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Abstract

In this paper, we address the following question: given a
specific placement of wireless nodes in physical space
and a specific traffic workload, what is the maximum
throughput that can be supported by the resulting net-
work? Unlike previous work that has focused on comput-
ing asymptotic performance bounds under assumptions
of homogeneity or randomness in the network topology
and/or workload, we work with any given network and
workload specified as inputs.

A key issue impacting performance is wireless inter-
ference between neighboring nodes. We model such in-
terference using aconflict graph, and present methods
for computing upper and lower bounds on the optimal
throughput for the given network and workload. To com-
pute these bounds, we assume that packet transmissions
at the individual nodes can be finely controlled and care-
fully scheduled by an omniscient and omnipotent central
entity, which is unrealistic. Nevertheless, using ns-2 sim-
ulations, we show that the routes derived from our anal-
ysis often yield noticeably better throughput than the de-
fault shortest path routes even in the presence of uncoor-
dinated packet transmissions and MAC contention. This
suggests that there is opportunity for achieving through-
put gains by employing an interference-aware routing
protocol.

1 Introduction

Multi-hop wireless networks have been a subject of much
study over the past few decades [1]. Much of the original
work was motivated by military applications such as bat-
tlefield communications. More recently, however, some

interesting commercial applications have emerged, such
as “community wireless networks” [2, 28], and sensor
networks [8].

A fundamental issue in multi-hop wireless networks is
that performance degrades sharply as the number of hops
traversed increases. For example, in a network of nodes
with identical and omnidirectional radio ranges, going
from a single hop to 2 hops halves the throughput of a
flow because wireless interference dictates that only one
of the 2 hops can be active at a time.

The performance challenges of multi-hop networks
have long been recognized and have led to a lot of re-
search on the medium access control (MAC), routing,
and transport layers of the networking stack. In recent
years, there has also been a focus on the fundamental
question of what the optimal throughput of a multi-hop
wireless network is. The seminal paper by Gupta and
Kumar [14] showed that in a network comprising ofn
identical nodes, each of which is communicating with
another node, the throughput per node isΘ( 1√

n log n
) as-

suming random node placement and communication pat-
tern andΘ( 1√

n
) assuming optimal node placement and

communication pattern. Subsequent work [10, 11, 20]
has considered alternative models and settings, such as
the presence of relay nodes and mobile nodes, and local-
ity in inter-node communication, and their results are less
pessimistic.

This paper also deals with the problem of computing
the optimal throughput of a wireless network. However,
a key distinction of our approach is that we work with
any given wireless network configuration and workload
specified as inputs. In other words, the node locations,
ranges etc. as well as the traffic matrix indicating which
source nodes are communicating with which sink nodes
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are specified as the input. We make no assumptions about
the homogeneity of nodes with regard to radio range or
other characteristics, or regularity in communication pat-
tern. This is in contrast to previous work that has focused
on asymptotic bounds under assumptions such as node
homogeneity and random communication patterns.

We use aconflict graphto model the effects of wireless
interference. The conflict graph indicates which groups
of links mutually interfere and hence cannot be active
simultaneously. We formulate a multi-commodity flow
problem [4], augmented with constraints derived from
the conflict graph, to compute the optimal throughput that
the wireless network can support between the sources and
the sinks. We show that the problem of finding optimal
throughput is NP-hard, and present methods for comput-
ing upper and lower bounds on the optimal throughput.

We show how our methodology can accommodate a
diversity of wireless network characteristics such as the
availability of multiple non-overlapping channels, multi-
ple radios per node, and directional antennas. We also
show how multiple MAC protocol models as well as
single-path and multi-path routing constraints can be ac-
commodated.

We view the generality of our methodology and the
conflict graph framework as a key contribution of our
work.

To compute bounds on the optimal throughput, we as-
sume that packet transmissions at the individual nodes
can be finely controlled and carefully scheduled by an
omniscient and omnipotent central entity. While this is
clearly an unrealistic assumption, it gives us a best case
bound against which to compare practical algorithms for
routing, medium access control, and packet scheduling.
Moreover, ns-2 simulations show that the routes derived
from our analysis often yield noticeably better through-
put than the default shortest path routes, even in the pres-
ence of real-world effects such as uncoordinated packet
transmissions and MAC contention. In some cases, the
throughput gain is over a factor of 2. The reason for this
improvement is that in optimizing throughput, we tend
to find routes that are less prone to wireless interference.
For instance, a longer route along the periphery of the
network may be picked instead of a shorter but more in-
terference prone route through the middle of the network.

We use our technique to evaluate how the per-node
throughput in a multi-hop wireless network varies as the
number of nodes grows. Previous work (e.g., [14]) sug-
gests that the per-node throughput falls as the number of

nodes grows. But this result is under the assumption that
nodes always have data to send and are ready to trans-
mit as fast as their wireless connection will allow. In a
realistic setting, however, sources tend to be bursty, so
nodes will on average transmit at a slower rate than the
speed of their wireless link. In such a setting, we find
that the addition of new nodes can actually improve the
per-node throughput because the richer connectivity pro-
vides increased opportunities for routing around interfer-
ence “hotspots” in the network. This more than offsets
the increase in traffic load caused by the new nodes.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss related work. In Section 3, we present
details of our conflict graph model and methods for com-
puting bounds on the optimal network throughput. In
Section 4, we present results obtained from applying our
model to different network and workload configurations.
In Section 5, we discuss ways to incorporate node mobil-
ity into our model. In Section 6 we discuss some limita-
tions of our work. Section 7 concludes the paper.

2 Related work

A number of papers have been published on the problem
of estimating the throughput of a multi-hop wireless net-
work. Here, we consider the work that is most closely
related to ours.

In their seminal paper [14], Gupta and Kumar studied
the throughput of wireless networks under two models of
interference: aprotocolmodel that assumes interference
to be an all-or-nothing phenomenon and aphysicalmodel
that considers the impact of interfering transmissions on
the signal-to-noise ratio. They show that in a network
comprising ofn identical nodes, each of which is com-
municating with another node, the throughput per node
is Θ( 1√

n log n
) assuming random node placement and

Θ( 1√
n
) assuming optimal node placement and communi-

cation pattern. These results are shown under the proto-
col model, but the latter result also holds in the case of the
physical model under reasonable assumptions. Accord-
ing to the intuitive explanation in [20], while the overall
one-hop throughput of the network grows asO(n), the
average path length grows asO(

√
n), so the throughput

per node isO( 1√
n
).

Li et al. [20] have extended the work of Gupta and
Kumar [14] by considering the impact of different traffic
patterns on the scalability of per node throughput. They
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point out that a random traffic pattern represents the worst
case from the viewpoint of per-node throughput. They
also show that for traffic patterns with power law distance
distributions, the per-node throughput stays roughly con-
stant as the network size grows, provided the distance
distribution decays more rapidly than the square of the
distance. Liet al. also consider the interactions of packet
forwarding with the 802.11 MAC and show that the use
of 802.11 instead of a global scheduling scheme does not
affect the asymptotic bound on per-node throughput de-
rived in [14].

In [11], Grossglauser and Tse introduce mobility into
the model presented in [14], and show that the average
long-term throughput per source-destination pair can be
kept constant even as the number of nodes per unit area
increases, provided that we allow for delays on the order
of the time-scale of mobility. This is achieved by exploit-
ing mobility to keep data transfers local, and transmitting
only when the transmitter and receiver are close to each
other, at a distance ofO( 1√

n
), thereby reducing total re-

source usage and interference. While this is encouraging,
in many practical situations such as community wireless
networks, mobility may be too infrequent or even non-
existent to be exploitable.

Gastpar and Vetterli [10] extend the work of Gupta
and Kumar [14] in a different direction. Instead of the
simple point-to-point coding assumption made in [14],
which treats each transmitter-receiver pair as being inde-
pendent of other pairs, they consider anetwork coding
model where nodes could cooperate in arbitrary ways,
for instance, to boost the transmit power. Further, they
assume that there is a single source and single destina-
tion picked at random, and that the rest of the nodes act
as relays. They show that the throughput of the network
under these conditions isO(log n), compared toO(1) for
the point-to-point coding model of [14]. While the use
of network coding in this context is a promising line of
research, we note that the point-to-point coding model
corresponds to current radio technology such as 802.11.

The recent work of De Coutoet al. [5], based on
two experiments in a 802.11b-based multi-hop wireless
testbed shows that minimizing the hop count of an end-
to-end path is not sufficient for achieving good perfor-
mance. The reason they point out is that link quality can
vary widely and long hops may be included in “short”
paths, resulting in a high packet error rate. In our work,
we also reach the same conclusion regarding the lim-

itations of the hop count metric, but for a somewhat
different reason — because wireless interference limits
throughput, a circuitous but less interference-prone route,
say along the periphery of a network, may perform better
than the shortest hop count route.

In [23], Nandagopal et. al. use a construct similar to
conflict graphs, called flow contention graph to capture
interference in wireless networks. However, as the name
implies, the construct is defined on flows rather than on
links. Moreover, the aim of that paper is to study MAC
fairness issues, rather than to derive optimal throughput
bounds.

