s 59 e 70 that traffic assignment would not affect link latency. If this is not
As the casei(e., the latency of a link depends on traffic assignment),
\Dominecostloﬂhnecost+perfDonlineooleonlinecoshperflo"lineperf\ the above a|gOI’Ithm I’eSU|tS |n Se|fISh rOUtlng, S|nce each ﬂOW |S
(b) Comparison of performance routed without considering its effects on other flows. In contrast,
to optimize the total latency of all flows, a smart routing algorithm
Figure 15: Comparisons of the total cost and performance ideally needs to explicitly take into account this self-interference,

across different traces during four weeks, where each user has ~ @nd route traffic cooperatively to minimize the overall latency. As
4 links to the Internet, and each link’s cost is a piece-wise linear ~ Shown in [13, 23], the theoretical worst case performance differ-

pricing function shown in Figure 2 based on a one-week charg- ence between cooperative routing and selfish routing at traffic equi-
ing period. libria® can be quite large. Below we quantify the difference through

simulations, and show that the impact of self-interference is small.

In our evaluations, the smart routing user has 4 ISPs and the
burstable links to the ISPs are randomly selected from Table 1; the
topology and real traffic traces are described in Section 7.1. In the
interest of clarity, throughout this section we plot the results for
only a small number of time intervals. The results for other time
7. GLOBAL EFFECTS OF SMART ROUT- periods are consistent. . ,

ING Figure 17 compares the latency of optimal routing versus that
of smart routing at traffic equilibria, with and without enforcing

In the preceding sections, we have investigated how an individual the cost constraints. When there are no cost constraints, link ca-
user can use smart routing to optimize cost and performance. Suchpacities are always equal to their raw bandwidth; and when there
optimization is selfish, since an individual user tries to optimize its are cost constraints, link capacities are equal to their pseudo ca-
own metrics without considering its impacts on other traffic. More- pacities during the interval. We observe that under the same cost
over, the traffic of an individual user may self-interfere if traffic  constraint, smart routing and optimal routing achieve similar la-
assignment may change link latency. Therefore, a comprehensivetency. This suggests that ignoring self-interference incurs little per-
evaluation on the global effects of smart routing should address the formance penalty. In addition, removing the cost constraint yields
following issues: (i) how well the smart routing algorithms perform  sjightly lower latency. This is consistent with the results in Sec-
when traffic assignment can affect link latency; (i) how well dif-  tion 6, which show that there is a trade-off between optimizing cost
ferent smart routing users co-exist; and (iii) how well smart routing versus optimizing performance, but the trade-off is usually small.
users co-exist with single-homed users whose routing is controlled

by the network. Below we investigate these issues, focusingonthe7 3 Evaluation of Smart Routing in a Global
performance at traffic equilibria. Setting

pared with optimizing cost alone, the online cost-performance al-
gorithm often avoids delay spikes that pure cost-optimization can
produce.

Having established the robustness of our smart routing algorithms

7.1 Evalua_tlon Methodo_logy . . against self-interference, we next evaluate smart routing when there
Our topology is constructed using the Rocketfuel inter-domain are multiple users.

topology data [22]. To make our simulations scalable, we select

4 ASes (to simulate ISPs) in the United States from the Rocket- 7.3.1 Performance Benefits of Smart Routing
fuel data to construct a network topology of over 170 nodes and We start b ; ) ;

. Ay ; y studying the performance benefits of smart routing
600 edges. For each intra-domain link, we yse the |nferre_d OSPFi, the presence of other traffic. In our first experiment, we have 3
weight and propagation delay from the data; for each peering link, \serg generating traffic, where user 1 is a smart routing user sub-

we use the estimated propagation delay from the data. Once a Usegcribing to a varying number of ISPs, and users 2 and 3 are both

selects an ISP, its inter-domain route is determined based on the_: h -
' e . single-homed. We observe that user 1 improves its performance b
shortest AS hop count, and its intra-domain route follows the short- g p P y

0 - ;
est OSPF path. Since the Rocketfuel data do not contain link band-lOA) when it changes from using one ISP to two ISPs, and further

width, we set the peering links to be OC3 (155 Mbps) and intra- 3a traffic equilibrium is defined as a state in which no traffic can
domain links to be OC12 (622 Mbps). We use the M/M/1 latency improve its latency by unilaterally changing its link assignment.
function (i.e.,l(x) = % + prop, wherel(x) is the latency for We adopt the approach in [20] to compute traffic equilibria.
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Figure 17: Evaluation of the effects of self-interference.

improves its performance by 8% when it uses four ISPs.

In our second experiment, we scale up the traffic by a factor of work to examine the interactions of smart routing traffic. We scale
3 to examine how smart routing performs in a highly utilized net- up the traffic by a factor of 3 to examine how smart routing per-
work. Figure 18 (a) shows the latency of the smart routing user over forms in a highly utilized network. In the interest of clarity, we plot
100 time intervals. We observe that when user 1 changes from us-only the performance of user 1 in Figure 19 (a). The results for
ing one ISP to two ISPs, its performance is improved by 19%; when other users are consistent. As we can see, the performance degra-
the number of ISPs increases to four, a further improvement of 9% dation of user 1 remains less than 2 ms as the number of competing
is achieved. Smart routing achieves higher performance benefitssmart routing users increases. These results suggest that smart rout-
under higher load, since it is able to route around network conges- ing users can co-exist well.
tion whereas single-homed traffic follows a fixed path. Next, we repeat the above experiment, where each smart routing