Yang and Vaidya [29] also use the notion of a “conflict
graph” in the context of their work on priority scheduling
in wireless ad hoc networks. However, like [23], their
conflict graph is also defined on flows rather than links.
The graph is used only to interpret experimental results
showing that the 802.11 MAC causes flows with a high
degree of conflict to suffer disproportionately compared
to flows with a low degree of conflict. There is no attempt
to analyze the conflict graph to derive throughput bounds.

In [19], Kodialam and Nandagopal consider the prob-
lem of computing optimal throughput for a given wireless
network with a given traffic pattern. They assume a lim-
ited model of interference in which the only constraint is
that node may not transmit and receive simultaneously.
With this constraint, they model the problem as a graph
coloring problem. They provide a polynomial time algo-
rithm that computes routes and schedules such that the
resulting throughput is guaranteed to be at least 67% of
the optimal throughput. The model we consider in this
paper is much more general and flexible. Our model can
take into account interference from neighboring nodes,
impact of directional antennas, availability of multiple
non-interfering channels etc. This generality makes the
problem harder, so our algorithm only provides upper and
lower bounds on optimal throughput.

We also note that our approach can compute the op-
timal throughput if we assume the limited model of in-
terference assumed in [19]. See Appendix B for more
details.

In summary, there is a large body of work on the multi-
hop wireless throughput problem, much of it focused on
asymptotic bounds under assumptions such as node ho-
mogeneity and random communication patterns. In con-
trast, our work focuses on computing throughput bounds
for a given wireless network and traffic workload, using a
conflict graph to model the constraints imposed by wire-
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less interference. We do not consider how factors such
as mobility [11] or coding [10]. And like [14], we do
notcompute the information theoretic capacity of the net-
work.

3 Computing Bounds on Optimal
Throughput

We now present our framework for incorporating the con-
straints imposed by interference in a multi-hop wireless
network and then present methods for computing bounds
on the optimal throughput that a given network can sup-
port for a given traffic workload. We begin with some
background and terminology.

3.1 Background and Terminology

Consider a wireless network withN nodes arbitrarily lo-
cated on a plane. Letni, 1 ≤ i ≤ N denote the nodes,
and dij denote the distance between nodesni and nj.
Each node,ni, is equipped with a radio with communica-
tion rangeRi and a potentially larger interference range
R′

i. For ease of explanation, we start by considering the
case of a single wireless channel. (We will generalize
the model in Section 3.5.) We consider two models, the
Protocol Modeland thePhysical Model, to define the
conditions for a successful wireless transmission. These
models are similar to those introduced in [14].
Protocol Model: In the protocol model, if there is a sin-
gle wireless channel, a transmission is successful if both
of the following conditions are satisfied:

1. dij ≤ Ri

2. Any nodenk, such thatdkj ≤ R′
k, is not transmit-

ting

Note that the second requirement implies that a node may
not send and receive at the same time nor transmit to
more than one other node at the same time. Note also
that this model differs from the popular 802.11 MAC
in an important way — it requires only the receiver to
be free of interference, instead of requiring that both the
sender and the receiver be free of interference. We dis-
cuss how to adapt the model for an 802.11-style MAC in
Section 3.5.
Physical Model: Suppose nodeni wants to transmit to
nodenj. We can calculate the signal strength,SSij, of

ni’s transmission as received atnj. The transmission is
successful ifSNRij ≥ SNRthresh, whereSNRij de-
notes the signal-to-noise ratio at the nodenj for transmis-
sions received from nodeni. The total noise,Nj, at nj

consists of the ambient noise,Na, plus the interference
due to other ongoing transmissions in the network. Note
again that there is no requirement that the noise level at
the sender also be low.

Our goal is to model wireless interference using a gen-
eral framework that would enable us to compute the op-
timal throughput the wireless network can support for
a given traffic workload. We assume that the work-
load consists of greedy sources and destinations, i.e. the
sources always have data to send and the destination
nodes are always ready to accept data. The communi-
cation between the sources and destinations can be ei-
ther direct or be routed via intermediate nodes. We as-
sume that packet transmissions at the individual nodes
can be finely controlled and scheduled by an omniscient
and omnipotent central entity.

We say that a network throughputD is feasible if there
exists a schedule of transmissions such that no two in-
terfering links are active simultaneously, and the total
throughput for the given source-destination pairs isD. In
our problem formulation here, we focus on maximizing
the total throughput between source-destination pairs.

In the rest of this section, we consider the following
three scenarios in detail: (i) multipath routing under the
protocol interference model, (ii) multipath routing un-
der the physical interference model, and (iii) single-path
routing under both models. We end the section by dis-
cussing several other generalizations, and summarizing
our framework.

3.2 Multipath Routing Under the Protocol In-
terference Model

Given a wireless network withN nodes, we first derive a
connectivity graphC as follows. The vertices ofC cor-
respond to the wireless nodes (NC ) and the edges cor-
respond to the wireless links (LC ) between the nodes.
There is a directed linklij from nodeni to nj if dij ≤ Ri

andi 6= j. We use the terms “node” and “link” in refer-
ence to the connectivity graph while reserving the terms
“vertex” and “edge” for theconflict graphpresented in
Section 3.2.1.

Let us first consider communication between a single
source,ns, and a single destination,nd. In the absence of
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wireless interference (e.g., on a wired network), finding
the maximum achievable throughput between the source
and the destination, given the flexibility of using multiple
paths, can be formulated as a linear program correspond-
ing to a max-flow problem, as shown in Figure 1. Here,
fij denotes the amount of flow on linklij , Capij denote
the capacity of linklij , andLC is a set of all links in the
connectivity graph.

The maximization states that we wish to maximize the
sum of flow out of the source. The first constraint rep-
resents flow conservation, i.e., at every node, except the
source and the destination, the amount of incoming flow
is equal to the amount of outgoing flow. The second con-
straint states that the incoming flow to the source node is
0. The third constraint states that the outgoing flow from
the destination node is 0. The fourth constraint indicates
the amount of flow on a link cannot exceed the capacity
of the link. The final constraint restricts the amount of
flow on each link to be non-negative.

Note that the above formulation does not take wireless
interference into account. We turn to this issue next.

3.2.1 Conflict Graph

To incorporate wireless interference into our problem
formulation, we define aconflict graph, F , whose ver-
tices correspond to the links in the connectivity graph,
C. There is an edge between the verticeslij andlpq in F
if the links lij andlpq may not be active simultaneously.
Based on the protocol interference model described in
Section 3.1, we draw such an edge if any of the follow-
ing is true:diq ≤ R′

i or dpj ≤ R′
p. This encompasses the

case where a conflict arises because linkslij andlpq have
a node in common (i.e.,i == p or i == q or j == p
or j == q). Note, however, that we do not draw an edge
from a vertex to itself in the conflict graph.

Before we discuss how to use the conflict graph to add
interference constraints in the linear program in Figure 1,
we need to state a hardness result and a few definitions.

3.2.2 Hardness Result

We present a hardness result for computing the optimal
throughput under the protocol interference model. Given
a graphH with vertex setVH , anindependent setis a set
of vertices such that there is no edge between any two of
the vertices. Theindependence numberof graphH is the

size of the largest independent set inH. Then, we have
the following hardness result.

Theorem 1 Given a network and a set of source and des-
tination nodes, it is NP-hard to find the optimal through-
put under the protocol interference model. Moreover, it
is NP-hard to approximate the optimal throughput.

Proof : It can be shown that the problem of finding
the independence number of a graph, which is a known
hard problem even to approximate, can be reduced to the
optimal throughput problem. Moreover, this reduction
is approximation preserving. Hence the above hardness
result. We describe the reduction in Appendix A. 2

Since it is NP-hard to approximate the optimal
throughput, we now look at heuristics for obtaining lower
and upper bounds on the optimal throughput. For this, we
need to define some more terms. An independent setI of
a graphH can be characterized using anindependence
vector, which is a vector of size|VH |. This vector is de-
noted byxI . The jth element of this vector is set to 1
if and only if the vertexvj is a member of the indepen-
dent setI, otherwise it is zero. We can think ofxI as a
point in a|VH |-dimensional space. The polytope defined
by convex combination of independence vectors is called
the independent set polytopeor thestable set polytope.

3.2.3 Lower Bound

The problem of deriving a lower bound is equivalent to
the problem of finding a network throughputD that has
a feasible schedule to achieve it. We make the follow-
ing observation. Links belonging to a given independent
set in conflict graphF can be scheduled simultaneously.
Suppose there are a total ofK maximal independent sets
in graphF . A maximal independent set is one that cannot
be grown further. LetI1, I2, . . . IK denote these maximal
independent sets, andλi, 0 ≤ λi ≤ 1 denote the fraction
of time allocated to the independent setIi (i.e., the time
during which the links inIi can be active). If we add
the schedule restrictions imposed by the independent sets
to the original linear program (Figure 1), the resulting
throughput always has a feasible schedule, and therefore
constitutes a lower bound on the maximum achievable
throughput.

We formalize our above observation as follows. Given
a conflict graphF , we define ausage vector, U , of size
|VF |, whereUi denotes the fraction of time that the link
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max
∑

lsi∈LC

fsi

Subject To:

∑

lij∈LC

fij =
∑

lji∈LC

fji ni ∈ NC \ {ns, nd} < 1 >

∑

lis∈LC

fis = 0 < 2 >

∑

ldi∈LC

fdi = 0 < 3 >

fij ≤ Capij ∀i, j | lij ∈ LC < 4 >

fij ≥ 0 ∀i, j | lij ∈ LC < 5 >

Figure 1: LP formulation to optimize the throughput for a single source-destination pair.

i can be active. A usage vector isschedulableif the cor-
responding links can be scheduled, conflict free, for the
fraction of the time indicated in the usage vector. If we
think of the usage vector as a point in a|VF |-dimensional
space, we have the following theorem.

Theorem 2 A usage vector is schedulable if and only if
it lies within the independent set polytope of the conflict
graph.

Proof : Let us first show that a schedulable usage vec-
tor lies in the independent set polytope of the conflict
graph. In other words, we want to show that the usage
vector is a convex combination of independence vectors.

Consider a schedulable usage vector,U . Consider one
unit of time, and assume that we have scheduled the links
over fractions of this unit time, such that the usage vector
has been satisfied. Since the vector is schedulable, such
a schedule must exist. This schedule will tell us which
links are active at any given instance of time. Also, since
the usage vector is schedulable, at any instance in this
schedule, the links that are active are not in conflict with
each other. That is, the vertices corresponding to these
links must form an independent set in the conflict graph.
Find each such independent setI and denote its indepen-
dence vector byxI . DefineλI as the fraction of the unit
time independent setI is active. Since the total time is
one unit, the sum ofλI ’s over all the independent sets

equals to one. Thus:

U =
∑

I is an independent set
λIxI .

Now we show that a usage vector that is a convex com-
bination of independence vectors is always schedulable.
Consider a usage vectorU that is obtained by a convex
combination of independence vectors:

U =
∑

I is an independent set
λIxI

It follows that U is schedulable since each independent
setI can be scheduled forλI fraction of the time. 2

Theorem 2 implies that the optimal network through-
put problem is a linear program, no matter how many
sender-receiver pairs we have. In fact, the problem is
that of maximizing a linear objective function over a fea-
sible polytope. This feasible polytope can be described
as the intersection of two polytopes — the flow polytope
and the independent set polytope of the conflict graph.
Theflow polytopeis the collection of feasible points de-
scribed by the flow constraints (Figure 1), ignoring wire-
less conflicts. The flow polytope is a simple structure on
which a linear objective function can easily be optimized.
Independent set polytope, on the other hand, is a difficult
structure and no simple characterization of it is known
because there may be exponentially many independent
sets.
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Theorem 2 implies that any convex combination of in-
dependence vectors is schedulable. In general, however,
an arbitrary point inside the independent set polytope will
be a convex combination of an exponentially many in-
dependence vectors. To get around this computational
problem, we only want to pick “easy” points in the in-
dependent set polytope. An obvious notion of “easy” is
that the point picked should be a convex combination of a
small number of (i.e., polynomially many) independence
vectors. We will be using this notion explicitly in the
algorithm as follows. We derive a lower bound on the
optimal throughput by findingK ′ independence vectors
in the conflict graphF , and adding the following con-
straints to the LP formulation shown in Figure 1.

• ∑K ′

i=1 λi ≤ 1 (because only one maximal indepen-
dent set can be active at a time)

• fij ≤
∑

lij∈Ii
λiCapij (because the fraction of time

for which a link may be active is constrained by the
sum of the activity periods of the independent sets it
is a member of).

Note the solution produced by solving this linear pro-
gram is always feasible (i.e., schedulable). This is due
to the fact that all links belonging to independent setIi

can be simultaneously active forλi fraction of time, and
we have required that the

∑K ′

i=1 λi ≤ 1. Moreover, The-
orem 2 assures us that when we include all independent
sets, the solution will be exact, i.e., this will be the maxi-
mum value ofD that is feasible. To help tighten the lower
bound more quickly, we should consider using maximal
independence sets. While findingall maximal indepen-
dent sets is also NP-hard [9], the lower bound obtained
by considering a subset of the maximal independent sets
has the nice property that as we add more constraints, the
bound becomes tighter, eventually converging to the op-
timal (i.e., the maximum feasible) throughput when we
add all the constraints.

3.2.4 Upper Bound

In this section, we derive an upper bound on the network
throughput. Consider the conflict graph. Aclique in the
conflict graph is a set of vertices that mutually conflict
with each other. Theorem 2 implies that the total usage
of the links in a clique is at most 1. This gives us a con-
straint on the usage vector. We can find many cliques and
write corresponding constraints to define a polytope. We

1
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Figure 2: A pentagon and its complement
graph. The former is an odd hole, and the latter
is an odd anti-hole.

 

Figure 3: An example that shows it is not suf-
ficient even if we add all clique, hole, anti-hole
constraints.

can then maximize the throughput over the intersection
of this polytope with flow polytope. This will give us an
upper bound on the throughput.

Unfortunately, it is computationally expensive to find
all the cliques, and even if we could find them all, there
is still no guarantee that our upper bound will be tight.
This can be illustrated by the following example. Sup-
pose the conflict graph is the pentagon depicted in Fig-
ure 2. As we can see, the only cliques in the graph are
formed by the adjacent pairs of nodes. Adding the clique
constraints alone to the LP would suggest that a sum of
link utilization equal to 2.5 is achievable. But actually at
most 2 links can be active at a time. This suggests that
we need to add constraints corresponding toodd holes
andodd anti-holes. An odd hole is a cycle formed by an
odd number of edges, without a chord in between. For
example, the pentagon in Figure 2 is an odd hole. The
sum of the link utilizations in an odd hole containingk
vertices can be no more than⌊k

2
⌋. An odd anti-hole is the

complementary graph of an odd hole. Figure 2 shows an
example of an anti-hole with 5 nodes. The sum of link
utilizations in an odd anti-hole can be no more than 2.

Unfortunately, even if we consider the constraints im-
posed by the odd holes and odd anti-holes (in addition
to those imposed by the cliques), we are not guaranteed
to have a feasible solution. For example, consider the
conflict graph, as shown in Figure 3. We can assign a uti-
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lization of 0.4 to all the vertices on the pentagon and 0.2
to the center of the pentagon, while satisfying all clique,
hole, and anti-hole constraints. But there is no feasible
schedule to achieve this, because this solution does not
lie in the stable-set polytope. In fact, the upper bound
based only on clique constraints is tight only for a spe-
cial class of conflict graphs called perfect graphs.Per-
fect graphsare the graphs without any odd holes or odd
anti-holes. Thus, in our present formulation, the upper
bounds may not always be tight. We discuss this further
in Appendix C.

3.3 Multipath Routing Under the Physical In-
terference Model

As before, we begin by creating a connectivity graph
C, whose vertices correspond to the nodes in the net-
work. Based on the physical interference model, there
exists a link,lij, from ni to nj if and only if SSij/Na ≥
SNRthresh (i.e., the SNR exceeds the threshold at least
in the presence of just the ambient noise).

Using the connectivity graph, we can write an LP for-
mulation to optimize network throughput for a wired net-
work. As discussed before, the solution to the linear pro-
gram, as shown in Figure 1, provides an upper bound
on network throughput. However, this bound is not very
useful since it does not take interference effects into ac-
count.

To take interference effects into account, we construct
a conflict graphF . Unlike in the protocol model, con-
flicts in the physical model are not binary. Rather, the in-
terference gradually increases as more neighboring nodes
transmit, and becomes intolerable when the noise level
reaches a threshold. This gradual increase in interference
suggests that we should have a weighted conflict graph,
where the weight of a directed edge from verticeslpq to
verticeslij (denoted bywpq

ij ) indicates what fraction of
the maximum permissible noise at nodenj (for link lij
to still be operational) is contributed by activity on link
lpq (i.e., nodenp’s transmission to nodenq). Specifically,
we have

wpq
ij =

SSpj

SSij

SNRthresh
− Na

whereSSpj andSSij denote the signal strength at node
nj of transmissions from nodesp andi, respectively, and

SSij

SNRthresh
−Na is the maximum permissible interference

noise at nodenj that would still allow successful recep-
tion of nodeni’s transmissions. The edges of the conflict

graph are directed, and in generalwpq
ij may not be equal

to wij
pq.