In addition, as shown in Figure 18 (b), increasing the number of user subscribes to all four ISPs. Again, in the interest of clarity, we
ISPs also helps to reduce maximum link utilization. In particular, plot only the performance of user 1 in Figure 19 (b). We observe
we observe a 12% reduction when user 1 changes from subscribingthat an increase in the number of competing smart routing users
to one ISP to two ISPs, and an additional 10% reduction when the has little effect on the performance of user 1. Moreover, user 1 im-
user subscribes to four ISPs. Similar results are observed when weproves its performance by about 8% when the number of its ISPs
use other traffic traces or vary the user’s first-hop nodes. increases from two to four. The other users see a similar level of im-

provement (5—-10%) when subscribing to two additional ISPs. This

7.3.2 Interactions Among Multiple Smart Routing result is consistent with our findings in the previous subsection.
Users

Next we examine how traffic from different smart routing users 7.3.3 .
interacts. In our experiment, we start with a single smart routing Single-homed Users
user (called user 1) subscribing to two ISPs. We incrementally add  Finally, we study the interactions between smart routing users
new smart routing users (each subscribing to two ISPs) to the net-and single-homed users through the following two experiments.

Interactions between Smart Routing Users and
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Figure 19: Latency of user 1 when it interact with multiple while user 1 remains multihomed
smart routing users, where all the users subscribe to 2 ISPs in Figure 20: Interaction of smart routing traffic and background
(a), and all the users subscribe to 4 ISPs in (b). traffic. Herereg i (SR j) denotes the performance of a reg-

ular (or single-homed) useri when userj uses smart routing.

In our first experiment, we start with two single-homed users.

We examine the effects of adding one more ISP subscription to gies and traffic. Our results show that under traffic equilibria smart
user 1. Figure 20 summarizes the results. As shown in Figure 20 routing can improve performance without hurting other traffic.

(@), the performance of user 1 improves with the additional ISP,  There are several avenues for future work. In this paper, we fo-
while the performance of user 2 remains almost the same after usercus on algorithmic design and evaluation through analysis and sim-
1 subscribes to one more ISP. This result indicates that a multi- ylation. A natural next step is to implement the algorithms and

homed user can improve its performance without adversely affect- conduct experiments in the Internet. In addition, we only study

ing a single-homed user. Note that the average latency of user 2 isthe interactions among multiple users under traffic equilibria. It

lower than that of user 1 (with and without smart routing ) in some s also interesting to investigate the dynamics of such interactions.
intervals, although user 1 outperforms user 2 most of the time. Finally, increasingly wide deployment of smart routing poses new

Next, we add one more ISP to user 2 as well. Figure 20 (b) shows challenges to ISPs by intensifying the competition among different
that the latency of user 2 decreases without affecting user 1. In|SPs and making traffic less predictable. How ISPs should address
addition, we observe that smart routing users can take advantage othese challenges is an open issue.
additional connections to smooth out traffic and reduce maximum
link utilization by up to 10%. Acknowledgments
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APPENDIX
A. PROOF OF LEMMA 3

PrROOF We assume thatkn is always an integer, as justified at
the end of Section 4.2.2.1. Lek = g¥(Tk;1 iBk). Then the
left hand side LHS) of thgdemma is ppxk = | qt(Tk; 1 j
ax). ToproveLHS , qt( ,Tx;1i§ g), according to the

antile definition.we neetii:;o show t t!l > LHSgj =

akn, i.e., jfij t > Xkgj = akn.

k ’ 4 k “k k k

By the definition ofxi, we havefijtl > x.gj = axn.

Then we have

U I,
' = Xk0j
k

ifij
k

jfi't,[(i] > Xy; for at least ondgj

=]

fijtl! > xygj

ifijt) > xgj
x

akn:

(by Union Bound)

U
B. PROOF OF THEOREM 5

PrROOF The proof is by reduction from the NP-completet-
partition problem[10]. Specifically, the set-partition problem is to
determine whether the numbers in a givenéwvith non-negative
integer values) can be partitioned into two sub#etandS j A
such that the sum of the elementsArnis equal to half of the total
sum of all elementsin S.

Given an instance of the set-partition problem (a$%etve con-
struct an instance of the integral assignment problem as follows.
First, the assignment problem has gwo ISPs, each with a cost func-
tioe,c(x) equal to0 whenx = 1 .y, and1 whenx >
% y2s Y- We assume that both ISPs use 100th-percentile charg-
ing. Second, we map each elemenSito a flow in the assignment
problem, with the size of each flow (at all intervals) being the value
of the corresponding element. Then if we have any polynomial-
time constant-approximation-ratio algorithm to the assignment prob-
lem, we can decide the original set-partition problem in polynomial-
time by checking whether the cost returned by the approximation
algorithm is equal t® or not. [

C. MINIMIZING COST OF TOTAL VOL-
UME BASED CHARGING

The problem of minimizing cost when ISPs use total-volume
based charging can be cast into the following linear program, where
ck denotes the cost function of ISRtk is the total traffic assigned
to ISPk during its charging period, an@otal Traffic is the total
volume of traffic during the charging period. This problem can be
readily solved using LP software suchlps_solve [14].

>
Ck (tk)

tx = TotalTraffic

minimize
subject to

k
Figure 21: LP formulation for total volume-based charging.