3.3.1 Lower Bound

In the protocol model, we derive a lower bound on the
network throughput by finding independent sets in the
conflict graphF , and adding the constraints associated
with the independent sets to the LP for the wired network.
Analogous to independent sets, we introduce the notion
of schedulable setsin the physical model. A schedulable
setHx is defined as a set of vertices such that for every
vertex lij ∈ Hx,

∑
lpq∈Hx

wpq
ij ≤ 1. It follows that all

links in a schedulable set can be active simultaneously.
Suppose we schedule the links belonging toHx for time
λx, 0 ≤ λx ≤ 1. We now take the original LP for the
wired network (in Figure 1), and include the following
constraints:

• ∑K ′

x=1 λx ≤ 1, whereK ′ is the number of schedula-
ble sets found

• fij ≤
∑

lij∈Hx
λxCapij

To tighten the bound, we should consider using max-
imal schedulable setsin graphF (i.e., a schedulable set
such that adding additional vertices to the set will violate
the schedulable property). We have the following theo-
rem, which is similar to the Theorem 2 in the protocol
model.

Theorem 3 A usage vector is schedulable if and only if it
lies in the schedulable set polytope of the conflict graph.

Proof : The proof is similar to that of Theorem 2.2

3.3.2 Upper Bound

To derive an upper bound, we consider maximal sets of
vertices inF such that for any pair of verticeslpq andlij,
wpq

ij ≥ 1. These correspond to the cliques in the protocol
interference model. Therefore for each such set, we add
a constraint that the sum of their utilization has to be no
more than 1.

These constraints may result in a loose bound since
there may not be very many cliques. To tighten the upper
bound, we further augment the linear program with the
following additional constraints. After we find a max-
imal schedulable set, say verticesv1, v2, ..., vt, adding
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any additional vertex, denoted asva, to the set will make
the set unschedulable. Therefore we have the following
constraint:U1 + U2 + ...Ut + Ua ≤ t, where as before
Ui denotes the fraction of time for which physical linkli
(corresponding to vertexvi in the conflict graph) is ac-
tive. By adding as many such constraints as possible, we
can tighten the upper bound. Still, the bound is not guar-
anteed to converge to the optimal even if we include all
such sets.

3.4 Single-path Routing

So far we have considered multipath routing. As many
existing routing algorithms [17, 27, 26, 25] are confined
to single-path routing, it is useful to derive a through-
put bound for single-path routing so that we can compare
how much the current protocols deviate from the theo-
retical achievable throughput under the same routing re-
striction. The way we enforce the single-path restriction
for the flow from a source to a destination is by adding
the following additional constraints to the LP problem for
the wired network (shown in Figure 1):

• For each linklij, fij ≤ Capij · zij , wherezi,j ∈
{0, 1}

• At each nodeni,
∑

zij ≤ 1

Herezij is a 0–1 variable that indicates whether or not
link lij is used for transmissions, andfij is the amount
of flow on the link. The basic intuition for these con-
straints is that in a single-path routing, at any node in the
network, there is at most one out-going edge that has a
non-zero flow. Sincezij can have only one of two val-
ues, either 0 or 1, the two conditions ensure that at node
ni at most onezij will have a value of 1.

In theory, solving integer linear program is a NP-
hard [9], but in practice, software such as lpsolve [3]
and CPLEX [6] can solve mixed-integer programs.

3.5 Other Generalization

The basic conflict graph model is quite flexible, and can
be generalized in many ways.

• Multiple source-destination pairs: We can ex-
tend our formulations in the previous sections from
a single source-destination pair to multiple source-
destination pairs using a multi-commodity flow for-
mulation [4] augmented with constraints derived

from the conflict graph. We assign a connection
identifier to each source-destination pair. Instead of
the flow variablesfij, we introduce the variablefijk

to denote the amount of flow for connectionk on
link lij. Referring to Figure 1, the flow conservation
constraints at each node apply on a per-connection
basis (constraint<1>); the total incoming flow into
a source node is zero only for the connection(s) orig-
inating at that node (constraint<2>); likewise, the
total outgoing flow from a sink node is zero only
for the connection(s) terminating at that node (con-
straint<3>); and the capacity constraints apply to
the sum of the flows over all connections traversing
a link (constraint<4>).

• Multiple wireless channels:It may be the case that
instead of just one channel, each node can tune to
one ofM channels,M ≥ 1. This can be easily mod-
eled by introducingM links between nodesi andj,
instead of just 1. In general, links corresponding to
different channels do not conflict with each other,
reflecting the fact that the channels do not mutually
interfere. However, the links emanating from the
same node do conflict, reflecting the constraint that
the single radio at each node can transmit only on
one channel at a time.

• Multiple radios per node: Each wireless node may
be equipped with more than one radio. If each node
hasM radios, this can be modeled by introducing
M links between each pairs of nodes. If we assume
that each of these radios is tuned to a separate chan-
nel, and that a node can communicate on multiple
radios simultaneously, then the conflict graph will
show no conflict among theM links between a pair
of nodes.

• Directional antennas: We can combine the use of
directional antennas with the basic protocol model
of communication. Instead of specifying a range
for each node, we simply specify a list of nodes (or
points in space) where transmissions or interference
from this node can be perceived. The connectivity
graph and the conflict graph are modified to take this
into account.

• Multirate radios: Many wireless technologies sup-
port multirate radios, which can switch between a
set of discrete data rates depending on the quality of
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the RF channel. For instance, 802.11b supports 4
rates: 1, 2, 5.5, and 11 Mbps. We can model this in
our framework by creating multiple “virtual” links
corresponding to a physical link in the connectiv-
ity graph, one for each rate. The conflict graph is
augmented to reflect the fact that only one of the
virtual links corresponding to a physical link can be
active at a time. The weights assigned to the edges
of the conflict graph (under the physical interference
model) would reflect the specific noise tolerance of
the virtual link corresponding to each rate.

• Multiple transmit power levels: We have thus far
assumed that transmitters used a fixed power level.
However, we can extend our framework to incor-
porate a discrete set of transmitter power levels. We
create multiple “virtual” links corresponding to each
physical link in the connectivity graph, one for each
power level. Depending on the environment and the
proximity between the transmitter and the receiver,
the different power levels may also correspond to
different modulation schemes and/or different data
rates. Using the physical model, we create edges
in the conflict graph whose weights are a function
of the power level of the links in the connectivity
graph. This would, for instance, allow modeling
of the case where a transmitter communicating with
a nearby receiver switches to a lower power, while
perhaps still maintaining a high data rate, given the
proximity of the nodes, to minimize interference on
other nodes.

• Other models of interference: In the simple ex-
ample, we considered an optimistic model of inter-
ference that did not require the sender to be free
of interference. But a more realistic model, which
more closely reflects the situation in802.11, would
require both the sender and the receiver to be free of
interference. This reflect the fact that802.11 may
perform virtual carrier sensing using an RTS–CTS
exchange, and that for successful communication,
the sender must be able to hear the link layer ac-
knowledgment transmitted by the receiver. There-
fore, we draw an edge in the conflict graph be-
tween verticeslij and lpq if dab ≤ R′

a for ab =
iq, qi, ip, pi, jp, pj, jq, or qj.

• Non-greedy sources or destinations:We can eas-
ily accommodate the case where the rate at which

nodes generate data or are willing to accept data is
bounded. We do so by creating avirtual source or
sink node and connecting it to the real source or sink
via avirtual link of speed equal to the source or sink
rate. The virtual link is special in that it is assumed
not to interfere with any other link in the network.
The virtual link is just a convenient construct to help
us model the bound on the source or sink rate.

• Other objective functions: Our framework is not
limited to maximizing the total network through-
put. We can accommodate any objective that can
be expressed as a linear function. For example, we
can assign a linear revenue function to each source-
destination pair, and then maximize the revenue in-
stead of maximizing the total network throughput.
We can also maximize the minimum throughput
across all source-destination pairs, to provide a de-
gree of fairness.

Many of these generalizations can be combined with each
other to model complex networking scenarios. We will
see examples of such combinations in Section 4.

3.6 Summary

In this section, we presented the concept of a conflict
graph, and discussed how it could be used to derive upper
and lower bounds on the optimal throughput that a wire-
less network can support, for a given set of sources and
destinations. We show that the conflict graph model can
be generalized to handle a wide range of scenarios. We
have shown that the lower bound derived from our frame-
work is always schedulable, and will be optimal once all
the independent set constraints are incorporated. If the
upper and lower bounds are equal, then these correspond
to the optimal solution. We have not dealt with the ques-
tion of node mobility so far, but we will present some
ideas in Section 5.

4 Results

This section presents several results based on our model.
The section is organized as follows. In Section 4.1, we
present illustrative results that demonstrate the flexibility
of our model. In Section 4.2, we use our model to provide
insights into the tradeoff between the richer connectivity
provided by the increase in the size of a wireless mesh
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network and the increase in cumulative traffic load due
to the new mesh participants. In Section 4.3, we illus-
trate how optimal routing can bring benefits even in ab-
sence of optimal scheduling (i.e., in the presence of MAC
contention and other inefficiencies). In Section 4.4, we
discuss the issue of convergence of the upper and lower
bounds to the optimal throughput. Finally, in Section 4.5,
we present a discussion of the computational costs of our
model.

4.1 Illustrative Results

In this section, we present several illustrative results to
demonstrate the capabilities of our model. We begin by
defining a metric for computational effort. In Section 3,
we have described the procedure for finding upper and
lower bounds on throughput. Let us consider the proto-
col model of interference, and focus on the lower bound.
We have shown that as we include more distinct indepen-
dent sets, the lower bound becomes progressively tighter.
In other words, the moreeffort we spend looking for in-
dependent sets in our conflict graph, the better the bound
will be. Since we can not always hope to find optimal
solutions, any upper or lower bounds discovered by our
model need to be presented along with the amount of ef-
fort required to find those bounds. Thus we require a
metric to measure thiseffort. We use the following sim-
ple algorithm to find distinct independent sets:

1. Start with an empty independent setIS.

2. Consider a random ordering of vertices in the con-
flict graph.

3. Consider the vertices of the graph in that order. Al-
ways add the first vertex toIS.

4. Add a new vertex if and only if it does not have an
edge to any of the vertices added toIS so far. Once
we consider all the vertices,ISwill be of size at least
one.

5. We check to see if we have previously discovered
this independent set, and if not, we add constraints
based on this independent set to our linear program.
Otherwise we discard the set.

We consider this entire sequence as one unit ofeffort.
Note that one unit of effort does not always result in ad-
dition of a constraint or variable to the linear program.
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Figure 4: 3x3 Grid
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Figure 5: Throughput with a bidirectional MAC

Moreover, there is a complex relationship between the
number of variables and constraints in a linear program,
and the amount of time required to solve it. Thus, the
metric is only a rough guide for the amount of actual time
(or CPU cycles) spent while finding the bound. In Sec-
tion 4.5, we will provide further discussion about the re-
lationship between the effort metric and actual time spent
in computation. The effort metric is defined in a similar
manner by considering cliques in case of searching for
the upper bound, and by considering schedulable sets in
case of the physical model.

4.1.1 A Simple Topology

We consider the topology shown in Figure 4. The net-
work consists of 9 nodes, placed in a 3x3 grid. We make
no claims that this topology is representative of typical
wireless networks. We have deliberately chosen a small,
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link 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0
1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0
2 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0
3 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0
4 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0
6 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1
7 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0
8 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1
10 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
14 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
16 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
17 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1
18 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
20 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1
21 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
22 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1
23 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 1: Conflict Graph in matrix form

simple topology, to facilitate detailed discussion of the
results.

We start with several simplifying assumptions. We
will relax these assumptions as we proceed through the
section. We assume that the range of each node is one
unit, i.e., just enough to reach its lateral neighbors, but
not the diagonal ones. We also assume that the inter-
ference range is equal to the communication range. We
assume an 802.11-like protocol model of interference de-
scribed in Section 3.5. This model requires both the
sender and the receiver to be free of interference for
successful communication. We term this abidirectional
MAC. The resulting conflict graph for this scenario is
shown in the matrix form in Table 1. A 0 indicates that
the links are not in conflict with each other, while 1 indi-
cates otherwise. For example, when node 0 is transmit-
ting to node 3, node 1 can hear these transmissions, and
hence can not transmit to node 2. Thus, links 1 (0 → 3)
and 3 (1 → 2) are in conflict.

We allow multipath routing. We assume that all wire-
less links have an identical capacity (i.e., speed) of 1 unit
and that all nodes have infinite buffers. We designate
node 0 to be the sender, and node 8 to be the receiver.
The sender always has data to send, and the receiver is
always willing to consume the data.

In this scenario, it is easy to see that the optimal
throughput is 0.5. A convenient way to visualize the
optimal transmission schedule is to imagine that time
is divided into slots of equal size, and in each slot we
can transmit one packet between neighboring nodes, sub-
ject to constraints imposed by the conflict graph. Then,
the following transmission schedule will achieve optimal

throughput: (i)0 → 1 (ii) 1 → 2 (iii) 0 → 3 and2 → 5
(iv) 3 → 6 and 5 → 8 (v) 0 → 1 and 6 → 7 (vi) . . .
We can continue in this manner indefinitely. It is easy to
see that in alternate timeslots, node 0 gets to transmit to
either node 1 or 3. Hence the optimal throughput is 0.5.

In Figure 5, we show the upper and lower bound
on throughput calculated by our model, as we devote
increasing amount of effort. As shown, the upper bound
quickly converges to the stable value of 0.667, which is
somewhat higher than the optimal value. This is a clear
indication of the fact that clique constraints alone are not
sufficient to guarantee optimality, even in such a small
graph, as noted in Section 3.2.4. The lower bound, on
the other hand, steadily converges to the optimal value
of 0.5. We have verified that our program has discovered
all independent sets and cliques with 100 units of efforts.

4.1.2 Community Networking Scenario

Our model can also incorporate single path routing, mul-
tiple source-destination pairs, multiple channels as well
as multiple radios. We demonstrate this flexibility with
a community mesh networking scenario, in which mul-
tiple users share an Internet connection, using a multi-
hop wireless network. We consider a map of a real sub-
urban neighborhood shown in Figure 6. There are 252
houses in an area of 1 square kilometer. We select 35 of
these houses at random, and assume that these houses
are equipped with hardware that enables them to par-
ticipate in a wireless mesh network. We assume that
communication range of the wireless technology is 200
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Scenario Optimal Throughput
I 0.5

II 0.5
III 1
IV 1

Table 2: Throughput for neighborhood mesh in various
scenarios

meters, while the interference range is 400 meters. In
Figure 7, we show the resulting network. We select a
node that is roughly at the center of the area and des-
ignate it as the Internet access point. We assume that
there are four senders, located as shown in the Figure. All
the senders communicate with the Internet access point,
and the metric of interest is the cumulative throughput of
these senders. We assume that all wireless links are of
unit capacity.

We begin with a baseline case, for which we assume
a bidirectional MAC and single path routing. Our linear
program is set to optimize the sum of the throughputs of
the four flows, with no consideration of fairness. In this
case, with about 5000 units of effort, upper and lower
bounds converge, and our model indicates that the maxi-
mum possible cumulative throughput is 0.5.

We may now ask what we can do to improve the cu-
mulative throughput. We consider four possibilities: (I)
Employ multi-path routing. (II) Double the range of each
radio. We also double the interference range. (III) Leave
the radio range unchanged, but use two non-overlapping
channels instead of one. A node may communicate on
only one of the two channels at any given time, but may
switch between channels as often as necessary. (IV) Use
two radios instead of one at each node. The radios are
assumed to be tuned to two fixed, non-overlapping chan-
nels, so a node may communicate on the two channels
simultaneously. The throughput bounds in each of the
four scenarios are shown in Table 2. In each case, the
upper and the lower bounds converge to the same value,
which indicates that the solution is optimal.

The results indicate that neither multipath routing nor
doubling the range of the radio increases cumulative
throughput in the scenario we considered. On the other
hand, by using two channels instead of one, the network
may achieve the maximum possible throughput of 1. The
maximum possible throughput is 1 because the Internet
access point has only one radio. On the other hand, even
if we use two radios, the throughput remains at one. It is
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not hard to see why. The situation is equivalent to hav-
ing two separate copies of the baseline network, and then
adding up their throughputs. These scenarios illustrate
that the model we have developed can be used as a tool
for analysis and capacity planning of wireless multi-hop
networks.

4.2 Tradeoff Between Connectivity and
Throughput

In Section 3, we discussed how our model can accommo-
date nodes which do not send data in a greedy fashion,
i.e. they have a lower send rate. In [15, 20], the authors
have shown that the per node throughput in the network
decreases as the number of nodes in the network goes up.
These results, however, were derived under the assump-
tion that each node sends data as fast as it can. In other
words, the desired sending rate of the node is assumed to
be 1. However, if each node has a lower desired send-
ing rate, the richer connectivity provided by additional
nodes might help increase per node throughput, by al-
lowing better routes to be discovered. We now explore
this hypothesis using our model.

We consider a 7x7 grid, whose nodes are 200 meters
apart horizontally, and vertically. We assume that the
communication range is 250 meters, and the interference
range is 500 meters. We set the link capacity to 1. We
assume a bidirectional MAC, similar to the one used to
plot Figure 5. We use single-path routing.

We pick N nodes from the 49 available nodes, at ran-
dom, and without replacement. Half of these nodes are
designated as senders, and the other half are designated
as receivers. The senders and the receivers formN/2
flows in the network. Each sender is paired with only
one receiver. We first calculate the fraction of flows for
which the source and the destination lie in the same con-
nected component of the topology. We call this fraction
theconnectivity ratio. The connectivity ratio for various
values ofN is shown in Figure 8. The results show that
after 24 nodes (i.e. 12 flows) are selected, the connectiv-
ity ratio becomes 1.

We then assign a sending rate ofD to each sender.
Then, using our model, we calculate the optimal through-
put using single-path routing. We divide the cumulative
throughput by the number of flows (i.e.N/2) to ob-
tain average per-flow throughput, and normalize it further
by dividing it by D. The resulting normalized per-flow
throughput for various values ofN andD is plotted in
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Figure 9.

Note that when the sending rate is 0.01, the normalized
per-flow throughput continues to rise even after the con-
nectivity has reached 1. This means that the richer con-
nectivity provided by additional nodes allows for newer
routes, and allows extra traffic to be sent through the
network. However, if each node sends at rate 1, the
node might have little capacity left to forward traffic from
other nodes. Thus, the average per-flow throughput peaks
early (i.e the network is saturated), and then declines
slowly, as new nodes join the network, but fail to trans-
mit most of their desired traffic. For sending rate of 0.1,
the results are between these two cases. Note that the
non-monotonic nature of the graphs is due to fluctuation
in random runs. As part of our future work, we plan to
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verify the generality of this result using a wide variety of
topologies.

We stress that these results have been derived by as-
suming optimal routing, as well as optimal scheduling of
packets. In the next section, we further discuss the impact
of these two assumptions.

4.3 Benefits of Optimal Routing in Absence of
Optimal Scheduling

As shown in the previous sections, the optimal through-
put is achieved by selecting optimal routes and schedul-
ing the links on the routes appropriately. A natural ques-
tion to ask is how much performance improvement is
due to the optimal route selection, and how much is due
to the optimal scheduling. Motivated by this question,
we empirically examine four scenarios shown in Fig-
ure 10. They correspond to (i) optimal routing with op-
timal scheduling, (ii) shortest-path routing with optimal
scheduling, (iii) “optimal” routing under 802.11 MAC1,
(iv) shortest-path routing under 802.11 MAC. We first
briefly describe the approach we use to derive through-
put for each case, and then present the results.

Given a network topology, we apply the algorithm de-
scribed in Section 3 to compute the optimal throughput
under single-path routing. This corresponds toscenario
(i).

To derive the performance of optimal routing under
802.11, we runns-2[24] simulations. To ensure that the
packets follow the optimal routes, we specify the opti-
mal routes obtained in Scenario (i) as the static routes

1This means routes derived in (i) used with 802.11 MAC. It
may also be possible to derive optimal routes for contention-based
scheduling, but that is not our intent here.

in ns-2. The throughput numbers from these simulations
correspond toscenario (iii).

We then repeat our simulation using AODV [27], a
standard shortest path routing protocol. The resulting
throughput corresponds to the performance of thesce-
nario (iv). To minimize the impact of AODV routing
overhead, all nodes are static and simulations are run for
50 seconds, long enough to make the initial route setup
overhead negligible.

Based on the AODV simulation results, we obtain a
set of links that are used in the shortest paths between
sources and destinations. We then modify the LP for-
mulation in Section 3 to compute bounds on the optimal
throughput by excluding all but those links that lie on
one or more of the shortest paths. We do so by setting
the capacity of the excluded links to zero. We solve the
resulting LP, and obtain the throughput forscenario (ii).

Our aim is to compare throughput in scenario (i) to
throughput in scenario (ii). Similarly, we compare sce-
narios (iii) and (iv) against each other. Note that wedo
not compare the throughput obtained by solving the LP
model with the throughput obtained from ns-2 simula-
tions.

We consider these four scenarios in a 7x7 grid (49
nodes). The horizontal and vertical separation between
adjacent nodes is 200 meters. We assume the communi-
cation range to be 250 meters, and the interference range
to be 500 meters. All other parameters are at their default
settings inns-2. For each simulation run, we randomly
pick a few pairs of nodes as sources and destinations; the
source sends packets to the corresponding destination at
a constant bit rate equal to the wireless link capacity.

Table 3 shows the throughput ratios between optimal
routing and shortest path routing, under optimal schedul-
ing. These numbers are derived from our LP formulation.
In all cases, optimal routing yields comparable or better
throughput than the shortest path routing when optimal
scheduling is used. The benefit of optimal routing varies
with the number of flows, as well as with the locations of
communicating nodes. For instance, when the two flows
are far apart and do not interfere with each other, the op-
timal path achieves the same throughput as the shortest
path (e.g., numFlow=2 and run=1, 5); when the two flows
interfere with each other, the optimal path takes a detour,
which results in reduced interference and hence higher
throughput (e.g., the case of numFlow=2 and run= 2, 3,
4).

Table 4 shows the throughput ratios between “optimal”
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numFlow run 1 run 2 run 3 run4 run 5
2 1.00 1.25 1.60 1.38 1.00
4 1.41 1.00 1.44 1.43 1.14
8 2.10 1.00 1.05 1.11 1.11

Table 3: Throughput ratios between optimal routing and
shortest path routing, both under optimal scheduling in a
7x7 grid.

numFlow run 1 run 2 run 3 run4 run 5
2 1.08 2.43 1.53 1.80 1.19
4 1.07 1.54 0.79 1.02 1.55
8 3.55 1.22 0.50 1.14 0.40

Table 4: Throughput ratios between “optimal” path rout-
ing and shortest path routing, both under 802.11 MAC in
a 7x7 grid.

routing and shortest path routing, under under the 802.11
MAC. These numbers are based on ns-2 simulations. Op-
timal path outperforms the shortest path even under the
802.11 MAC when number of flows in the network is
small. On the other hand, the optimal path routing does
not always outperform the shortest path routing under
802.11 MAC when the number of flows is higher. This
occurs because as network load increases, it is harder to
find paths that do not interfere with other flows in the
absence of optimal scheduling.

The above results are encouraging, and suggest that
there is a potential to improve throughput by making
route selection interference-aware. In ongoing work, we
are continuing to investigate the benefits of interference-
aware routing under a wider range of scenarios.

4.4 Convergence of Upper and Lower Bounds

In most of the previous results in this section, the upper
and the lower bounds converged, assuring us of the opti-
mality of the solution. When they did not converge, e.g.,
Figure 5, we were able to assure ourselves of optimality
of the lower bound by manual verification. In general,
however, the bounds may not converge, as there is no
guarantee that even after adding all the clique constraints
the upper bound will beschedulable. This leads to the
question: how do we decide when to stop looking for
even tighter bounds? Given that the conflict graph may

Grid Size Lower Bound Upper Bound Time
3x3 0.25 0.25 2
5x5 0.5 0.5 2
7x7 0.495 0.5 25
9x9 0.474 0.5 35

11x11 0.479 0.5 40

Table 5: Lower and upper bounds after 150,000 units of
effort. Time in minutes.

Effort Lower Bound Upper Bound Time
10000 0.443 0.5 2
50000 0.48 0.5 5

100000 0.49 0.5 13
150000 0.495 0.5 25
200000 0.5 0.5 41

Table 6: Lower and upper bounds after varying effort for
a 7x7 grid. Time in minutes.

have an arbitrarily complex structure, we cannot wait un-
til the upper and lower bounds are within a small per-
centage of each other since this may never happen. Even
after all the cliques are found, the upper bound may still
be well above the optimal feasible solution. Thus, there is
no easy way to decide when to stop the calculations. The
data we present next does indicate, however, that conver-
gence is quite good in many scenarios.

4.5 Computational Costs

In Section 4.1, we mentioned that theeffort metric pro-
vides only a rough indication of the computational costs
of finding the bounds. We now provide more data in this
regard. Note that much of the data provided is for the
MATLAB [21] solver to which we had ready access; as
noted below,the CPLEX [6] solver reduced the compu-
tation time by a factor of 7, albeit on a somewhat faster
CPU. Unfortunately, we only had limited access to the
CPLEX resource and were able to use it for only a few of
our experiments. So it is important to note that there is
the potential for significant improvements over the com-
putational costs (for MATLAB) reported here.

In Table 5, we consider the relationship between the
size of the network and the amount of time required to
compute upper and lower bounds. The table shows the
bounds computed after 150,000 units of efforts for sev-
eral grid sizes, and the time required to compute them. In
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Flows Lower Bound Upper Bound Time
2 0.578 0.583 34
3 0.707 0.75 31
4 0.758 0.833 29
5 0.799 0.875 31
6 0.849 0.925 34
7 0.861 1.00 36

Table 7: 7x7 grid, multiple flows, 150,000 units of effort.
Time in minutes.

Flows Lower Bound Upper Bound Time
6 0.849 0.925 5
7 0.861 1.00 5

Table 8: 7x7 grid, multiple flows, 150,000 units of effort,
with CPLEX. Time in minutes.

each case, there is a single flow in the network, with its
source and destination nodes at diagonally opposite cor-
ners of the grid. The rest of the parameters are similar to
those used to plot Figure 5. Note that the upper and lower
bounds are not equal in all cases (but they are all close),
which indicates that we might not have found the optimal
solution in all cases. The computations were done using
MATLAB 6.1 [21], on a machine with 1.7Ghz Pentium
processor, and 1.7GB of RAM.

In Table 6, we consider the relationship between the
amount ofeffort, and the closeness of upper and lower
bounds, as well as the time required to compute those
bounds. The results are based on the 7x7 grid, with rest
of the parameters similar to those used for Table 5. As
we discussed in Section 4.1, with more effort, we are
likely to add more variables as well as more restrictive
constraints in the linear program. So the bounds become
tighter.

In Table 7, we consider the relationship between the
number of flows in the network, and the amount of time
required to compute bounds for a given amount of ef-
fort. The results are based on a 7x7 grid, with multiple
flows. For each flow, the source is in the bottom row of
the grid, and it communicates with a destination located
in the same column, but in the top row. All other param-
eters are the same as Table 5.

The software used to solve the linear program is also
a significant factor in the amount of time required to find
the optimal solution. In Table 8, we show the amount
of time taken by CPLEX [6] to solve the 7x7 grid case,

with 6 and 7 flows on a 2.7GHz Pentium machine, with
3.7GB of RAM. While we can not compare these en-
tries directly with the corresponding entries in Table 8,
as the machines used to run MATLAB and CPLEX are
different, the speedup is still quite significant: a reduc-
tion by a factor of 7, from 34-36 minutes down to 5 min-
utes. Moreover, MATLAB cannot solve the Mixed In-
teger Programs resulting from the formulation of single-
path routing. We could only solve these using CPLEX.
Unfortunately, we only had limited access to the CPLEX
software, so we are unable to report the full set of num-
bers for CPLEX.

Since these numbers are based on a single run, and are
based only on grid graphs, which have a regular connec-
tivity pattern, we cannot draw general conclusions from
them. However, some trends are useful to note. We ob-
serve that for grid networks, the amount of time required
to solve the problem increases with the number of nodes.
We also see that for a given effort level, the time required
to compute the bounds does not depend significantly on
the number of flows in the network. However, the dif-
ference between the upper and lower bounds for a given
amount of effort tends to increase with increase in the
number of flows.

In case of irregular graphs, such as the neighborhood
graph shown in Figure 7, we have observed that the
amount of time required to solve depends significantly
on connectivity and interference patterns.

Finally, we note that we have not included any results
involving physical model of communication in this sec-
tion. We have also not included results that demonstrate
the use of links of different capacities. While we have
solved such networks (physical models of interference,
links of different capacities etc.), we could not do a de-
tailed study due to resource constraints. Therefore, we
have chosen to focus on the protocol model of interfer-
ence in this section.

5 Dealing with Node Mobility

So far in this paper, we have assumed that all the nodes
in the wireless network are static. we now discuss some
possible ways to incorporate node mobility in our model.
One way is to repeat the whole process all over: re-
construct connectivity graph and conflict graph based on
the new topology, and solve the resulted LP problem.
A more efficient way is to take advantage of the efforts
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spent for the old topology, and incrementally compute
new bounds. We propose the following incremental ap-
proach for the protocol model.

When a node moves from one place to another, it re-
sults in adding and/or removing links in a connectivity
graph. For ease of discussion, suppose a linkAB is re-
moved, and a linkAC is added as a result of nodeA’s
movement. The following discussions can be easily gen-
eralized to the case when more than one link is added or
removed.

The above change in the connectivity graph leads to
the following changes in the conflict graph: (i) adding
link AC in the connectivity graph results in adding its
corresponding vertex to the original conflict graph; in ad-
dition, we need to identify the links that conflict with the
new linkAC , and add edges to the original conflict graph
to reflect these conflicts; and (ii) removing linkAB in the
connectivity graph results in deleting its corresponding
vertex and all its incident edges from the original conflict
graph.

Based on the above changes in the conflict graph, we
can incrementally update the independent set constraints
to derive a new lower bound as follows. To account for
the addition of linkAC in connectivity graph, we add in-
dependent set constraints that containAC to the original
LP. To account for the deletion of linkAB , we remove in-
dependent set constraints containingAB from the orig-
inal LP. If the topology change does not cause changes
to the objective function (i.e., links between sources and
their neighbors remain the same or links between sinks
and their neighbors remain the same), then LP solvers,
such as lpsolve inc [16], can take advantage of incre-
mental changes in the linear constraints, and more effi-
ciently derive solution to the new LP than solving it start-
ing from scratch.

Similarly, to derive a new upper bound, we incremen-
tally update the clique constraints as follows. To account
for the addition of linkAC , we add clique constraints in-
volving AC to the original LP; to account for the deletion
of link AB, we remove clique constraints involvingAB

from the original LP. As before, as long as the topology
changes do not affect the objective function, LP solvers
can more efficiently derive a solution to the new LP based
on the incremental changes in the linear constraints.

Incrementally computing the lower and upper bounds
is hard under the physical model, because in extreme a
node’s movement can affect noise level experienced by
all nodes, thereby having a global impact on the conflict

graph. We plan to further investigate this problem as part
of our future work.

6 Discussion of Limitations

Our results have demonstrated the flexibility of our
model and methodology for computing throughput
bounds. However, our work does have some limitations,
as we discuss below.

Time-varying channels pose a problem for our model.
Time-varying channel characteristics could result either
from the interference caused by other nodes or from
physical effects, e.g. mobility-induced fading. Our
model does account for fluctuations in the noise level at a
node due to the interfering transmissions of other nodes.
However, it does not accommodate fluctuations caused
by phenomena such as fading. As with mobility, it may
be feasible to recompute from scratch if the fluctuations
happen slowly.

The computational cost numbers presented in Section
4.5 suggest that our methodology is feasible for mod-
est sized networks of the order of a few hundred nodes,
which may be typical of a neighborhood wireless net-
work. However, the methodology in its current form is
likely to be too expensive for large-scale networks con-
taining thousands or millions of nodes, e.g. sensor net-
works. Since energy consumption rather than through-
put is often the metric of interest in such large-scale net-
works, this limitation may be moot.

7 Conclusion and future work

In this paper we have presented a model and methodol-
ogy for computing bounds on the optimal throughput that
can be supported by a multi-hop wireless network. A key
distinction compared to previous work is that we work
with any given wireless network configuration and work-
load specified as inputs. No assumptions are made on the
homogeneity of nodes with regard to radio range or other
characteristics, or regularity in communication pattern.
We use aconflict graphto model wireless interference
under various conditions (multiple radios, multiple chan-
nels, etc.). We view the generality of our methodology
and the conflict graph framework as a key contribution
of our work.

Although the bounds that we compute on the optimal
throughput assume the ability to finely control and care-
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fully schedule packet transmissions, the optimal routes
yielded by our analysis often outperform shortest path
routes even under “real-world” conditions such as unco-
ordinated scheduling and MAC contention. In ns-2 sim-
ulations, we have observed a throughput improvement of
over a factor of 2 in some cases. The reason for this sig-
nificant improvement is that the optimal routes often tend
to be less interference-prone than the default shortest path
routes.

We have also considered the impact of new nodes on
the per-node throughput in multi-hop wireless networks.
Contrary to previous results, we have found that the ad-
dition of new nodes can be beneficial for all nodes, un-
der the (realistic) assumption that each node is active for
only a small fraction of the time. The richer connectiv-
ity enabled by new nodes presents increased opportuni-
ties for routing around interference “hotspots” in the net-
work. This more than offsets the increase in traffic load
caused by the new nodes.

In ongoing work, we are continuing to investigate the
benefits of interference-aware routing under a wide range
of scenarios. Our next step after that would be to design
a practical interference-aware routing protocol, which
addresses interesting challenges such as constructing
the conflict graph and computing optimal routes in a
distributed manner.
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[16] R. Haemmerlé. Lp solve - incremental version.
http://contraintes.inria.fr/h̃aemmerl/lpsolve inc/.

[17] D. B. Johnson and D. A. Maltz. Dynamic source rout-
ing in ad-hoc wireless networks. In T. Imielinski and
H. Korth, editors,Mobile Computing. Kluwer Academic
Publishers, 1996.

[18] L. G. Khachiyan. A polynomial algorithm in linear pro-
gramming. Soviet Mathematics Doklady, 20:191–194,
1979.

[19] M. Kodialam and T. Nandagopal. Charaterizing achiev-
able rates in multi-hop wireless newtorks: The joint rout-
ing and scheduling problem. InACM MOBICOM, Sep.
2003.

19



[20] J. Li, C. Blake, D. S. J. D. Couto, H. I. Lee, and R. Mor-
ris. Capacity of ad hoc wireless networks. InACM MO-
BICOM, Jul. 2001.

[21] Matlab version 6.1. http://www.matlab.com/.

[22] M.Chudnovsky, N. Robertson, P.D.Seymour, and
R.Thomas. The Strong Perfect Graph Theorem. Sub-
mitted for publication., February 2003.

[23] T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan.
Achieving mac layer fairness in wireless packet net-
works. InACM MOBICOM, Aug. 2000.

[24] Ns-2 (network simulator), 1995. http://www-
mash.cs.berkeley.edu/ns/.

[25] V. D. Park and M. S. Corson. A highly adaptive dis-
tributed routing algorithm for mobile wireless networks.
In Proc. of IEEE INFOCOM’97, Apr. 1997.

[26] C. E. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance vector routing (dsdv) for
mobile computeres. InProc. of ACM SIGCOMM’94,
Sep. 1994.

[27] C. E. Perkins and E. M. Royer. Ad-hoc on-demand dis-
tance vector routing. InProc. of IEEE WMCSA’99, Feb.
1999.

[28] Seattle wireless. http://www.seattlewireless.net/.

[29] X. Yang and N. H. Vaidya. Priority scheduling in wire-
less ad hoc networks. InACM MobiHoc, June 2002.

A Proof of Theorem 1

Suppose we are given a graphG and we want to com-
pute the cardinality of its maximum independent set. We
now construct a wireless network such that the optimal
throughput it can support under the protocol interference
model is the same as the cardinality of the maximum in-
dependent set ofG. Create two wireless nodes, a source
s and a receiverr. For every vertex inG add a wireless
link of unit capacity betweens and r. For every edge
between two nodes inG, assume a conflict between the
corresponding wireless links in the network. (Such a net-
work may arise, for instance, if nodess andr are each
equipped with multiple radios set either to the same (i.e.,
interfering) channel or to separate (i.e., non-interfering)
channels. It is not hard to see that the optimal throughput
is achieved if and only if a maximum independent set in
G is scheduled. Thus finding the optimal throughput of
the wireless network is equivalent to finding the cardinal-
ity of the maximum independent set of graphG, which is
known to be a hard problem.
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Z

Figure 11: A 6x6 grid connectivity graph. ABCDE and
VWXYZ are examples of odd holes in the corresponding
conflict graph, assuming an 802.11-style MAC, commu-
nication range equal to the lateral spacing between neigh-
bors, and interference range equal to twice the commu-
nication range. These odd holes also happen to be odd
anti-holes.

The above proof may come across as contrived since
the wireless network we constructed is unlikely to arise
in practice. This raises an interesting question of whether
realistic wireless networks could give rise to complex
conflict graphs? Our answer is both yes and no. Our
answer is “yes” because the maximum independent set
problem is hard due to the existence of odd holes and odd
anti-holes in the given graph2. As shown in Figure 11,
very realistic and simple grid graphs could have conflict
graphs with many odd holes and odd anti-holes. On the
other hand, our answer is “no” because realistic conflict
graphs may have some special property or structure that
could make the problem of finding the maximum inde-
pendent set easy. We have been unable to identify any
such property, but our failure does not mean that no such
property exists (though the complex conflict graphs aris-
ing from the simple grid graphs, as in Figure 11, diminish
our optimism). In view of this, we believe that the heuris-
tic approach presented in Section 3 is reasonable. In the
following subsection, we discuss certain special cases in
which optimal solution may be found in polynomial time.

2If a graph does not have any odd holes or anti-holes then the
graph is termedperfect[22], and for perfect graphs there are polyno-
mial time algorithms to solve the maximum independent set problem
[12].
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B Polynomial Time Algorithm in Spe-
cial Cases

Even in special cases where polynomial time algorithms
may exist, they may be too expensive to be of practical in-
terest. One such special case arises in the context of grid
graphs when the conflict radius is zero. By zero conflict
radius we mean that two links conflict if and only if they
share an endpoint. In this simple and somewhat unrealis-
tic setting, the conflict graph is nothing but theline graph
of the underlying grid network. The line graph,L(G), of
a graph,G, is a graph on the edges ofG, i.e., the vertices
of L(G) correspond to the edges ofG. There is an edge
between two vertices ofL(G) if the corresponding edges
in G have a vertex in common.

Note that we have assume that our network in this
case is a grid. A grid is a bipartite graph, and bipartite
graphs are perfect. The line graph of a perfect graph
is perfect too. Hence the conflict graph of a grid graph
with a zero conflict radius is a perfect graph. A perfect
graph has the property that its set of clique constraints
define its independent set polytope. So if we write a lin-
ear program with all the clique constraints together with
the flow constraints then we can find the optimal network
throughput. The problem, however, is that the number
of cliques could still be exponentially many. (Although
this does not happen with grid graphs, it could very well
happen with other perfect graphs.) A solution is to use
the ellipsoid algorithm [18] to optimize linear functions
over a polytope. This algorithm does not require all the
constraints in an explicit form to optimize a linear func-
tion over a polytope, hence we do not have to enumer-
ate the exponentially many clique constraints. The el-
lipsoid algorithm only needs a subroutine that given a
potential solution indicates whether the constraints are
satisfied or not, and if not identifies at least one con-
straint which is not satisfied. Such a subroutine is called
separation oracle. The separation oracle for our prob-
lem would be one that finds a violated clique constraint
given a usage vector. This can be accomplished using the
Grotschel semidefinite programming algorithm for find-
ing the heaviest clique [13]. However, both the ellipsoid
algorithm and the semidefinite algorithm have a running
time of O(n3), so in combination their running time is
O(n6). Thus this polynomial time algorithm is not very
practical.

As discussed in Section 2, Kodialam and

Nandagopal [19] present an approximation algo-
rithm for a similar case. They also assume zero conflict
radius but the underlying conflict graph can be arbitrary
graphs instead of a grid graph. We note that our algo-
rithm still finds the optimal solution for the problem
within polynomial time. Since the conflict radius is zero,
conflict graph is just a line graph of the connectivity
graph. Independent set polytope of the conflict graph
is just the matching polytope of the connectivity graph.
Edmonds [7] gave a linear program describing the
matching polytope of an arbitrary graph. Hence, for this
problem, we can describe the independent set polytope
by a linear program. This implies that our algorithm
can compute the optimal solution for the case when the
conflict radius is zero.

C Theoretical limits on the upper-
bound

One of the questions, which our upper-bounding heuris-
tic raises, is how good is the upperbound if we include all
the clique constraints, which can itself take exponential
computation time. We have given examples (odd holes)
earlier which show that unlike the lowerbound, the up-
perbound may not always be tight. The next question
is, is the upperbound even likely to be within any con-
stant factor of the optimal. Unfortunately, the answer
can be no. Consider the two nodes example discussed
in Appendix A. Let the conflict graph beG. We have
already shown that the maximum throughput froms to r
is the cardinality of the maximum independent set inG.
From probabilistic graph theory we know that there are
triangle-free graphs onn nodes which have independent
size ofO(

√
n). Suppose the conflict graphG is one of

those graphs. SinceG is triangle-free, only clique con-
straints are edges. So using each wireless link for half
the time satisfies all the cliques, the upperbound can’t be
better thatn/2, whereas the optimal isO(

√
n). So the

upperbound is not within any constant factor of optimum
throughput.

The next question, then, is whether the quality of the
upperbound improves when we add all the odd-hole and
the odd-anti-hole constraints. We do not explore this
question, but do believe that the upperbound will not be
within any constant factor even then. The reason for our
belief is that the stable set polytope can include compli-
cated structures such as odd wheels, that will need to be
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considered even after all odd-hole and odd anti-hole con-
straints have been discovered. Instead, we now present a
technique that may improve the convergence rate of our
algorithm, but does not guarantee tightness.

The technique is a separation oracle that given a con-
flict graphG and a candidate solutionλ finds a violated
odd hole constraint, if any. Such an oracle could be used
to improve the convergence rate of the algorithm pre-
sented in Section 3. Note that this separation oracle is ap-
plicable to general graphs; for the perfect conflict graph
considered in Section B above, there are no odd holes
anyway.

Consider an odd hole,H, of the given conflict graph
G. Any vectorλ inside the independent set polytope of
G must satisfy the following:

∑
i∈H λi ≤ (|H| − 1)/2.

A violated odd hole is one for which this constraint is not
satisfied. Before attempting to find a violated odd hole,
we may assume that the givenλ satisfies all the edge con-
straints, i.e.,λi + λj ≤ 1 for every edge inG, because
if it does not then we can include the violated edge con-
straint to shrink the upperbounding polytope. After mak-
ing this assumption we define a weight function on the
edges. For every edgeij of the graphG, we define its
weight to be1− λi − λj, which is guaranteed to be non-
negative. With this weight function we find the lightest
(i.e., least-weight) odd cycle in the graph. The lightest
odd cycle can be found using a bipartite graph construct
as explained in the next paragraph. LetC be the light-
est odd cycle.

∑
ij∈C(1 − λi − λj) < 1 is equivalent to

∑
i∈C λi > |C|−1

2
. So, if the weight of the lightest odd

cycle is less than 1 then the cycle is a violated odd hole.
If the weight of the lightest odd cycle is 1 or more then
there is no violated odd hole.

Now we come to the question of efficiently finding the
lightest odd cycle. LetG be the graph in which we need
to find the lightest odd cycle. We construct a bipartite
graph,B, as follows. For every vertexv in G we put
two verticesvl andvr in B (the subscriptsl andr can
conceptually be thought of as representing the left and
right “halves” of the the bipartite graphB). For every
edgeuv in G we put two edgesulvr andurvl in B. Now
an odd cycle inG becomes an odd length path inB e.g.,
uvwu becomesulvrwlur. So for every vertexu in G we
find the shortest path fromul to ur in B. The shortest
such path inB yields the lightest odd cycle inG.
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